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Ising model with stochastic resetting
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We study the nonequilibrium stationary state (NESS) of the Ising model driven away from thermal equilibrium
at temperature T by a stochastic resetting protocol. This protocol, realizable via rapid quench of temperature and
magnetic field, resets the magnetization to its fixed initial value m0 at a constant rate r. In the resulting NESS,
the magnetization acquires a nontrivial distribution, leading to a rich phase diagram in the (T, r) plane. We
establish these results exactly in one dimension and present scaling arguments supported by simulations in two
dimensions. We show that this resetting protocol gives rise to a “pseudoferro” phase in the (T, r) plane for
r > r∗(T ) and T > Tc, where r∗(T ) is a crossover line separating the pseudoferro phase from a paramagnetic
phase. This pseudoferro phase is characterized by a magnetization distribution that vanishes as ∼mζ as m → 0,
where ζ varies continuously with T and r.
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I. INTRODUCTION AND MAIN RESULTS

Stochastic resetting has seen much activity during the past
decade [1], notably in the context of search processes which
are ubiquitous in nature [2]. The simple intuition behind
resetting is as follows: If one is searching for a target via
a stochastic process such as simple diffusion, it may take a
long time due to trajectories that run off from the target. It is
then advantageous to restart the search process with a certain
resetting rate r from the same initial condition [3,4]. The idea
is that one may explore new pathways leading to the target,
thereby reducing the search time. Recently, a large number
of studies have shown that there is an optimal resetting
rate r∗ that makes the search process most efficient [3–21].
Another interesting aspect of resetting dynamics, in addition
to optimizing the search process, is that it breaks detailed
balance and drives the system into a nontrivial nonequilibrium
stationary state (NESS). Characterizing such a NESS has
recently become a problem of central interest in statistical
physics [3,22–27].

Resetting has found a large number of applications across
disciplines. For example, in biology, the process of RNA
polymerization, which is responsible for the synthesis of RNA
from a DNA template, is stochastically interrupted by back-
tracking [28,29]. Similar notions are found in the ecological
context: Animals such as rhesus monkeys [30,31], during the
foraging period, perform stochastic resetting to previously
visited sites and the effects of such memory-induced reset-
ting have been studied in several models [18,24,32–35]. In
computer science, stochastic restarts can be used to reduce
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the running time of randomized search algorithms [36–41].
Stochastic resetting has been studied also in the context
of chemical processes as in the Michaelis-Menton reaction
scheme [9,12], active run-and-tumble particles [42–44], bi-
ological traffic models [45], population genetics [46], and
recently in quantum systems [47,48].

Most of the systems discussed above concern the effect
of resetting on the statics and dynamics of a single particle
(or equivalently for noninteracting systems). It is natural to
ask how resetting affects the stationary state of a many-body
interacting system. This question has been addressed in a
number of interacting systems in one dimension, such as
reaction-diffusion systems [49], fluctuating interfaces [50],
exclusion and zero-range processes subjected to resetting
[51–53]. However, none of these systems, in equilibrium,
exhibit a thermodynamic phase transition. It is then interesting
to know how resetting affects a system that, in the absence of
resetting, displays a phase transition in its equilibrium state.
The simplest paradigmatic model that exhibits an equilibrium
phase transition is the Ising model in d dimensions, with
d � 2. It is then natural to ask what kind of stationary state
is reached when an Ising model, evolving under the natural
Glauber dynamics, is subject to resetting (to an initial state) at
a constant rate r?

It is useful to first recall the properties of the nearest
neighbor Glauber-Ising model in the absence of resetting
(r = 0) [54]. Let si = ±1 denote the spin at site i of the Ising
model. Starting from an initial configuration where the spins
are independently chosen to have value ±1 with probabil-
ity (1 ± m0)/2 (where m0 ∈ [0, 1]), the individual spins flip
according to the Glauber rate that satisfies detailed balance
(see later for details). Let P({si}, t ) denote the probability
distribution of a spin configuration {si} at time t . The most
natural observable is the order parameter, i.e., the average
magnetization m(t ) = 1

N

∑
i〈si(t )〉, where 〈· · · 〉 denotes av-

eraging over the probability measure P({si}, t ) at time t . At
late times, the system approaches the thermal equilibrium
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state, where the magnetization m(t ) approaches, irrespective
of the initial value m0, the final value meq > 0 for T < Tc

(ferromagnetic phase), and 0 for T � Tc (paramagnetic phase
and at the critical point). Of course, Tc = 0 in d = 1.

What happens to the magnetization m(t ) at long times
when a finite resetting rate r is switched on? Resetting can be
physically realized by the following “rapid quench” protocol.
We prepare the Ising model initially in its equilibrium state at
high temperature (say T = ∞) in the presence of a nonzero
magnetic field h > 0. So, at t = 0, the spins are uncorrelated
with a finite magnetization m0. We rapidly quench the temper-
ature to T and switch off the magnetic field and let the system
evolve via the Glauber dynamics at temperature T and h = 0
during a random time distributed exponentially p(t ) = r e−r t .
Following this period, we do a reverse quench by raising
the temperature to T = ∞ and switching on h > 0. We let
the system relax to its equilibrium over a relaxation time
τR, and then again quench the system back to T and h = 0,
run it for an exponential time and do reverse quench and
so on. This alternating quench-and-reverse-quench protocol
mimics exactly the resetting mechanism in the presence of
a finite refraction time τR that has been studied recently in
various models of stochastic resetting [15,55–57]. At very
high temperature, we expect rapid relaxation τR 	 1/r. This
approximation amounts to instantaneous resetting τR 
 0, to
which we focus here as it is easier to analyze.

In this paper, we show that this resetting protocol drives the
system into a NESS where the magnetization has a nontriv-
ial distribution. This is markedly different from equilibrium
systems where the magnetization distribution is trivially a δ

function centred either at m = 0 (for T > Tc) or at m = meq >

0 (for T < Tc). Thus, the knowledge of the full distribution of
the magnetization is necessary to characterize the steady state
of the system in the presence of resetting.

Let us first summarize our main results. We show that
a nonzero resetting leads to a rich phase diagram in the
(T, r) plane as displayed in Fig. 1 with the emergence of a
“pseudoferro” phase. At all T , the stationary magnetization
distribution Pstat

r (m) has a finite support. For T > Tc, there is
a crossover line r∗(T ) that separates the paramagnetic phase
[r < r∗(T )] from a pseudoferro phase [r > r∗(T )]. In the para
phase, Pstat

r (m) diverges as m → 0, as Pstat
r (m) ∼ mζ with

ζ = r/r∗(T ) − 1 < 0 and hence the typical magnetization
mtyp = 0 (mtyp denotes the value of m at which Pstat

r (m) has its
maximum). In addition, there is no gap at m = 0, i.e., g = 0.
In contrast, in the pseudoferro phase [T > Tc and r > r∗(T )],
while the gap g still remains zero, Pstat

r (m) now vanishes as
m → 0 as Pstat

r (m) ∼ mζ where the exponent ζ = r/r∗(T ) −
1 > 0 varies continuously with T and r. Consequently, the
maximum of Pstat

r (m) occurs at a nonzero value mtyp > 0 (see
Fig. 1). For T < Tc (ferro phase), the distribution Pstat

r (m) has
a finite support [meq, m0] (for meq < m0) or over [m0, meq]
(if meq > m0). Thus, in this phase, there is a finite nonzero
gap g = min(meq, m0). In addition, mtyp > 0 in the ferro
phase. Exactly at T = Tc, the distribution Pstat

r (m) vanishes
extremely rapidly, Pstat

r (m) ∼ e−Am−κ

as m → 0. We show that
the exponent κ is related to the equilibrium critical exponents
via the relation κ = νz/β, where ν and β are respectively the
correlation length and the order parameter critical exponents,

FIG. 1. Phase diagram in the (T, r) plane in d � 2. The magne-
tization distribution Pstat

r (m) in the stationary state, in the presence
of resetting, is shown schematically in three different regions in the
(T, r) plane. For T > Tc, there is a crossover line r∗(T ) (shown
schematically by the dashed blue line) that separates the para phase
for r < r∗(T ) and the pseudoferro phase for r > r∗(T ). In the para
phase, the Pstat

r (m) has a divergent peak at m = mtyp = 0 (and no gap
at m = 0), while in the pseudoferro phase, Pstat

r (m) vanishes at m = 0
with a peak at mtyp > 0 (and still no gap at m = 0). For T < Tc (ferro
phase), a nonzero gap opens up at m = 0 in Pstat

r (m) and moreover
the distribution peaks at mtyp > 0.

while z is the dynamical critical exponent associated to the
Ising-Glauber dynamics at T = Tc. We establish these results
from an exact solution in d = 1 and, for d = 2, we provide
scaling arguments supported by simulations.

II. RESETTING IN THE ISING MODEL

We start with an Ising model with ferromagnetic nearest-
neighbor interactions H = −J

∑
〈i, j〉 sis j on a d-dimensional

lattice with N sites and periodic boundary conditions. Starting
from an initial condition where the spins are independently
±1 with probability (1 ± m0)/2, the Glauber dynamics, in the
absence of resetting, consists in flipping a single spin with
rate [54]

w(si → −si ) = 1

1 + eβ�E
, (1)

where β = 1/(kBT ) is the inverse temperature and �E =
2Jsi

∑
j∈n.n. s j is the change of energy in flipping the ith spin.

In d = 1, this rate simplifies to w(si → −si ) = (1/2)[1 −
γ si(si−1 + si+1)/2], where γ = tanh (2βJ ). This property
makes the one-dimensional (1d) Glauber dynamics exactly
solvable as the evolution equation for the n-point correlation
functions only involve n-point functions; i.e., it satisfies a
closure property [54]. This closure property, however, does
not hold for d > 1. Note that under the Glauber dynamics,
the magnetization m(t ) = (1/N )

∑
i〈si(t )〉 evolves determin-

istically with time t .
Now we switch on the resetting protocol, whereby the sys-

tem goes back randomly in time to the initial high-temperature
state with a nonzero rate r. This means that, between two
successive resetting events, the system evolves by the standard
Glauber dynamics mentioned above (1). If we now observe
the system at a fixed time t , what matters is the time τ elapsed
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since the last resetting before t . This is because the system
has evolved by the pure Glauber dynamics during the interval
[t − τ, t]. But since the resettings happen stochastically, the
time τ itself is a random variable. As a result, any observable,
such as the average magnetization, measured at time t also
becomes a random variable. One can express the distribution
Pr (m, t ) of the average magnetization m in the presence of
resetting with rate r by the simple renewal equation

Pr (m, t ) = r
∫ t

0
dτ e−rτ P0(m, τ ) + e−rt P0(m, t ) , (2)

where P0(m, τ ) = δ(m − m(τ )) denotes the magnetization
distribution in the absence of resetting (r = 0) since it evolves
deterministically as m(τ ). The second term in (2) corresponds
to having no resetting up to time t and the system evolves by
the standard Glauber dynamics during [0, t] and ends up with
a magnetization m at time t . The first term in (2) corresponds
to the event that there is a resetting event at time t − τ which
happens with probability r dτ , followed by no resetting in the
interval [t − τ, t] which occurs with probability e−rτ . During
this interval of length τ , the system evolves via the standard
Glauber dynamics, and hence at time t , the magnetization
is just m(τ ). In the large time limit, the second term in (2)
drops out and hence the stationary magnetization distribution
is given by

Pstat
r (m) = r

∫ ∞

0
dτ e−rτ δ(m − m(τ )). (3)

Given this simple renewal property (3), we need just to know
the deterministic Glauber evolution m(τ ) for all τ in the
absence of resetting to characterize Pstat

r (m).

A. The case of the 1d Ising model

We start with the exactly solvable case on a 1d lattice with
N sites and periodic boundary conditions in the absence of
resetting. The one-point average 〈si(t )〉 evolves via [54]

d

dt
〈si(t )〉 = −〈si(t )〉 + γ

2
[〈si−1(t )〉 + 〈si+1(t )〉], (4)

with initial condition 〈si(0)〉 = m0 for all i. Thus the
average magnetization m(t ) = (1/N )

∑
i〈si(t )〉 evolves via

dm(t )/dt = −(1 − γ )m(t ), whose solution is trivially

m(t ) = m0 e−(1−γ )t ; γ = tanh (2βJ ) . (5)

Substituting this solution (5) in Eq. (3), one obtains exactly

Pstat
r (m) = r

m0(1 − γ )

(
m

m0

) r
r∗ (T ) −1

, m ∈ [0, m0], (6)

where

r∗(T ) = 1 − γ = 1 − tanh

(
2J

kBT

)
. (7)

In this case Tc = 0 and we have only the part of the phase
diagram in Fig. 1 with T � Tc. The result in Eq. (6) clearly
shows that, near m = 0, Pstat

r (m) ∼ mζ where the exponent
ζ = r/r∗(T ) − 1 varies continuously with temperature. Thus,
Pstat

r (m) either diverges [for r < r∗(T )] or vanishes [for r >

r∗(T )] as m → 0. In the former case, mtyp = 0—this is the
para phase. In contrast, for r > r∗(T ), mtyp > 0: This is the

pseudoferro phase induced by resetting. We have also done
numerical simulations in d = 1 to verify our analytical pre-
diction in Eq. (6) and found excellent agreement (see Fig. 3 in
Appendix A).

B. The case of the 2d Ising model

In 2d , the Ising model at equilibrium has a finite Tc ≈
2.269 with the choice J = kB = 1. Unlike in d = 1, the
Glauber dynamics is not exactly solvable in d = 2. How-
ever, using the well-established phenomenological behavior
of m(t ), in particular at late times, in the renewal equation (3),
we can make some predictions for the stationary magnetiza-
tion distribution Pstat

r (m) in various parts of the phase diagram
in the (T, r) plane in Fig. 1. We then verify these predictions
with numerical simulations and find a very good agreement.
Below we consider the three cases T > Tc, T < Tc, and T =
Tc separately:

(1) T > Tc. We start with the paramagnetic phase T > Tc.
In this case, the average magnetization for the pure Glauber
dynamics is expected to decay at late times as m(t ) ∼ a1 e−λ1 t ,
where the amplitude a1 and the leading decay rate λ1 both de-
pend on temperature [58] and can be estimated very precisely
from Monte Carlo simulations. This pure exponential decay
of m(t ) holds only when t � 1/�λ, where �λ is the first gap
in the relaxation spectrum. Substituting this functional form
in Eq. (3) we get, for r 	 �λ,

Pstat
r (m) ≈ r

λ1a
r

λ1
1

m
r

λ1
−1

, m ∈ (0, a1] . (8)

This is a good approximation at high temperature T � Tc,
where �λ is large. In this case, a1 ≈ m0 and thus we recover
qualitatively a similar distribution for Pstat

r (m) (6) as in the
d = 1 case. In the case of 2d , for T � Tc, we then have
r∗(T ) = λ1. Thus, as in the d = 1 case, we have a crossover
from the usual para phase for r < r∗(T ) to the pseudoferro
phase for r > r∗(T ) across the crossover line r∗(T ) in the
(T, r) plane, for T � Tc. Our numerical simulations are com-
pletely consistent with this scenario. In Fig. 2(a), we plot the
cumulative stationary distribution F stat

r (m) = ∫ m
0 Pstat

r (m′)dm′
versus m for three different resetting rates: one in the para
phase (the top curve), one in the pseudoferro phase (bottom
curve), and finally at the crossover line r = r∗(T ) (middle
curve). In the last case, the probability distribution function
(PDF) of the magnetization Pstat

r∗ (m) is uniform [from Eq. (8)]
and hence the cumulative distribution function (CDF) F stat

r∗ (m)
increases linearly with m.

(2) T < Tc. In the ferro phase and in the absence of reset-
ting, the magnetization density of the 2d Ising model reaches
a nonzero equilibrium value meq with a stretched exponential
decay at late times [58],

m(t ) ≈ meq ± ae−btc
, (9)

where the parameters a, b, and 0 < c < 1, not known ana-
lytically, need to be determined from simulations. In (9), the
+ and − signs are used in the case m0 > meq and m0 < meq

respectively. When a constant resetting rate r is introduced in
the system, the stationary PDF Pstat

r (m) is obtained from the
general formula in Eq. (3), where for m(τ ) we now use Eq. (9).
The resulting Pstat

r (m) is nontrivial and its detailed form is
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FIG. 2. Plot of the CDF F stat
r (m) = ∫ m

0 Pstat
r (m′) dm′ vs m in two dimensions, for different values of the resetting rate r, in (a) the para phase

T > Tc, (b) at the critical point T = Tc ≈ 2.269 (for J = kB = 1), and (c) in the ferro phase T < Tc. (a) The solid curves show the simulation
results for T = 3.5, m0 = 0.9905, and for three different values of r, respectively for r < r∗ (top blue curve), r = r∗ ≈ 0.117 (middle light
blue curve), and r > r∗ (bottom green curve). The red dashed lines correspond to our theoretical prediction obtained by integrating Eq. (8).
The agreement with the theoretical predictions gets better for smaller r as explained in the text. (b) Scaling collapse at T = Tc of the CDF
F stat

r (m) ≈ H (m r−β/(νz) ), compared with the theoretical function H (y) = e−(bc/y)νz/β
(red solid line) for three different small values of r. Here

we used β = 1/8, ν = 1 and z ≈ 2.17 together with the estimated parameter bc = 0.9576. (c) CDF for T = 2.24 < Tc with meq = 0.70732
and r = 0.00459 (blue solid line), compared with the theoretical prediction [see the text and Eq. (B3) in Appendix B] shown by the dashed red
line. All the simulations were performed on a 256 × 256 square lattice. One observes finite-size effects at the edges of the support.

discussed in Appendix B. For instance, a plot of the associated
CDF is given in Fig. 2(c) for the case m0 > meq and compared
to simulations, showing an excellent agreement. In this case,
the PDF is supported over the finite interval [meq, meq + a]. It
has nontrivial asymptotic behaviors at the edges. For exam-
ple, near the lower edge, where m → m+

eq, Pstat
r (m) vanishes

faster than a power law as Pstat
r (m) ∼ exp{−B[− ln ((m −

meq )/a)]1/c}, where 0 < c < 1 and B = r b−1/c.
(3) T = Tc. Exactly at the critical point, the magnetization

m(t ), without resetting, has a nonmonotonic decay with time
[59–61], which is not known analytically, except at short and
long times. Hence, it is difficult to evaluate Pstat

r (m) exactly
from Eq. (3) for all m. However, when r and m are both small,
one can use in Eq. (3) the late time form of m(t ) ≈ bc t−φ ,
where the exponent φ = β/(νz) is related to the standard
critical exponents defined earlier. We then find that there is a
scaling regime as m → 0, r → 0 but with m r−φ fixed where
the distribution Pstat

r (m) takes the scaling form

Pstat
r (m) ≈ r−φG(m r−φ ) , (10)

where the scaling function G(y) = A y−1−1/φe−(bc/y)1/φ

, with
A = b1/φ

c /φ, vanishes extremely rapidly as y → 0. Conse-
quently, the CDF F stat

r (m) = ∫ m
0 Pstat

r (m′) dm′ ≈ H (m r−φ ),

where H (y) = e−(bc/y)1/φ

. This scaling behavior is verified
numerically in Fig. 2(b), where F stat

r (m) shows a beautiful
scaling collapse for three different values of r. The full
distribution Pstat

r (m) has still a finite support m ∈ [0, �] where
the upper cutoff � depends on system parameters. While there
is no strict gap at m = 0 (as in the ferro phase), Pstat

r (m)
vanishes extremely rapidly as m → 0. Thus, even in this
resetting-induced NESS, there is a remnant signature of the
equilibrium critical point Tc that is manifest in this essential
singularity near m = 0.

III. CONCLUSION

To summarize, we have addressed a general question: How
does resetting affect a magnetic system such as the short-range
Ising model that, in equilibrium, exhibits a thermodynamic
phase transition at T = Tc (d > 1)? We have shown that
the resetting can be realized in such systems using a rapid
quench protocol of temperature and magnetic field. Resetting
drives the system to a NESS with a nontrivial magnetization
distribution and exhibits a rich phase diagram in the (T, r)
plane (see Fig. 1), including in particular the emergence of
a pseudoferro phase for T > Tc and r > r∗(T ) which has

FIG. 3. Plot of the PDF Pstat
r (m) for three different values of r: (a) para phase with r = 0.2 < r∗(T = 3.5) = 0.4836 . . ., (b) pseudoferro

phase with r = 3 > r∗(T = 3.5), and (c) exactly on the crossover line r = r∗(T = 3.5). The red solid lines correspond to the theoretical result
in Eq. (6), while the blue curves correspond to numerical simulations. The almost blue vertical lines at the edges of the distribution are due to
finite-size effects.
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been characterized. The qualitative features of the phase di-
agram, established here for the d = 1 and d = 2 Ising model
with Glauber dynamics, are also expected to hold in higher
dimensions and for generic magnetic systems. It would be
interesting to study the effect of a nonzero relaxation time
τR on the stationary magnetization distribution. Finally, going
beyond the magnetization distribution, it would be interesting
to investigate the structure of the distribution of the two-point
correlation functions in this resetting-induced NESS.

APPENDIX A: RESETTING IN THE 1d ISING MODEL:
MONTE CARLO SIMULATIONS

For the 1d Ising model, Tc = 0, and hence there is no
ferromagnetic phase for T > 0. Hence, in the phase diagram
of Fig. 1, we have only the phase T � Tc = 0. The stationary
probability distribution of the average magnetization in the 1d
Ising model in the presence of resetting is given by Eq. (6) and
reads

Pstat
r (m) = r

m0(1 − γ )

(
m

m0

) r
r∗ (T ) −1

, m ∈ [0, m0], (A1)

where

r∗(T ) = 1 − γ = 1 − tanh

(
2J

kBT

)
. (A2)

We have performed Monte Carlo simulations on a one-
dimensional lattice of length N = 10 000 at temperature T =
3.5 (setting J = kB = 1) to verify our analytical results. Sim-
ulation data are collected by averaging over 3000 independent
realizations. The fixed initial configuration to which the sys-
tem is reset at a constant rate r has magnetization m0 = 0.992.
Figure 3 presents the plot of the PDF Pstat

r (m) for three dif-
ferent values of r, showing the excellent agreement between
theory (red line) and Monte Carlo simulations (plotted in
blue).

We perform the Glauber dynamics of the 1d Ising
model at temperature T = 3.5, for which r∗(T = 3.5) = 1 −
tanh(2/3.5) = 0.4836. Hence, for r < r∗(T = 3.5), Pstat

r (m)
diverges as m → 0. This is clearly shown in Fig. 1(a), where,
in the presence of a resetting rate r = 0.2, the typical value
of the average magnetization is mtyp = 0: This regime is the
para phase. In contrast, for r > r∗(T = 3.5), a pseudoferro
phase emerges, where mtyp > 0 and Pstat

r (0) = 0, as shown
in Fig. 1(b). Exactly on the crossover line r = r∗(T ), Eq. (6)
predicts a uniform distribution for Pstat

r (m) in [0, m0]: This is
numerically verified in Fig. 1(c).

It is also interesting to know how the first moment of
Pstat

r (m) depends on the resetting rate r. This can be computed
easily as

m(r) = r
∫ ∞

0
dτ e−rτ m0 e−(1−γ )t = r

r + r∗(T )
m0, (A3)

where r∗(T ) = 1 − γ . We have measured this quantity m(r)
for different values of r from our numerical simulations.
They are plotted in blue in Fig. 4, showing an excellent
agreement with Eq. (A3). However, as discussed in the text,
the average magnetization is not enough to characterize the
stationary state under resetting and one needs the full distri-
bution Pstat

r (m).

FIG. 4. Plot of the first moment m(r) as a function of r. Numeri-
cal data and Eq. (A3) are plotted in blue and red respectively.

APPENDIX B: SCALING PREDICTIONS FOR Pstat
r (m) IN

THE THREE TEMPERATURE REGIMES FOR THE ISING
MODEL WITH RESETTING IN d � 2

For the Ising model in d � 2, the critical temperature Tc is
finite. Hence, in the phase diagram of Fig. 1, we will have all
the three phases. Unlike in 1d , the Glauber dynamics is not
exactly solvable in d � 2, even in the absence of resetting.
In this section, we provide some general scaling arguments
to predict scaling forms for Pstat

r (m) for T > Tc, T < Tc, and
T = Tc, using the renewal equation (3) which reads

Pstat
r (m) = r

∫ ∞

0
dτ e−rτ δ(m − m(τ )) . (B1)

1. The high-temperature phase T > Tc

In the high-temperature phase, the average magnetization,
quite generally, decays with time as m(t ) = ∑

i aie−λit , where
λ1 < λ2 < · · · denotes the eigenvalues associated to the re-
laxation spectrum. At late times, this is dominated by the low-
est eigenvalue λ1, i.e., m(t ) ≈ a1 e−λ1 t . This pure exponential
decay is thus valid when t � 1/�λ, where �λ = λ2 − λ1 is
the first gap in the relaxation spectrum. Substituting this pure
exponential form in Eq. (B1) we get, for r 	 �λ,

Pstat
r (m) ≈ r

∫ ∞

0
dτ e−rτ δ(m − a1 e−λ1 τ )

≈ r

λ1a
r

λ1
1

m
r

λ1
−1

, m ∈ (0, a1] . (B2)

This is Eq. (8) and it is valid for T � Tc, such that the first
gap �λ is large.

2. The low-temperature phase T < Tc

In the low-temperature phase, the average magnetization
m approaches the equilibrium magnetization meq > 0 as a
stretched exponential at late times [58], i.e., m(t ) ≈ meq ±
a e−btc

, where the + and − signs are used in the cases m0 >

meq and m0 < meq respectively.
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FIG. 5. Fit of m(t ) in the three temperature regimes. For T < Tc and T = Tc, it is necessary to consider many more time steps to obtain an
accurate fit, since the decay to the equilibrium magnetization is slower than the one for T > Tc.

Inserting this expression for m(t ) in Eq. (B1), we obtain for
r 	 �λ

Pstat
r (m) ≈ r

∫ ∞

0
dτ e−rτ δ

(
m − meq ∓ a e−bτ c)

≈ r

b c

∫ a

0
dx

1[
1
b ln

(
a
x

)] c−1
c x

× exp

{
−r

[
1

b
ln

(a

x

)] 1
c

}
δ(m − meq ∓ x)

≈ r

b c [ f (m)]
c−1

c |m − meq|
exp

{ − r [ f (m)]
1
c
}

,

(B3)

where f (m) = 1
b ln (| a

m−meq
|). Its support is (meq, meq + a]

if m0 > meq or [meq − a, meq ) if m0 < meq. In the second
equality, we have used x = a e−bτ c

.

3. At the critical point T = Tc

At T = Tc, the late time evolution of m(t ) in the absence
of resetting follows a power law decay to 0 since the spectrum
is gapless. In this case, at late times, m(t ) ≈ bc t−φ , where
the exponent is φ = β/(νz) [61]. More precisely, this power
law decay holds for t < Lz, where L is the linear size of the
system. This condition is fulfilled in our simulations since

1
rmin

	 Lz, where rmin is the smallest resetting rate used in our
simulations. Using Eq. (B1), we obtain for r 	 1

Pstat
r (m) ≈ r

∫ ∞

0
dτ e−rτ δ(m − bc t−φ )

≈ r
b

1
φ

c

φ

∫ ∞

0
dx

1

x
φ+1
φ

exp

[
−r

(
bc

x

) 1
φ

]
δ(m − x)

≈ r b
1
φ

c

φ m
φ+1
φ

exp

[
−r

(
bc

m

) 1
φ

]
, (B4)

where in the second equality we made the change of variable
x = bc t−φ . In Eq. (B4), if we set the scaling variable y =
mr−φ , then Pstat

r (m) takes the scaling form given in Eq. (10).

APPENDIX C: NUMERICAL ESTIMATE OF THE
PARAMETERS IN THE TIME EVOLUTION m(t ) OF THE 2d

ISING MODEL

In order to use Eq. (3) and compute Pstat
r (m), we need to

estimate the parameters in the time evolution of m(t ). To this
end, we have done Monte Carlo simulations of the Glauber
dynamics in the three temperature regimes on a 256 × 256
square lattice with the choice J = kB = 1 and with m0 =
0.9905 as the magnetization of the starting configuration at
time t = 0. Figure 5 shows the fit of m(t ) in the paramagnetic
phase [Fig. 3(a)], in the ferromagnetic phase [Fig. 3(b)],
and at the critical temperature [Fig. 3(c)]. The blue dots
(simulation data) are obtained by averaging over 4770, 490,
and 70 independent realisations at temperatures T = 3.5, T =
2.24, and T = Tc = 2.269 respectively. The red dashed lines
are obtained by fitting the well-established phenomenological
behavior of m(t ) in the three temperature regimes to the
numerical data.

As mentioned above, for T > Tc, the average magnetiza-
tion decays at late times as m(t ) ≈ a1 e−λ1t . The fit shown in
Fig. 3(a) provides the values a1 = 0.889 and λ1 = 0.117 for
T = 3.5. For the low-temperature phase, we set T = 2.24 <

Tc = 2.269 and in Fig. 3(b) we show the fit of the functional
form m(t ) ≈ meq + a e−btc

with estimated parameter values
a = 0.283, b = 0.37, and c = 0.316. At the critical temper-
ature Tc = 2.269, the fit, m(t ) = bct−φ , shown in Fig. 3(c)
provides an estimation of the parameters bc = 0.9576 and
φ = 0.0576. Using the relation φ = β/(νz), and the known
exact values of β = 1

8 and ν = 1, one gets z = 1/(8φ) ≈
2.17, which is in excellent agreement with previous large-
scale simulations [58].

APPENDIX D: FIRST MOMENT OF Pstat
r IN THE 2d

ISING MODEL

A quantity of interest that clearly depends on the resetting
rate r is the first moment of Pstat

r (m) in the 2d Ising model.
Similarly to the approach followed for the 1d case, we can
easily compute it for T > Tc, T < Tc, and T = Tc as

m(r) = r
∫ ∞

0
dτ e−rτ m(τ ) , (D1)

where m(t ) is the time evolution of the average magnetization
in the Glauber dynamics which has been estimated in the
previous section.
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FIG. 6. Plot of m(r) for T > Tc, T < Tc, and T = Tc. The red lines are the theoretical results [see Eqs. (D2)–(D4)], while the blue dots
come from Monte Carlo simulations.

For T > Tc, using m(t ) ≈ a1e−λ1t at late times, the average
magnetization in the stationary state is given, for small r
[so that we can use the pure exponential late time decay
of m(t )], by

m(r) ≈ r
∫ ∞

0
dτ e−rτ a1 e−λ1τ = r

r + λ1
a1 , (D2)

similarly to the one-dimensional case in Eq. (A3).
For T < Tc, using m(t ) ≈ meq ± a e−btc

, m(r) takes the
form, for small r,

m(r) = r
∫ ∞

0
dτ e−rτ

(
meq + a e−bτ c)

= meq + r a
∫ ∞

0
dτ e−rτ−bτ c

, (D3)

where the last integral can be estimated numerically very
accurately.

At the critical temperature Tc, using m(t ) ≈ bct−φ , the
average magnetization in the stationary state reads, for small
r,

m(r) = r
∫ ∞

0
dτ e−rτ bc τ−φ = bc �(1 − φ) rφ , (D4)

where �(z) is the � function.
We have performed Monte Carlo simulations with different

values of r to verify the dependence of m(r) on r. The
agreement is excellent in all the three phases [Figs. 6(a)–6(c)],
especially for small values of r. This is consistent with the fact
that we have taken the late time evolution of m(t ) in Eq. (D1),
which holds only for small r.

APPENDIX E: GENERAL EXPRESSION OF THE
CUMULATIVE DISTRIBUTION

In the main text, using renewal theory, we have obtained
the expression of the nonequilibrium stationary PDF of the
average magnetization in the presence of a resetting rate r:

Pstat
r (m) = r

∫ ∞

0
dτ e−rτ δ(m − m(τ )) , (E1)

where m(τ ) denotes the deterministic Glauber evolution of the
average magnetization. It is easy to compute exactly the CDF

F stat
r (m) =

∫ m

0
Pstat

r (m′) dm′ (E2)

that we plot in Fig. 2. We can write Pstat
r (m) as a slightly more

general expression

Pstat
r (m) =

∫ ∞

0
dτ f (τ ) δ(m − g(τ )), (E3)

where, of course, in our case f (τ ) = r e−rτ and g(τ ) = m(τ ).
Then, making the change of variable z = g(τ ), we can write
the previous integral as

Pstat
r (m) =

∫ g(∞)

g(0)

1

g′(g−1(z))
f (g−1(z)) δ(m − z) dz

= 1

|g′(g−1(m))| f (g−1(m)). (E4)

Since f ′(t ) = −r f (t ), the corresponding CDF is given by

F stat
r (m) = ± 1

r
f (g−1(m)) + const, (E5)

where the sign is + and const = 0 if g is a decreasing function
of time, while the sign is − and const = 1 if g is an increasing
function of time. Since in our case f (t ) = r e−rt , Eq. (E5)
reduces to

F stat
r (m) = ± e−r(g−1(m)) + const. (E6)

This is the CDF that we plot in the main text, with the use
of different functions g in the three temperature regimes.
The derivation of Eq. (E6) is based on two properties of the
functions f and g. The first one is that f and its time deriva-
tive f ′ are proportional, since f is an exponential function.
The second property is that the function g, which describes
the (deterministic) time evolution of the average magnetiza-
tion, is a monotonic function and, therefore, is invertible. In
particular, this property of the function g is valid in the time
window we considered for all the three different temperature
regimes (paramagnetic and ferromagnetic phases and at the
critical temperature).

APPENDIX F: NUMERICAL ESTIMATE OF r∗(T ) IN THE
PARAMAGNETIC PHASE OF THE 2d ISING MODEL

The exact expression of the crossover line r∗(T ) in the 1d
Ising model is given by Eq. (7) as r∗(T ) = 1 − tanh( 2J

kBT ).
It is then interesting to know if a similar curve can be
obtained, at least numerically, also in the two-dimensional
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FIG. 7. The ratio r∗
λ1

and, in the inset, the values of λ1 and r∗

are estimated with Monte Carlo simulations at different temperatures
above Tc.

case. For several temperatures T > Tc, we perform numerical
simulations of the 2d Glauber dynamics in the presence
of several resetting rates r and detect the value r∗(T ) that
makes the resulting PDF Pstat

r∗ (m) more similar to the uniform
distribution in [0, m0]. We thus expect to obtain a curve r∗(T )
that divides the para phase from the pseudoferro phase as
depicted in Fig. 1.

If the time evolution of m(t ) was given by a simple
exponential decay to 0, then we would find that r∗(T ) =
λ1(T ), as in the one-dimensional case. However, this is not
the case, since this time dependence holds only at late times.
Indeed, the time evolution of the average magnetization in the

paramagnetic phase is given by

m(t ) =
N∑

i=1

aie
−λit , (F1)

where λ1 < λ2 < · · · < λN constitute the whole relaxation
spectrum, ai are coefficients, and N = 2L2

is the total number
of spin configurations in a L × L lattice. Equation (F1) is
valid for any time t and is therefore a generalization of the
simple exponential decay. In the long-time limit, the two time
evolutions coincide, because only the minimum value among
λi’s (i.e., λ1) survives as t → ∞.

In principle, N should be equal to the total number of
spin configurations. Of course, to make a reasonable fit, this
number is too big: Therefore, we choose to take N = 3; that is,
we approximate m(t ) to be the sum of the three exponentials
with the smallest decay rates. As a consequence, from the fit
of m(t ) we estimate six parameters, which are ai and λi for
i = 1, 2, 3.

It is therefore interesting to compare the curve r∗(T )
obtained as illustrated above with the value λ1(T ) obtained by
fitting this m(t ) to numerical data, for different temperatures
T > Tc. The inset of Fig. 7 shows the values of r∗ and λ1

for different temperatures above Tc. Note that r∗(T ) > λ1(T ),
∀T > Tc. In particular, if we imagine to draw a line connecting
all the blue dots, we obtain the red dashed line in the phase
diagram in Fig. 1. In the main plot of Fig. 7 the ratio r∗/λ1

is plotted for different temperatures above Tc, using the same
data points of the inset. We see that this ratio converges to 1 as
the temperature T increases, proving that, when T � Tc, the
approximation r∗ = λ1 (which is the exact relation found in
the 1d case) is correct.
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[56] A. Pal, Ł. Kuśmierz, and S. Reuveni, Phys. Rev. E 100,

040101(R) (2019); New J. Phys. 21, 113024 (2020).
[57] D. Gupta, C. A. Plata, and A. Pal, Phys. Rev. Lett. 124, 110608

(2020).
[58] D. Stauffer, Physica A (Amsterdam, Neth.) 244, 344 (1997).
[59] H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73,

539 (1989).
[60] B. Zheng, Int. J. Mod. Phys. B 12, 1419 (1998).
[61] P. Calabrese and A. Gambassi, J. Phys. A: Math. Gen. 38, R133

(2005).

033182-9

https://doi.org/10.1103/PhysRevE.93.062411
https://doi.org/10.1073/pnas.1517011113
https://doi.org/10.1086/426673
https://doi.org/10.1016/j.ecocom.2005.05.007
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevE.90.042136
https://doi.org/10.1103/PhysRevE.92.052126
https://doi.org/10.1103/PhysRevE.93.022103
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1103/PhysRevLett.88.178701
https://doi.org/10.1007/s10115-007-0094-2
https://doi.org/10.1239/jap/1389370093
https://doi.org/10.1080/00268976.2017.1401743
https://doi.org/10.1088/1751-8121/aae74e
https://doi.org/10.1103/PhysRevE.99.012121
https://doi.org/10.1088/1742-5468/aaf31d
https://doi.org/10.1088/1751-8121/aaea8f
https://doi.org/10.1103/PhysRevB.98.104309
https://doi.org/10.1103/PhysRevE.98.022129
https://doi.org/10.1088/1751-8113/47/4/045002
https://doi.org/10.1103/PhysRevLett.112.220601
https://doi.org/10.1103/PhysRevE.100.032136
https://doi.org/10.1088/1751-8121/ab6aef
https://doi.org/10.1088/2399-6528/ab81b2
https://doi.org/10.1063/1.1703954
https://doi.org/10.1088/1751-8121/aaf080
https://doi.org/10.1103/PhysRevE.100.040101
https://doi.org/10.1088/1367-2630/ab5201
https://doi.org/10.1103/PhysRevLett.124.110608
https://doi.org/10.1016/S0378-4371(97)00224-0
https://doi.org/10.1007/BF01319383
https://doi.org/10.1142/S021797929800288X
https://doi.org/10.1088/0305-4470/38/18/R01

