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Global T operator bounds on electromagnetic scattering: Upper bounds on far-field cross sections
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We present a method based on the scattering T operator, and conservation of net real and reactive power,
to provide physical bounds on any electromagnetic design objective that can be framed as a net radiative
emission, scattering or absorption process. Application of this approach to plane-wave scattering from an
arbitrarily shaped, compact body of homogeneous electric susceptibility χ is found to predictively quantify and
differentiate the relative performance of dielectric and metallic materials across all optical length scales. When
the size of a device is restricted to be much smaller than the wavelength (a subwavelength cavity, antenna,
nanoparticle, etc.), the maximum cross-section enhancement that may be achieved via material structuring
is found to be much weaker than prior predictions: the response of strong metals (Re [χ ] � 0) exhibits a
diluted (homogenized) effective medium scaling ∝|χ |/ Im [χ ]; below a threshold size inversely proportional
to the index of refraction (consistent with the half-wavelength resonance condition), the maximum cross-section
enhancement possible with dielectrics (Re [χ ] > 0) shows the same material dependence as Rayleigh scattering.
In the limit of a bounding volume much larger than the wavelength in all dimensions, achievable scattering
interactions asymptote to the geometric area, as predicted by ray optics. For representative metal and dielectric
materials, geometries capable of scattering power from an incident plane wave within an order of magnitude
(typically a factor of two) of the bound are discovered by inverse design. The basis of the method rests entirely
on scattering theory and can thus likely be applied to acoustics, quantum mechanics, and other wave physics.
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I. INTRODUCTION

Much of the continuing appeal and challenge of linear elec-
tromagnetics stems from the same root: given some desired
objective (enhancing radiation from a quantum emitter [1–5],
the field intensity in a photovoltaic [6–8], the radiative cross
section of an antenna [9–11], etc.) subject to some practical
constraints (material compatibility [12–14], fabrication tol-
erances [15–17], or device size [18–20]), there is currently
no method for finding uniquely best solutions. The associ-
ated difficulties are well known [21–23]. From plasmonic
resonators [24–26] to periodic lattices [27–29], myriad combi-
nations of materials and geometries can be used to manipulate
electromagnetic characteristics (enhancing interactions with
matter [30–35]) in extraordinary ways, but net effects are
often similar [36,37]. The wave nature of Maxwell’s equa-
tions and nonconvexity of electromagnetic optimizations with
respect to material susceptibility makes discerning optimal so-
lutions challenging [38–40], often leading to the consideration
of designs that are sensitive to minute structural alterations
[41,42]. In most situations of practical interest, quantitative
relations between basic design characteristics (like available
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volume and material response) and achievable performance
are not known.

Nevertheless, despite these apparent challenges, compu-
tational (inverse) design techniques based on local gradients
have proven to be impressively successful [43–45], offering
substantial improvements for applications such as on-chip
optical routing [45–47], meta-optics [48–50], nonlinear fre-
quency conversion [51,52], and engineered bandgaps [53,54].
The widespread success of these techniques, and their increas-
ing prevalence, begs a number of questions. Namely, how
far can this progress continue, and, if salient limits do exist,
can this information be leveraged to either facilitate future
inverse approaches or define better computational objectives.
Absent benchmarks of what is possible, precise evaluation of
the merits of any design methodology or algorithm is difficult:
failure to meet desired application metrics may be caused
by issues in the selected objectives, the range and type of
parameters investigated, or the formulation itself.

Building from similar pragmatic motivations, and basic
curiosity, prior efforts to elucidate bounds on optical interac-
tions, surveyed briefly in Sec. III, have provided insights into
a diverse collection of topics, including antennas [9,10,55],
light trapping [6,56–60], and optoelectronic [61–64] devices,
and have resulted in improved design tools for a range of
applications [39,65–67]. Yet, their domain of meaningful ap-
plicability remains fragmented. Barring recent computational
bounds established by Angeris, Vučković and Boyd [39],
which are limits of a different sort, applicability is highly con-
text dependent. Relevant arguments largely shift with circum-
stance [68,69], and even within any single setting, attributes
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FIG. 1. Schematic of investigation. To what extent does the
specification of an electric susceptibility (χ ) and a confining spatial
domain for the design of a structured body (optical device), deter-
mine the maximum absorbed Pabs, scattered Psct, and extinguished
(total) Pext = Psct + Pabs power that can be extracted from a known
incident field?

widely recognized to affect performance (e.g., differences
between metallic and dielectric materials, the necessity of
conserved quantities, required boundaries, minimum feature
sizes) are frequently unaccounted for, leading to unphysical
asymptotics and/or bounds many orders of magnitude larger
than those achieved by state-of-the-art photonic structures,
Fig. 1.

In this paper, we exploit the requirement of global (net)
power conservation as constructed from the defining relation
of the scattering T operator, in conjunction with Lagrange du-
ality, to derive bounds on any electromagnetic objective equiv-
alent to a net extinction, scattering, or absorption process.
With minor modifications for cases where one is interested
in only a portion of the output field [70], such phenomena
encompass nearly every application mentioned above. The
scheme, capturing the potential of any and all possible struc-
tures under the fundamental wave limitations contained in
Maxwell’s equations, requires only three specified attributes:
the material the device will be made of, the volume it can
occupy, and the source (current or electromagnetic field) that
it will interact with. Directly, the conservation of real power is
seen to set an upper bound on the magnitude of a system’s net
polarization response, while the analog of the optical theorem
for reactive power, introducing the polarization phase, is
shown to severely restrict the conditions under which reso-
nant response is attainable, particularly in weak dielectrics
(glasses), leading to significantly tighter limits compared to
related works [71,72].

The utility of a more robust, methodic, approach for treat-
ing electromagnetic performance limits has been recognized
by several other researchers (especially in the field of radio
frequency antennas [70,73,74]), and in particular, concurrent
works by Kuang et al. [72] and Gustafsson et al. [75] have
converged on the same basic optimization approach given in
Sec. II. Although Ref. [72] considers only the conservation of
real power, and thus overestimates achievable performance for

certain parameter combinations (Figs. 2 and 3), the findings
presented in these articles are excellent complements to our
results, further highlighting the adaptability and utility of
Lagrange duality and scattering theory for predicting possible
performance in photonics. Moreover, during review of this
paper, another program for calculating bounds via the self-
consistency of the total scattering field has also been put
forward by Trivedi et al. [76]. A brief description of this work,
as well as those cited above, is given in Sec. III.

Application of the technique to compute limits on far-field
scattering cross sections for any object of electric suscepti-
bility χ that can be bounded by (contained in) either a ball
of radius R or a periodic film of thickness t interacting with
a plane wave of wavelength λ, codifies a substantial amount
of intuition pertaining to optical devices. As R/λ → 0, the
requirement of reactive power conservation means that the
energy transferred between a generated polarization current
and its exciting (incident) field, averaged over the confining
volume, can never scale as the material enhancement factor
of ζmat = |χ |2/ Im [χ ] introduced and broadly discussed in
prior works [67–69,71,77–79]. Instead, for metals (Re [χ ] �
−3), with Re [χ ] = −3 corresponding to the localized
plasmon-polariton resonance [80] of a spherical nanoparticle,
the relative strength of such interactions cannot surpass, as
compared to ζmat, the reduced form factor 3|χ |/ Im [χ ], con-
sistent with a “dilution” of metallic response implied by ho-
mogenized or effective medium perspectives [81–83]. When
Re [χ ] > −3, even this level of enhancement is not possible.
For dielectrics (Re [χ ] > 0), enhancement is limited by the
same material dependence that appears in Rayleigh scattering
[84], approximately 3|χ |/|χ + 3|. (In either case, comparison
with cross section limits based on shape dependent coupled
mode or effective medium models [85,86] reveals notable
inexactness.) After surpassing a wavelength condition in-
versely proportional to the index of refraction, the importance
of reactive power is superseded by the conservation of real
power, causing Re [χ ] to have less drastic consequences on
the magnitude of achievable cross sections; for R ≈ λ/2,
limits for dielectrics meet or surpass those of metals for
realistic material loss values, Im [χ ]. In the macroscopic limit
of R � λ or t � λ/2, the selected material plays almost no
role in setting achievable scattering cross sections, other than
determining the level of structuring that would be required,
and the predictions of ray optics (geometric cross sections)
emerge. Additionally, beyond these asymptotic features, for
representative metallic and dielectric material selections, ge-
ometries discovered through topology optimization [43,44]
are shown to come within an order of magnitude of the bounds
for domain sizes varying between R/λ = 10−3 and R/λ = 1,
with connate agreement for periodic films, providing support-
ing evidence that the bounds are nearly tight and predictive.

These same findings also shed light on a range of fun-
damental questions, such as limitations for light extraction
and trapping efficiency, and the relative merits of different
materials for particular applications [64,83,87], and provide
a much more quantitative perspective on which aspects of
a design are most critical to device performance than prior
analyses. Shortly, we foresee extensions of the framework
to embedded sources and user defined design (containing)
volumes as providing a means of formalizing, comparing, and
contrasting existing paradigms within photonics, revealing
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FIG. 2. Scattering cross-section bounds for a plane wave incident on a compact object. The four panels show different aspects of scattering
cross section bounds for any structure of electric susceptibility χ that can be contained within a spherical boundary of R/λ (e.g., cavities,
nanoparticle, etc.). Dashed lines result from imposing the conservation of real power, as in Ref. [72]. Full lines result from additionally
requiring the conservation of reactive power, as in Ref. [75]. As R → 0, limit values agree with (38) in all cases, and with (40) so long
as Im [χ ]/| Re [χ ]| � 10−4. Dots in panels (a) and (b) mark scattering cross sections achieved in actual geometries discovered by inverse
design, for χ = −10 + i 10−1 and χ = 16 + i 10−6, respectively. For the metal structure in (a), vertically aligned cross-hatched dots result
from enforcing binarized permittivity profiles. (Binarization does not alter the dielectric results.) Two sample structures are shown as insets,
with the plane wave incident from the more solid side of both designs, left side in (a), right side in (b), and aligned along the left-right
symmetry axis. Unbounded cross sections are encountered only for fictitious metals with vanishing material loss, with the bounds exhibiting
a weak, sublogarithmic, divergence as Im [χ ] → 0. More practically, cross-section enhancements surpassing ≈200 should not be expected.
Descriptions of other major features are given in the accompanying text.

limitations and trade offs in a number of technologically pre-
scient areas (e.g., the radiative efficiency of quantum emitters
[88,89], high quality factor cavities [90–92], optical forces
[93], luminescence [94,95] and fluorescence [96,97]).

The paper is divided into four main sections. Section II
begins with an overview of the T operator relations governing
absorption, scattering and radiative processes, followed by
a statement of the wave constraints and relaxations that are
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FIG. 3. Absorption cross-section bounds for a planewave incident on a compact object. The four panels provide analogous information as
Fig. 2, but for absorbed rather than scattered power. Again, the dashed lines represent bounds determined by insisting only that real power
is conserved, the solid lines result from additionally requiring the conservation of reactive power, and dots correspond to actual structures
discovered by inverse design. For the example metal structure shown in (a), the planewave is incident from the solid side of the half shell (from
the left in the first view and from the back left in the second). For the example dielectric structure, the planewave is incident from the left along
the axis of symmetry of the mushroom cap in the full view, and from the back left in the cross cut. Small radii features are found to be in
good agreement with the asymptotic predictions of (38) and (40) for Im χ/|Reχ | � 10−4. When the confining volume is small, R/λ � 1/20,
the ability of a structured object to absorb radiation is found to be substantially weaker than past predictions [68,71,77]. As R → ∞, the
geometric cross-section limit predicted by ray optics is recovered regardless of the material considered. Like scattering, these results indicate
that absorption cross section enhancements larger than ≈ 200 should not be expected.

explored in the rest of the manuscript. From these prelim-
inaries, the calculations of limits is then cast in the lan-
guage of optimization theory, and a solution in terms of the
Lagrangian dual is given. In Sec. III, a brief examination of the
similarities and differences of this approach with current art

is supplied. Next, in Sec. IV, basic computational mechanics
are examined, and the quasistatic R/λ → 0 scaling factors
quoted elsewhere are derived based on analytically tractable
single-channel asymptotics. Finally, Sec. V provides sample
applications of the method as described above. This is likely
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the section of the text of most relevance to the majority
of readers. Although only single frequency examples are
given, broad bandwidth objectives should present no major
hurdles [98,99]. Further technical details, necessary only for
reproducing our results, appear in Appendix. Because the
approach relies exclusively on the validity of scattering theory,
it is likely that counterparts of the presented findings exist in
acoustics, quantum mechanics, and any other wave physics.

II. FORMALISM

The key to the approach of this paper rests on the use of
partial relaxations [100]. Past electromagnetic limits, includ-
ing our own work, have been predominately formulated by
placing bounds on the individual physical quantities entering
an objective and then deducing a total bound by composing
the component limits [101,102]. We begin, alternatively, with
the fundamental scattering relation that any physical system
must satisfy, derive algebraic consequences of this relations
(e.g., energy conservation) and then suppose a subset of
theses conclusions as constraints on an otherwise abstract
optimization. This general procedure is detailed below. The
formulas given in the Power objectives and Scattering con-
straints sections are exact. Relaxations (omissions of certain
physical requirements) begin only after the Relaxation and
optimization heading.

A. Power objectives

Considerations of power transfer in electromagnetics typ-
ically belong to one of two categories: initial flux problems,
wherein power is drawn from an incident electromagnetic
field, and initial source problems, wherein power is drawn
from a predefined current excitation. Initial flux problems are
typical in scattering theory, and as such, our nomenclature fol-
lows essentially from this area [103]. That is, we will denote
the initial (incident, given, or bare) field with an i superscript
(either |Ei〉 or |Ji〉) and the total (or dressed) field with a t
superscript. For a pair of initial and total quantities referring
to the same underlying field, the scattered field, s superscript,
is defined as the difference |Fs〉 = |Ft 〉 − |Fi〉. There is a
certain appeal to transforming one of these two classes of
problem into the other via equivalent fields. However, due
to the additional back action that can occur in initial source
problems, in our experience a unified framework promotes
logical slips. For this reason, the total polarization field of
an initial flux problem (or total electromagnetic field of an
initial source problem) will be referred to as a generated field,
g superscript. With this notation, scattering theory for initial
flux and source problems consists of the following relations:

|Jg〉 = − ik

Z
V |Et 〉, |Et 〉 = V−1T |Ei〉,

|Et 〉 = |Ei〉 + iZ

k
G0|Jg〉, |Es〉 = iZ

k
G0|Jg〉, (1)

|Eg〉 = iZ

k
G0|Jt 〉, |Jt 〉 = TV−1|Ji〉,

|Jt 〉 = |Ji〉 − ik

Z
V |Eg〉, |Js〉 = − ik

Z
V |Eg〉. (2)

Here and throughout, G0 marks the background or en-
vironmental Green’s function, which may or may not be

vacuum [80]. The V operator refers to the scattering potential
(susceptibility) relative to this background (whatever material
was not included when G0 was computed), and |Ei〉 and
|Ji〉 are similarly defined as initial fields (solutions) in the
background. The remaining quantities in (1) and (2) are the
impedance of free space Z , the wavenumber k = 2π/λ (with
λ the wavelength), and the T operator, defined by the formal
equality I = (V−1 − G0)T [69].

The three primary operator forms for energy transfer in an
initial flux problem are the extracted power,

Pext
flx = 1

2
Re[〈Ei|Jg〉] = k

2Z
Tr[SE Asym[T ]], (3)

the absorbed power,

Pabs
flx = 1

2
Re[〈Et |Jg〉] = k

2Z
Tr[SE (T † Asym[V−1†]T )],

= k

2Z
Tr[SE (Asym[T ] − T † Asym[G0]T )], (4)

and the scattered power,

Psct
flx = −1

2
Re[〈Es|Jg〉] = k

2Z
Tr[SET

† Asym[G0]T ]

= k

2Z
Tr[SE (Asym[T ] − T † Asym[V−1†]T )]; (5)

with SE = |Ei〉〈Ei| denoting projection of the corresponding
operators onto the incident fields. Reciprocally, the three prin-
cipal forms characterizing power flow from an initial current
excitation are the extracted power,

Pext
src = −1

2
Re[〈Ji|Eg〉]

= Z

2k
Tr[SJ (Asym[V−1†] + Asym[V−1TV−1])],

= Z

2k
Tr[SJ (Asym[G0] + Asym[G0TG0])] (6)

the radiated power,

Prad
src = −1

2
Re[〈Jt |Eg〉]

= Z

2k
Tr[SJ (V−1†T † Asym[G0]TV−1)]

= Z

2k
Tr[SJV

−1†(Asym[T ]

− T † Asym[V−1†]T )V−1]

= Z

2k
Tr[SJ (Asym[G0] + Asym[G0TG0]

− G0†T † Asym[V−1†]TG0)], (7)

and the material (loss) power,

Pmat
src = 1

2
Re[〈Js|Eg〉]

= Z

2k
Tr[SJ

(
G0†T † Asym[V−1†]TG0

)
]

= Z

2k
Tr[SJ (G0† Asym[T ]G0

− G0†T † Asym[G0]TG0)], (8)
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with SJ = |Ji〉〈Ji| denoting projection of the corresponding
operators onto the initial current sources. The naming of the
final two forms, which appear less frequently than the other
four, follows from the observation that once the total source
|Jt 〉 is determined the corresponding electromagnetic field
is generated exclusively via the background Green function.
Hence, the energy transfer dynamics of a total source are
exactly those of a special “free” current distribution. Because
the only pathway for power to flow from a current source
in free space (or lossless background) is radiative emission,
Prad

src must be interpreted in this way—energy transfer into the
source free solutions of the background—and similarly, Pmat

src
must be equated with loss into the scatterer. This reversal of
forms and physics (compared absorption and scattering) is
sensible from the perspective of field conversion. Absorption
is the conversion of an electromagnetic field into a current,
and radiative emission the conversion of a current into an
electromagnetic field. Scattering in an initial flux setting is the
creation of a new field of the same type, as is material loss in
an initial source setting.

Note, however, that there is a caveat to these interpre-
tations. G0, as we have defined it, accounts for the entire
electromagnetic background. As such, in non vacuum cases,
any polarization current associated with a background solu-
tion will not appear in any |J〉 field, generally comingling
the corresponding physical interpretation of the various power
quantities. For instance, as Asym [G0] describes power flow
into the full homogeneous solutions of Maxwell’s equations,
if the environment for which G0 is determined contains ab-
sorptive material then Asym [G0] does not represent radiation.
Implied meaning can be restored by appropriate alterations;
but, as this point will be treated in an upcoming work, for the
moment we will simply accept it as a limitation for our study.

Setting such possibilities aside, the equivalence of (7) with
radiative emission is also supported both by the analogy
between its operator form and that of the scattered power,
and by a direct calculation for thermal (randomly fluctuat-
ing) currents [104]. By the fluctuation–dissipation theorem
〈|Ji〉〈Ji|〉th = 4k�(ω, T ) Asym [V ]/(πZ ), and so

Pth = Z

2k
〈Im[〈Ji|V−1†T †G0TV−1|Ji〉]〉ther

= Z

2k
Im[Tr[〈|Ji〉〈Ji|〉therV

−1†T †G0TV−1]]

= 2 �(ω, T )

π
Tr[Asym[Asym[V−1†]T †G0T ]]

= 2 �(ω, T )

π
Tr[(Asym[T ] − T Asym[G0]T †)

× Asym[G0]]. (9)

The final line above is precisely what we have derived in
Ref. [68] from the perspective of integrate absorption.

B. Scattering constraints

As supported by the previous subsection, any quantity in
electromagnetics can be described by combinations of G0, V ,
T , and projection operators. The basis of this reality rest on
the fact that a defining relation for T , supposing G0 and V
are known, is abstractly equivalent to complete knowledge
of the electromagnetic system [103]. Thus, like Maxwell’s

equations, any facet of classical electromagnetics, beyond the
definitions of G0 and V , must be derivable from the definition
of the T operator [68,103]

Iss = (
V−1

ss − G0
ss

)
Tss. (10)

(The s subscript explicitly marks the domain and codomain
of each operator as begin restricted to the scattering object,
as opposed to the background.) To derive constraints, we will
focus on the equivalent relation

Tss = T †
ss

(
V †−1

ss − G0†
ss

)
Tss. (11)

As both Tss and its Hermitian conjugate T †
ss have support

only within the volume of the scatterer, in this form, the
domain and codomains of V †−1 and G0† are unimportant.
For any projection operator (∀n ∈ N )P = P n, and so the
geometric description of the scatterer contained in V †−1

ss and
G0†

ss are unnecessary since T †
ssV

†−1
ss Tss = T †

ssV
†−1Tss and

T †
ssG

0†
ss Tss = T †

ssG
0†Tss. This makes

Tss = T †
ss(V

†−1 − G0†)Tss, (12)

equivalent to (11), with the scattering potential V †−1 and
Green’s function G0† filling whatever volume we would like
to consider. Taking

U = V †−1 − G0†, (13)

so that Asym [U ] is positive definite, treating the symmetric
(Hermitian) and anti-symmetric (skew Hermitian) parts of
(12) separately then gives

Sym [Tss] = T †
ss Sym [U ]Tss, (14)

Asym [Tss] = T †
ss Asym [U ]Tss. (15)

The constraints used to generate the cross-section bounds
shown in Sec. V follow directly from (14) and (15) under the
relaxation described in the next section.

As recently noted in Refs. [68,69,75,79], (14) and (15)
contain a surprising amount of physics. Taken together, these
relations give a full algebraic characterization of power con-
servation [75,105], with (14) representing the conservation
of reactive power and (15) the conservation of real power.
(The T †

ss Sym [U ]Tss piece of (14) produces the difference of
the magnetic and electric energies for any incident electric
field [106].) Because both real and imaginary response are
captured, when these two constraints are employed there are
requirements that must be satisfied on both the magnitude and
phase of any potential resonance.

C. Relaxations and optimization

For the single source problems of concern to this paper, it
is simplest to work from the perspective of the image field
resulting from the action of Tss on a given source |S(1)〉,
Tss|S(1)〉 �→ |T〉. A bound in this setting amounts to a global
maximization of one of the six power transfer objectives,
(3)–(8), taking |T〉 and a known linear functional 〈S(2)| as
arguments, subject to satisfaction of (14) and (15) as applied
to the source and its image. So long as the known fields are
not altered at previously included locations by expanding the
domain, this procedure leads to domain monotonic growth:
if |S(1)〉 and |T〉 satisfy all constraints on some subdomain,
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then these same vectors will also satisfy the constraints if
they are embedded (included without alteration) into a larger
domain. Because the value of any power objective is similarly
unaffected by inclusion, the global maximum of a larger
domain will thus always be larger than the global maximum
of a smaller domain.

The above view also underlies the central relaxation, per-
sisting throughout the remainder of the paper, that makes
global optimization over all structuring alternatives possible.
For any true T operator, nonzero polarization currents can ex-
ist only at spatial points lying within the scattering object. This
fact will never be truly enforced on the image of the source
resulting from the action of T (|T〉), alleviating the need for
an explicit geometric description of the scatterer. Rather, |T〉
will be considered simply as an unknown vector field confined
to some predefined design domain. (For instance, in the ex-
amples of Secs. IV and V the encompassing design domain
is taken to be ball of radius R.) Therefore, when a bound
is found, it must necessarily apply to any possible structure
that can be contained in the given region, as the freedom
of choosing different device geometries is already explored
by optimizing over the |T〉 field. As illustration, through
this relaxation of structural information and the monotonicity
property, a bound for a cuboid is both a bound for any device
that could fit inside the cuboid, no matter how exotic, and for
any subdesign region that could be included inside the cuboid,
be it a needle, bounded fractal, or a disconnected collection of
Mie scatterers.

With this easing of true physical requirements in mind,
scattering operator bounds for any of (3)–(8) are equated with
an optimization problem on |T〉:

maxO =
∑

�

Im
[〈

S(2)
�

∣∣T�

〉] − 〈T�|O�|T�〉

such that (16)

Cζ =
∑

�

Im
[〈

S(1)
�

∣∣T�

〉] − 〈T�|Asym[U�]|T�〉 = 0,

Cγ =
∑

�

Re
[〈

S(1)
�

∣∣T�

〉] − 〈T�|Sym[U�]|T�〉 = 0. (17)

The corresponding Lagrangian is given by

L =
∑

�

Im
[〈

S(2)
�

∣∣T�

〉] − 〈T�|O�|T�〉

+ ζ
(

Im
[〈

S(1)
�

∣∣T�

〉] − 〈T�| Asym [U�]|T�〉
)

+ γ
(

Re
[〈

S(1)
�

∣∣T�

〉] − 〈T�| Sym [U�]|T�〉
)
. (18)

To help decompose later analysis, in (17) and (18) the sub-
script � has been introduced to stand for a family of j indices
coupled together by U (U� = V †−1

� − G0†
� ) in some complete

basis {|G�, j〉} for vector fields in domain, as would likely
occur in any numerical solution approach. For the spherically
bounded examples examined in Secs. IV and V � is the
familiar angular the momentum number, for a periodic films
� is an in-plane wave vector. (Generally, � can be thought
of as the �th block, invariant subspace, in the representation
〈G�,i|U |G�, j〉, and j is used as a subindex.) Due to the
further equivalence of the angular index and the radiation

modes of a spherical domain, as well as relations with ex-
isting literature [68,101,107,108], we will also occasionally
refer to � families as channels (as a shorthand for radiation
channels). The constraints Cζ and Cγ are determined by
applying (14) and (15) to {〈S(1)|, |S(1)〉}, and forgetting any
information related to the geometry of the scatterer. O is
either Asym [G0], Asym [V †−1], or 0, depending on whether
the problem is absorption/material loss, scattering/radiation
or extracted power from a field. As exemplified in Sec. IV
and illustrated in Sec. V, the necessity of conserving reactive
power imparted by the symmetric γ constraint is crucial for
accurately anticipating how a particular choice of material
and domain influences whether or not a family can achieve
resonant response.

For all cases except extracted and radiated power from
an external unpolarizable source, 〈S(2)| = 〈S(1)|. In these in-
stances, although (6) and (7) show that the power quantities
of interest can be cast in a form similar to the corresponding
initial flux problems, the inclusion of the second source image
is necessary. If an unpolarizable source is taken to lie outside
the domain being optimized, V−1 is defined only as a limit
(tending to infinity). Once this limit is taken, the G0 based
expressions (final forms) for the extracted and radiated power
result, which include the introduction of the field |S(2)〉 =
G0∗

de |Ji〉 to the objective due to the Asym [G0TG0] term.
(With e denoting the external space of the emitter and d
the optimization domain.) These differences amount to the
introduction of cross terms describing the interference of the
fields generated by the bare and induced currents that are
no longer inherently accounted for by the scattered currents
at the location of the source (multiple scattering and back
action). Still, the form of these problems remains like (18)
up to the addition of an unalterable background contribution
of Tr [SJ Asym [G0]].

D. Solution via duality

To solve (17), we make use of the following lemma,
commonly referred to as Lagrange duality [38]. (Lagrange
duality is closely associated with the alternating direction
method of multipliers [109–111] often used for solving mul-
tiply constrained optimization problems.)

Lagrange duality. Take O, (∀ j ∈ J ) E j and (∀k ∈ K ) Ik

to be differentiable real valued functions on subsets of Rn

defining a well-posed optimization problem

maxO(x) (x ∈ Rn)

such that (∀k ∈ K ) Ik (x) � 0 (∀ j ∈ J ) E j (x) = 0.

Let m∗ be the corresponding maximum value and let D be
the domain on which all functions are simultaneously defined,
which includes the subset D∗ on which all constraints are
satisfied. Take L = O(x) + ∑

j∈J λ jE j (x) + ∑
k∈K νkIk (x) to

be the Lagrangian of the optimization. For any collection of
values of {λ j}J and {νk � 0}K

m∗ � maxDL(x, {λ j}J , {νk}K ).

Additionally, the function maxD L is convex, and, if a set
{{λ j}J , {νk}K} (with (∀k ∈ K )νk � 0) minimizing maxDL is
found such that (∀ j ∈ J )E j (x̃) = 0, (∀k ∈ K )Ik (x̃) � 0 and∑

k∈K νkIk (x̃) = 0, where x̃ is the maximum of L in D for
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{{λ j}J , {νk}K}, then x̃ is a solution of the original optimization
problem.

Proof. ∀x∗ ∈ D∗, points satisfying the constraints of
the original (primal) optimization, (∀k ∈ K )Ik (x∗) � 0, and
(∀ j ∈ J )E j (x∗) = 0. Therefore

m∗ = maxD∗O � maxD∗L � maxDL.

maxD L is convex as it is a sum of compositions of convex
functions, max and affine functions of {λ j}J and {νk}K . If a
collection {{λ j}J , {νk}K} is found such that (∀ j ∈ J )E j (x̃) =
0, (∀k ∈ K )Ik (x̃) � 0 and

∑
k∈K νkIk (x̃) = 0 then x̃ ∈ D∗ and

O(x̃) = L(x̃) = maxDL. �
Whenever the operator appearing between a field and its
associated linear functional in a sesquilinear relation is pos-
itive definite, the constraint describes a compact manifold.
This is always true of (15), and so, as both constraints are
closed sets, the domain of (17) is compact. Moreover, by the
validity of the |T〉 = 0 solution, the domain is nonempty. As
such, (17) is assured to have a unique (non trivial) maximum
value occurring at some stationary point (or points), and it is
meaningful to consider the Lagrangian dual

G(ζ , γ ) = maxF L, (19)

where the domain F is set by the criterion that maxL is finite.
Under this assumption, taking partial derivatives over |T�〉, a
stationary point of L requires (∀�),

(ζ Asym [U�] + γ Sym [U�] + O�)|T�〉

= i

2

∣∣S(2)
�

〉 + γ + iζ

2

∣∣S(1)
�

〉
. (20)

A collection {ζ , γ } ∈ F if and only if (O� + ζ Asym [U�] +
γ Sym [U�]) is positive definite for all �, and so

(∀�)A� = A†
� = (O� + ζ Asym [U�] + γ Sym [U�])−1

(21)

is inherently both defined and positive definite. (If any
A−1

� is not positive definite, there is then a field |T�〉 such
that G → ∞.) Letting |S(3)

� 〉 = (ζ − iγ )|S(1)
� 〉 + |S(2)

� 〉, and
|S(4)

� 〉 = A�|S(3)
� 〉, it follows that the unique stationary point of

the dual occurs when |T�〉 = i
2 |S(4)

� 〉. Hence, within F (using
the above replacement),

G = 1

4

∑
�

〈
S(3)

�

∣∣A�

∣∣S(3)
�

〉
. (22)

The gradients of (22) exactly reproduce the constraint equa-
tions ∂G

∂ζ
= Cζ and ∂G

∂γ
= Cγ , with

Cζ =
∑

�

1

2
Re

[〈
S(1)

�

∣∣S(4)
�

〉] − 1

4

〈
S(4)

�

∣∣ Asym [U�]
∣∣S(4)

�

〉
,

Cγ =
∑

�

1

2
Im

[〈
S(4)

�

∣∣S(1)
�

〉] − 1

4

〈
S(4)

�

∣∣ Sym [U�]
∣∣S(4)

�

〉
. (23)

Therefore, if a stationary point within the feasibility region is
found, strong duality holds. The function is convex, and thus
has a single stationary point, either on the boundary or within
the domain of feasibility. If the point is within the domain
of feasibility, then by (23) the corresponding field satisfies

the constraints, and by the lemma, the corresponding point
is strongly dual. In this case, the solution of (17) is

O =
∑

�

1

2
Re

[〈
S(2)

�

∣∣S(4)
�

〉] − 1

4

〈
S(4)

�

∣∣O�

∣∣S(4)
�

〉
, (24)

with {ζ , γ } set by the simultaneous zero point of (23). If no
such point exists in F , then the unique minimum value of G in
the domain of feasibility, attained on the boundary of some A�

becoming semidefinite, remains a bound on O in (17). That is,
O � ∑

� 〈S(3)
� |A�|S(3)

� 〉/4 in all cases. Comments on solving
(23) are given in Sec. IV.

III. RELATIONS TO PRIOR ART

Previous work in the area of electromagnetic performance
limits can be loosely classified into three overarching strate-
gies: modal limits, shape-independent conservations limits,
and scattering operator limits. Each approach presents its
own relative strengths and weaknesses. Below, we provide a
rough sketch of these contributions as they relate to this work,
particularly the use and interpretation of constraints (14) and
(15).

Arguments for response bounds based on modal de-
compositions, exploiting quasinormal, spectral, characteristic,
Fourier and/or multipole expansions [85,112–125], have been
widely considered for many decades. And like the classical
diffraction and blackbody limits of ray optics, they have
proven to be of great practical value for describing possible
interactions between large objects and propagating waves
[60,126,127]. Yet, in complement, the need to enumerate
and characterize what modes may possibly participate has
also long proved problematic. Small sources, separations,
and domains typically require many elements to be properly
represented in any basis well suited to analysis of Maxwell’s
equations, and so, especially in the near-field and without
knowledge of the geometric characteristics of the scattering
object, or inclusion of material considerations, there is no sys-
tematically effective approach to bound modal sums (without
introducing additional aspects as is done in scattering operator
approaches). While a variety of considerations (transparency,
size, etc.) have been heuristically employed in an attempt to
introduce reasonable cutoffs [58,67,107,128–130], the values
obtained by modal methods in such settings are consistently
orders of magnitude too large [71,79,131]. Nevertheless, the
idea that modes often separate otherwise muddled aspects of
photonics remains a key insight.

Shape-independent conservation limits, utilizing energy
[59,71,78] and/or spectral sum rules [99,101,132–137] to set
local limits based on physical laws, generally display the
opposite behavior, and are known to give highly accurate
estimates of maximal far-field scattering interactions in the
limit of vanishingly small sizes (quasistatics) for certain (near
resonant) metallic materials [9,10,71,77,136]. Notwithstand-
ing, as we have found in our work on bounds for radiative
heat transfer [69,79] and angle-integrated radiative emission
[68], they are not sufficient in and of themselves to properly
capture various relevant, performance limiting, wave effects.
Intuitively, without any geometric information, a conservation
argument must apply on a per volume basis, which is at odds
with the area scaling of ray optics.
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As a relevant example, consider the fact that the global
power quantities given in Sec. II must be non-negative. Two
of these turn out to be unique and thus set physically moti-
vated algebraic constraints on the T operator. For any vector
field |E〉, the non-negativity of scattering (known as passivity
[138]) imposes that

〈E| Asym [T ] − T † Asym[V−1†]T |E〉 � 0,

while the non-negativity of absorption imposes that

〈E| Asym [T ] − T † Asym[G0]T |E〉 � 0.

Both conditions are concurrently captured in (15), which
is equivalent to the optical theorem [105]: physically, the
sum of the absorbed power and scattered power, (4) and (5)
T †

ss(Asym [G0† + V−1†])Tss, must equal the extracted power,
(3) Asym [Tss]. If no additional information pertaining to
possible geometries or the characteristics of |E〉 is given, then
the most that can be said from (15) is that no singular value
of T can be larger than the inverse of the smallest singular
value of Asym [V−1†]. For a single material with response
characterized by a local electric susceptibility χ , this logic
yields the material loss figure of merit

‖T‖ � ζmat = |χ |2
Im [χ ]

, (25)

originally derived in Ref. [71] directly using the implications
of passivity for polarization fields. The universal applicability
of this largest possible response has profound consequences
for the design of many photonic devices relying on weakly
metallic response (−1 � Re [χ ] � −10) and small interaction
volumes [67,77]. In these cases, it is often fair to assume that
a resonance can be created and that Asym [G0] ≈ 0. Little
structuring is required to achieve a plasmonic resonance,
and the maximum achievable polarization current is indeed
dominated by material losses. But, for single material devices
where light-matter interactions occur on length scales compa-
rable to (or greater than) the wavelength (�λ/10), or the real
part of χ is outside the range stated above (e.g., strong metals
or dielectrics), such estimates are overly optimistic for single
material devices, Sec. V. Over a large enough domain, the
generation of polarization currents capable of interacting with
propagating fields leads to radiative losses which have been
neglected by supposing Asym [G0] ≈ 0. To create a bright
(active) far-field resonance, it must be possible to couple
to radiation modes and then confine the resulting generated
field within the domain. This is not always possible for any
prescribed choice of material and device size.

Scattering operator approaches aim to eliminate the weak-
nesses of modal and shape-independent conservation argu-
ments by combining their strengths [68,69,102,107,139–145].
Innately, the Green function of an encompassing domain
(through its link to Maxwell’s equations) provides both a
modal basis for, and constraints on, modal sums. In concert,
restrictions on the possible characteristics of the T operator
can be used to ensure that physical laws and scaling behavior
are properly observed. A number of encouraging conclusions
have been derived in this manner. Drawing from our own
work, in Ref. [69], it was shown that imposing (25) on
the operator expression for angle-integrated absorption and

thermal emission, Eq. (9), is sufficient to generate bounds
smoothly transitioning from the absorption cross-section limit
of a resonant metallic nanoparticles (the product of the vol-
ume and ζmat) to the macroscopic blackbody limits of ray
optics. Similar methods were used in Ref. [79] to prove that,
for equal values of ζmat, nanostructuring cannot appreciably
improve near-field thermal radiative heat transfer compared
to a resonant planar system.

Nevertheless, careful investigation of the previous situ-
ations where scattering operator amalgamations have been
successfully applied reveals a consistent use of niceness prop-
erties that are not generally valid. In the examples given
above, we were aided by the fact that thermal sources are
completely uncorrelated and, for thermal emission and inte-
grated absorption, that only propagating fields needed to be
treated. Without these helpful aspects, there are situations
where past scattering operator approaches, which focused
exclusively on conservation of real power (15), would add
complexity without tightening the asymptotics provided by
shape-independent conservation arguments (dashed lines in
the figures of Sec. V). Furthermore, using the currently prac-
ticed technique of translating established physical principles
back to implied operator properties and then using inequality
compositions to produce limits, it is difficult to see how the
interaction of more than one or two additional constraints
could ever possibly be accounted for. The switch to exploiting
algebraic deductions beginning from (10) in combination with
standard optimization theory may seem a subtle distinction;
however, the flexibility offered by Lagrange duality suggests
that this view may be of substantial benefit going forward.

A related shift towards systemization has been realized
in the recent report of computational bounds by Angeris,
Vučković, and Boyd [39], treating linear electromagnetics as
an optimization problem with respect to a target field (or a
collection of target fields). The result, also making of use La-
grange duality, has immediate consequences for qualitatively
understanding and improving inverse design. Yet, it does not
allow one to make conclusive statements about feasibility and
relative merits, as is true of traditional limits. More precisely,
what is found is a “computational certificate”: given a target
field and an evaluation metric, the algorithm returns a number;
any vector satisfying Maxwell’s equation will have a metric
disagreement with the target at least as large as the number.
That is, the algorithm does not find physical limits, but instead
a minimum bound on distance, in a certain user determined
measure, between a particular field and the set of physically
possible fields. There may be situations where this difference
is of little consequence, or provably zero, but a priori there
are no guarantees. There need not be any relation between the
value taken by a function at a point and how near that point is
to some set.

Finally, while concluding the writeup and peer review of
this paper, we have become aware of contemporary works
by Gustafsson et al. [75], extending developed methods
for bounding the performance of radio frequency antennas
[9,10,70,146], Kuang et al. [72], and Trivedi et al. [76].
Independently and simultaneously developed, the first two
formulations are in many respects quite like the method
presented here. Working from the perspective of polarization
currents, both articles bound the optimization of objectives
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equivalent to (4)–(8) subject to power constraints via La-
grangian duality. Ref. [75] incorporates both (14) and (15)
while Ref. [72] uses only (15), leading to the discrepancies
between the dashed and solid lines depicted in Sec. V. Taken
together the two articles present a rich collection of findings
reinforcing some of the observation of Sec. V. Nonetheless,
tangible differences do exist. Although largely unexploited in
this initial investigation, there are many advantages offered
by working with operator as opposed to vector relations for
further generalizations. In contrast, the more recent work of
Trivedi et al. [76] focuses on how the physically required
self-consistency of scattering theory sets constraint on the
possible properties of the scattered electric field. Branching
off from this alternative starting point, the optimization prob-
lem and subsequent application of Lagrange duality acquires
characteristics quite different from those encountered here.
The closest comparison would appear to be something akin
to imposing only the conservation of reactive power, as the
approach described in Ref. [76] appears to produce nontrivial
bounds only when resonant response is not possible.

IV. COMPUTATIONAL MECHANICS AND SINGLE
CHANNEL ASYMPTOTICS

To elucidate the mechanics of (17), we now describe
the basics of our computational procedure for the specific
example of a spherical confining boundary. The discussion is
broken into two subsections. The first sketches an outline of
the approach by which the results of Sec. V for compact bod-
ies were obtained. The second considers a simplified single-
channel (family) version of (17) that becomes exact as R → 0,
predicting many of the trends seen in Figs. 2 and 3 of Sec. V.
Namely, the largest possible interaction enhancements are
found to obey either an effective medium “dilution” response,
or the material dependence encountered in Rayleigh scattering
[84]. For low-loss dielectrics (Re [χ ] > 0) and strong metals
(Re [χ ] � −1), this can lead to large discrepancies with
respect to previously established per volume bounds based on
the material loss figure of merit ζmat [67–69,71,77,78].

A. Computational mechanics

Recall that, once an origin has been specified, the Green
function can always be expanded in terms of the regular
(finite), RN and RM, and outgoing, N and M, spherical wave
solutions to Maxwell’s equations as [103,147]

G0(x, y) = −
∫

Y
δ(x − y)x̂ ⊗ ŷ + i

∞∑
�=1

�∑
m=−�

(−1)m
∫

Y{
M1,m(x)RM�,−m(y) + N�,m(x)RN�,−m(y), x > y

RM�,m(x)M�,−m(y) + RN�,m(x)N�,−m(y), x < y
. (26)

In (26), x and y are used to denote the wave vector normal-
ized radial vectors of the domain and codomain, i.e., x =
〈2πr/λ, θ, φ〉, with x and y used for the corresponding radial
parts. The integral over Y is taken to mean integration over
the y coordinate. [Note that there is no complex conjugation
in these integrals, and that our notation for the Green function
is unconventional in that an additional factor of k2 = (2π/λ)2

is included as part of the definition, as opposed to a separate
conversion factor, allowing all spatial distances to be normal-
ized in terms of the wavelength.] So long as the current source
is not located within the domain in question, any incident field
can be expanded in term of the regular waves [103,147,148].
As such, the spectral basis of the asymmetric part of (26)

Asym[G0] =
∑
�,m

(−1)m
∫

Y
RM�,m(x)RM�,−m(y)

+ RN�,m(x)RN�,−m(y), (27)

the unit normalized ˆRM�,m and R̂N�,m waves, serves as conve-
nient choice for starting point for generating the basis vector
families required to properly represent U� [149]. That is, given
the form of the regular solutions

RN�,m(y) =
√

� + 1

y
j�(y)A(3)

�,m + 1

y

∂ (y j�(y))

∂y
A(2)

�,m,

RM�,m(y) = j�(y)A(1)
�,m, (28)

the orthonormality of the vector spherical harmonics (A(1)
�,m,

A(2)
�,m, and A(3)

�,m, see Ref. [150] for details) means that the
Green function (26) does not couple the �, m or RN and
RM labels. Hence, the individual radiation channels act as
an effective partitioning, and by taking these vectors as the
“seeds” or “family heads,” a complete (simplifying) basis
for (17) can be generated through the Arnoldi (Krylov sub-
space) procedure [151]. Briefly, starting with a given unit
normalized regular wave, R̂N�,m, one generates U |R̂N�,m〉 =
(V †−1 − G0†)|R̂N�,m〉. Projecting out the R̂N�,m component
of this image and normalizing, one obtains a new vector

|P̂N
(2)
�,m〉. |P̂N

(2)
�,m〉 then serves as the input for the next iteration,

and in this way the � family (block), more properly the
R̂N�,m family, of the matrix representation of the U oper-
ator (U�) is computed, i.e., U� is represented in the basis

{|R̂N�,m〉, |P̂N
(2)
�,m〉, |P̂N

(3)
�,m〉, . . .}.

Technically the above process does not terminate, but
regardless, two practical consideration lead to workable nu-
merical characteristics [152]. First, due to the fact that each
vector is orthogonal to all others, the off-diagonal coupling
components of U� in every family originate entirely due to the
volume integrals in (26). Therefore, in the limit of vanishing
volume, or high �, each U� is effectively 2 × 2. Second, by
the Arnoldi construction, all upper diagonals beyond diag1,
with diag0 standing for the main, are zero. Thus, because at
each step the generation of new basis components is driven
entirely by Sym [G0], and Sym [G0] = Sym [G0]

†
, the matrix

representation of every U� is tridiagonal. Due to this banded
nature, each A−1

� gives a simple, conclusive, estimate of the
error for images generated by A�. All that is required is to pad
the current solution with zeros and calculate its image under
A−1

� in a basis augmented by three additional elements. The
magnitude of the error of the image compared to the source
is exactly the same as would be found in any larger (even
infinite) basis, see Appendix for additional details.

Coupled with (22), the determination of bounds for any
electromagnetic process in a compact body (an object of
bounded extent) that can be described as a total absorp-
tion, scattering or extinction process, is thus mapped to the
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numerical determination of the minima of a constrained con-
vex function. Many efficient algorithms exist to solve such
problems [153–155], along with a variety of nice introduc-
tions [38,151,156].

B. Single channel asymptotics

Consider the simplified optimization problem

max
〈
T(1)

�

∣∣P1

∣∣T(1)
�

〉
such that

Cζ = Im
[〈

S(1)
�

∣∣T�

〉] − 〈T�| Asym[U�]|T�〉 = 0,

Cγ = Re
[〈

S(1)
�

∣∣T�

〉] − 〈T�| Sym [U�]|T�〉 = 0, (29)

where it has been assumed that that (∀ fi �= �)〈S fi | = 0, and P1

represents the projection of |T〉 onto the � = 1 “family head.”
So stated, (29) represents the maximum possible interaction
that can occur between a generated polarization current and
an exciting field for a single radiation channel, respecting
the conservation of total power. Based on the Taylor series
representation of the spherical Bessel functions,

j�(kR) =
∞∑

q=0

(−1)q

q!(2� + 2q + 1)!!

(
kR

2

)q

,

there are two situations in which this problem is fairly simple
to treat analytically. If either the radius kR � 1, with k =
2π/λ, or � is large compared to kR, then both the regular
and outgoing waves appearing in the Green’s function, (26),
are well approximated by two-term expansions. This feature
causes the above Arnoldi procedure for basis generation to
effectively terminate after constructing a single image vector.
As high � contributions (for propagating waves) occur only
when large low � contributions are also present, no meaningful
asymptotic behavior can be extracted from a single channel
analysis of the second possibility. Accordingly, we will focus
on the assumption that kR � 1. Symbolically carrying out
the required image generation and orthogonalization steps, the
representation of U f1 in this quasistatic (R → 0) regime is

U f1 = V †−1 − G0†
f1

= Sym[U f1 ] + i Asym[U f1 ]

=
[

1
3 + Re [χ]

|χ |2 − 4(kR)2

15 − (kR)2

5
√

14

− (kR)2

5
√

14
Re [χ]
|χ |2 − 2(kR)2

45

]

+ i

[
Im [χ]
|χ |2 + 2(kR)3

9 0

0 Im [χ]
|χ |2

]
. (30)

Within its regime of validity, (30) has two key features.
First, due to the identity portion of the Green’s function,
the (1, 1) element has a constant positive piece in addition
to the Re [χ ]/|χ |2 contribution made by V †−1. Second, all
off-diagonal elements are small. The first feature sets a critical
material response value for which it is possible that the (1, 1)
element of Sym [U1] may be negative: Re [χ ] � −3. The
second feature allows off-diagonal terms to be neglected in
comparison to diagonal terms for most (| Re [χ ]| sufficiently
large) susceptibility values.

Denoting the symmetric and anti symmetric components
of the representation of U1 as u(·,·)

s and u(·,·)
a , solving (17)

amounts to determining the {t1, t2} component pair producing

the largest magnitude t1 such that

sin(θ )s1t1 − t2
1 u(1,1)

a − t2
2 u(2,2)

a = 0,

cos(θ )s1t1 − t2
1 u(1,1)

s − t2
2 u(2,2)

s + 2cos(φ)t1t2u(1,2)
s = 0. (31)

Here, the t1 and t2 variables are the (positive) magnitude coef-
ficients of |T1〉 in the first and second Arnoldi vectors of the
� = 1 family, s1 is the coefficient of the source, θ is the relative
phase difference between the source and first coefficient of
|T1〉, and φ is the relative phase difference within the two
coefficients of |T1〉. As a response operator, Asym [T ] must
be positive semidefinite and so θ ∈ [0, π ] [157]. Using the
symmetric constraint to solve for t2 in terms of t1, forgetting
off-diagonal terms when they appear as sums against diagonal
terms in the resulting quadratic equation, the asymmetric
constraint determines that the maximum polarization current
that can couple to the source is

ζeff = t1
s1

= cos(θ )u(2,2)
a − sin(θ )u(2,2)

s

u(2,2)
a u(1,1)

s − u(1,1)
a u(2,2)

s

, (32)

subject to the condition, resulting from the requirement that t1
and t2 are real, that(

sin(θ )u(1,1)
s − cos(θ )u(1,1)

a

)
×(

cos(θ )u(2,2)
a − sin(θ )u(2,2)

s

)
� 0.

Neglecting all higher-order corrections but the radiative ef-
ficacy ρGN

1 = Asym [G0]
(1,1)

, the relative magnitude t1/s1 =
ζeff is therefore limited by

ζeff �

⎧⎪⎨
⎪⎩

|χ |
|Re [χ]|

1
ρGN

1 +δGN
1 Im [χ]/|Re [χ]| ,

|Re [χ ]|
|χ |2 � δGN

1

1√
(δGN

1 +Re [χ]/|χ |2 )2+(ρG+Im [χ]/|χ |2 )2
, Re [χ ] � 0

,

(33)

where δGN
1 is the domain dependent, material independent,

portion of u(1,1)
s − u(2,2)

s [158,159]. In (33), the selected sym-
bols are motivated by three factors: (1) analogs to the analysis
given above likely exist whenever all dimension of the design
domain are small compared to the wavelength, (2) δGN

1 is the
delta function portion of (26) for the regular RN1,m wave of
a spherically bounded domain, δGN = 1/3, and (3) we have
previously used ρGN

1 = 2
9 ( 2πR

λ
)
3

to denote “radiative efficacy”
in studying the existence of bounds on radiative thermal power
transfer [69,79]. Utilizing |T〉 = ζeff|S1〉 in the power forms
provided in Sec. II produces the single channel cross-section
limits seen in Sec. V, (38) and (40).

Full solutions of (17) for an incident planewave are found
to be accurately predicted by (33) as R → 0, Figs. 2 and 3,
outside the −3 � Re [χ ] � −1 region where the assumption
that the u(1,2)

s terms can be neglected does not hold. While the
monotonicity property of these bounds means that (properly
scaled) they are accurate for any compact domain geometry,
and one may reasonably guess that the characteristics of the
Arnoldi process on which the above arguments rest are similar
in any small volume limit, it should be kept in mind that other
domain geometries (e.g., ellipsoids [71,136]) may well dis-
play stronger per volume response, if the resonance condition
shifts to more negative values of Re [χ ] (δGN

1 > ⅓). Still, while
the generated polarization current and exciting plane wave
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may exhibit a larger average interaction within the volume of
a structured body, the net enhancement will be weaker than
ζeff once the ratio of its volume to an encompassing ball is
accounted for.

Given the revealing nature of this simple symbolic analysis
for spherically bounded domains, it is reasonable to ask why
we have not included corresponding results for periodic films.
Briefly, the reason for this omission has to do with the altered
proprieties of G0 that occur in the presence of two periodic
boundary conditions. Unlike the case of the compact domain,
in the limit of vanishing film thickness t → 0, important δ

function contributions of G0 are simultaneously spread across
many in-plane wave vectors, with no one channel containing
all key characteristics. The only case where single channel
asymptotics reproduce observed behavior is for extremely thin
(nonresonant) dielectric films.

V. APPLICATIONS

In this section, the program developed above is exemplified
for two canonical scattering processes: limits on absorbed and
scattered power for a plane wave incident on any structure
that could be confined within a ball of radius R, characterizing
the maximum cross-section enhancement a body may exhibit
[103] subject to the constraints that net real and reactive power
are conserved; and limits on the absorptivity of a periodic film
for a normally incident plane wave as function of the film
thickness, t . Because of the complete exploration of structural
possibilities conducted in calculating these bounds, and the
domain monotonicity property explained in Sec. II, all results
are equally applicable to any subdomain, or disconnected
collection of subdomains, that fit inside any given ball or
periodic film; therefore, in addition to any possible connected
structures, the bounds pertain to geometries like arrays of Mie
scatterers [145,160] or plasmonic building blocks [161,162].
Throughout the section, R and t are unnormalized unless oth-
erwise stated, and � stands for the angular momentum num-
ber (spherical harmonics A(−)

� ), originating from representing
(17) using the Arnoldi construction described in Sec. IV.

For both spherically bounded examples, the distribution
of the power density within the domain between different
angular momentum numbers is strongly tethered to the radius
of the boundary. Specifically, the coefficients of the electric
field, for a unit normalized electric field amplitude, in terms
of the regular (finite at the origin) RM�,m and RN�,m solutions
of Maxwell’s equations in spherical coordinates, (28), are

Êi =
∞∑

�=1

∑
±

i�+1
√

(2� + 1)π RM�,±1(r, θ, φ)

± i�+1
√

(2� + 1)π RN�,±1(r, θ, φ), (34)

with r standing for the wave vector normalized radius (the
product of the true radius and k = 2π/λ). Through Asym [U ]
(34) establishes a link between the magnitude of the radiative
efficacy of each channel [69], or � number, and its potential
for enhancing scattering cross sections: if the plane-wave
expansion coefficient of a given channel is large, then so is
Asym [G0

� ], tightening the constraint that real power must be
conserved. This leads to a complementary action of the power
constraints. For any given combination of material and radius,

save Re [χ ] = −3 in the R → 0 limit, either real or reactive
power conservation limits induced polarization currents in the
medium more severely than what would be expected based
solely on the material loss figure of merit

ζmat = |χ |2
Im [χ ]

, (35)

widely considered in past work on electromagnetic bounds for
arbitrary materials and structures [67,69,71,77]. (An explana-
tion of the origin and usefulness of this quantity is given in
Sec. III.) In Figs. 2 and 3, dashed curves depict cross-section
limits attained when only the conservation of real power,
(15), is imposed, as in Ref. [72], and solid curves result
when reactive power conservation is additionally included.
All results are found using the Lagrange duality approach
described in Sec. II and are strongly dual [38].

Conversely, the example bounds for periodic films shown
in Fig. 4 are strongly dual only when absorption is near
zero. Outside this regime, and the associated sharp transition
to resonant response, all major features, including the half
absorption plateaus, are seen to be accounted for by the con-
servation of real power, and are thus described by the growth
of the radiative efficacies (singular values of Asym [G0]) of
the two channels with zero in-plane wave vector [68,72].

A. Quasistatic regime (R/λ → 0, t/λ → 0)

Recalling the conclusions of Sec. IV B, the simultane-
ous conservation of real and reactive power has far-reaching
implications for electromagnetic power transfer when all
dimensions of the confining domain are small. The analog
of the optical theorem for reactive power, (14), adds phase
information on top of the maximum polarization magnitude
set by the conservation of real power, (15); and so, when
both constraints are taken into account, (17) captures the
fact it is not always possible to produce a resonant structure
given any single material, of electric susceptibility χ , and
a maximal characteristic size, R. In fact, there are rather
strict requirements that must be met for resonant response
to be achievable. Crucially, it must be possible to effectively
confine the scattered electromagnetic field, resulting from the
polarization currents created in the structure by the incident
(source) wave, within the spherical volume. As validated by
the cross-section bounds of Figs. 2 and 3, the only mecha-
nism by which such confinement can be achieved while also
allowing interactions with propagating waves as R/λ → 0, is
the excitation of localized plasmon-polaritons, occurring for
Re [χ ] = −3 if the domain is completely filled with material
[80].

If Re [χ ] is larger than this value, excluding small
deviations that appear for weak metals between −2 �
Re [χ ] � −3, then, as confirmed by the tiny achiev-
able cross-section values, resonant response with a prop-
agating wave is not possible. Therefore the largest al-
lowed power transfer happens when the material sim-
ply fills the entire domain, and as such, maximal
scattering cross sections exhibit the same susceptibility
dependence encountered in Rayleigh scattering [103]. Ap-
plying (33), the maximal magnitude of the interaction that
can occur in a dielectric structure between the (normalized)
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FIG. 4. Absorption cross-section bounds for a plane wave incident on a periodic film. Absorption cross-section bounds for any periodic
structure (e.g., grating, metasurface) of period � and electric susceptibility (a) χ = 13.6 + i 5 10−2 (silicon at 0.8μm) and (b) χ = −87 + i 10
(gold at 1.5μm) that can be contained within a planar boundary of thickness t/λ. Dots correspond to actual absorption cross-section values
discovered using inverse design following the algorithm described in Ref. [163]. A number of visualizations of the associated structures,
along with a schematic of the absorption process investigated, are included as insets. All discovered designs with t/λ < 10−2 consist of a
single layer, uniform in the normal direction. For larger thickness, optimization of three equally thick uniform layers is needed to achieve the
reported absorption cross sections (eventually reaching absorption saturation). Like prior figures, solid lines are found by solving (17) under
the constraint that total power is conserved, while dashed lines, coinciding with the solid line in (b), are found by only imposing the constraint
of real power conservation. As shown in (a), total power conservation bounds for dielectric media depend on the square period supposed.
Moving from left to right, the periods used in the inverse design optimizations are � = {5λ, 5λ, 5λ, 5λ, 4λ, 2λ, 3λ/2, 3λ/2, λ, λ}. Results for
metals (Re [χ ] < 0) do not depend on the periodicity of the system. Discussion of additional bound features relating solely to imposing the
conservation of real can be found in Refs. [68,72].

incident field and the polarization current it excites is

ζRay = 1√(
1
3 + Re [χ]

|χ |2
)2 + (

ρGN
1 + Im [χ]

|χ |2
)2

(Re [χ ] � 0)

(36)

with

ρGN
1 = 2

9

(
2πR

λ

)3

(37)

denoting the radiative efficacy of the � = 1, m = ±1, 0N po-
larized channel. Employing the power forms given in Sec. II,
the scattering cross section of any structure, under the above
assumptions, must obey the relations

σsca

σgeo
� 3

2

(
ρGN

1

)2(
1
3 + Re [χ]

|χ |2
)2 + (

ρGN
1 + Im [χ]

|χ |2
)2

(
λ

2πR

)2

,

σabs

σgeo
� 3

2

ρGN
1 (Im [χ ]/|χ |2)(

1
3 + Re [χ]

|χ |2
)2 + (

ρGN
1 + Im [χ]

|χ |2
)2

(
λ

2πR

)2

. (38)

In stark contrast to ζmat, ζRay decreases for increasing Re [χ ]
and has a negligible dependence on material absorption,
Im [χ ]. Comparing the dashed and full lines of Figs. 2 and
3, particularly Figs. 2(b) and 3(b), the resonance gap between
these two forms can be quite extreme for realistic dielectrics.
For example, ζmat ≈ 107 for silicon at λ = 1.5 μm, with χ ≈
11 + i 10−5 [164].

As Re [χ ] shifts to increasingly negative values, ge-
ometries supporting localized plasmon–polariton resonances

become possible, and past Re [χ ] = −3 cross-section lim-
its display resonant response characteristics. The power ex-
change between the incident field and the generated polariza-
tion currents is then, asymptotically, restricted to be smaller
than the “diluted” material figure of merit

ζdil = |χ |
Re [χ ]

1

ρGN
1 + Im [χ]

|3 Re [χ]|
(Re [χ ] � −3), (39)

leading to cross-section limits of

σsca

σgeo
� 3

2

( |χ |
|Re [χ ]|

)2 (
ρGN

1

)2(
ρGN

1 + Im [χ ]/|3 Re [χ ]|)2

(
λ

2πR

)2

,

σabs

σgeo
� 3

2

|χ |
|Re [χ ]|

(
ρGN

1 (Im [χ ]/|3 Re [χ ]|)(
ρGN

1 + Im [χ ]/|3 Re [χ ]|)2

−
(
ρGN

1

)2
(|χ |/|Re [χ ]| − 1)(

ρGN
1 + Im [χ ]/|3 Re [χ ]|)2

)(
λ

2πR

)2

. (40)

The “dilution” modifier is chosen as the form of (39), disre-
garding the radiative efficacy ρGN

1 , is equivalent to the material
loss figure of merit ζmat if a “dilution factor” is introduced
to shift Re [χ ] to −3. That is, considering the low-loss limit
Im [χ ] � |χ |, if it is supposed that the magnitude of Re [χ ]
is rescaled to match the localized resonance condition of a
spherical nanoparticle, then ζmat → 3|χ |/ Im [χ ], which is
equal to the expression for ζdil in the limit ρGN

1 → 0. (Due
to its connection with the localized plasmon resonance of
a spherical nanoparticle, the ratio |χ |/ Im [χ ] is commonly
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encountered in discussing the potential of different material
options for plasmonic applications [165,166].)

The validity of (39) internally rests on the assumption that
the wavelength is much larger than any structural feature.
Since this is also the central criterion for most homogenization
descriptions of electromagnetic response to be applicable
[167], it is sensible that material structuring limited to tiny do-
mains can, at best, alter effective medium parameters [81–83].
Equation (39) proves that the implications of this picture are
universally valid for both scattering and absorption in strong
metals. However, many commonly stated effective medium
models also predict that there are structures capable of cre-
ating effective susceptibility responses more negative than
either of the constituent materials [168–172]. For example,
the Maxwell–Garnett formula for monodispersed spherical
vacuum inclusions in a background host is

χeff = (1 + χh)
1 − 2 f χh/(3 + 2χh)

1 + f χh/(3 + 2χh)
− 1, (41)

where f is the volume filling fraction of the inclusions and
χh is electric susceptibility of the host [86]. Based on (41),
using the iterative argument given in Ref. [86], it should be
anticipated that low-loss resonant response would be achiev-
able shortly after Re [χ ] drops below −1. While cross sections
do begin to grow before Re [χ ] = −3, it is clear that this
Maxwell-Garnett condition is not sufficient. Dilution via (41)
also yields a different dependence on material loss-values than
that predicted by (39), with (41) consistently giving slightly
larger effective losses.

It is also interesting to compare (38) and (40) with coupled
mode descriptions of scattering phenomena in the single
channel limit [85],

σsca

σgeo
= 6

γ 2
rad

(ω − ωres)2 + (γrad + γabs)2

(
λ

2πR

)2

,

σabs

σgeo
= 6

γradγabs

(ω − ωres)2 + (γrad + γabs)2

(
λ

2πR

)2

, (42)

where γrad and γabs are the geometry-specific radiative and
absorptive decay rates associated with a given resonant mode
of frequency ωres. Up to a missing factor of 4, which is
accounted for by the facts that (38) and (40) represent max-
imum quantities [116,142] and that scattering cannot oc-
cur without absorption [71], there is a clear symmetry of
form between (38) and (40) and (42), provided Im [χ ] �
| Re [χ ]| (as coupled mode theory requires the assumption
of low loss). The two sets of expressions agree under the
substitutions

γabs → Im [χ ]/|χ |2,
(ω − ωres)2 → (1/3 + Re [χ ]/|χ |2)2,

when the system is off resonance, and

γabs → Im [χ ]/|3 Re [χ ]|,
when the system is on resonance; in both situations, γrad →
ρGN

1 . Since (38) and (40) are bounds, and not descriptions
of any particular mode, these associations may be under-
stood as “best case” parameters for what could be achieved
in any geometry supporting a single mode, and are thus

closely linked to prior limits based on coupled mode theory
[85,117,119,126,129,130]. Notably, the comparison precludes
any resonant geometry from achieving the rate-matching con-
dition of γrad = γabs if it is confined to a small ball. Precisely,
the only candidate materials are fictitious metals with −3 �
Re [χ ] and Im [χ ] → 0, since the radiative efficacy ρGN

1 → 0
with vanishing object size.

This situation, a fictitiously low loss metallic nanoparticle,
is also the most relevant condition under which the bounds
asymptotically reach arbitrarily large values. However, as
we have discussed in Ref. [68] in the context of angle-
integrated planewave absorption, unbounded growth requires
saturation of an unbounded number of angular momentum
� indices (radiation channels). For any particular �, satura-
tion is approximately achieved as R → 0 when ρGN

� , ρGM
� �

Im [χ ]/|3 Re [χ ]|. Therefore the relation between the radia-
tive efficacies and the angular momentum number �, with

ρGN
�

(R) = π (kR)2

4

[
� + 1

2� + 1

(
J2
�− 1

2
(kR) − J�+ 1

2
(kR)J�− 3

2
(kR)

)

+ �

2� + 1

(
J2
�+ 3

2
(kR) − J�+ 1

2
(kR)J�+ 5

2
(kR)

)]
,

ρGM
�

(R) = π (kR)2

4

(
J2
�+ 1

2
(kR) − J�− 1

2
(kR)J�+ 3

2
(kR)

)
, (43)

imparted through the cylindrical Bessel functions, with

J�+p(kR) <
1

�(� + p + 1)

(
kR

2

)�+p

(44)

for kR <
√

8�(� + p + 3), implies that so long as real
power is conserved, bounds on cross-section enhancement
exhibit sublogarithmic growth with vanishing material loss,
Im [χ ] → 0. (Proof of this statement, in all important regards,
follows from the derivation given in Ref. [68]. The stated
inequality follows from the power series of the cylindrical
Bessel functions [173].) As seen in the supporting figures,
Figs. 2 and 3, in practice this scaling behavior is of little
consequence.

For periodic films (e.g., gratings, photonic crystals, and
metasurfaces), the central feature of (17) absent from the mod-
els of Refs. [68,72] is the initial suppression and sharp onset
of resonant absorption for thin dielectrics. The above findings
for compact domains, and practical experience, both suggest
that the existence of such a critical thickness (depending of
the magnitude of Re [χ ]) for dielectric materials is reasonable.
However, the dependence of this thickness threshold on the
period of the system, physically associated with the presence
of leaky-mode resonances [174], is perhaps less expected. The
origin of the relation traces to the properties of G0 for an ex-
tended (infinite) system. Crossing over the light line boundary
between propagating and evanescent waves, there are vectors

within the basis described in Appendix, |X〉 = |R̂X
(−)

(kp)〉,
that allow 〈X| Sym [G0]|X〉 to be arbitrarily negative and
〈X| Asym [G0]|X〉 = 0. These characteristics allow reactive
power conservation, (14), to be trivially satisfied for any
possible polarization current. However, when a finite period
is imposed on the system, modes arbitrarily near the light line
are not allowed, and in turn, the necessity of conserving reac-
tive power may imply that resonant response is not possible
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for particular values of t and χ . As exemplified in Fig. 4,
knowledge of the critical thickness at which such leaky modes
can be supported for a given period and material may be of
substantial benefit to the design of large scale metasurfaces
[163,175,176].

B. Wavelength scale regime (R/λ � 0.1, t/λ � 0.01).

For boundary radii approaching wavelength size, the appli-
cability of the quasistatic results for spherical confining region
quoted under the previous subheading becomes increasingly
tenuous. The growth of planewave amplitude coefficients into
angular momentum numbers (channels) beyond � = 1 opens
the possibility of utilizing a wider range of wave physics (e.g.,
leaky and guided resonances [177,178]), and correspondingly,
reactive power conservation (resonance creation) becomes a
weaker requirement.

These factors lead to a more intricate interplay between the
two power constraints, causing the sharp jumps observed for
dielectrics in Figs. 2 and 3, which manifest, mechanically, in
rapid changes to the properties of the scattering T operator
constraint relations, especially (14) applied to dielectric mate-
rials. The behavior is first observed in the � = 1 channel, with
the initial peaks in Figs. 2(b) and 3(b) following closely after
the half wavelength condition

(minr) � ∂ j1

(√
Re [χ ]

2πr

λ

)/
∂r = 0,

and the second peaks occurring near the full wavelength
condition,

(minr) � j1

(√
Re [χ ]

2πr

λ

)
= 0.

This second criterion is also the approximate resonance lo-
cation for a homogeneous dielectric sphere of index

√
χ

[179], the spherical analogs of the Fabry–Perot condition
[180], making its appearance consistent with the Rayleigh
response predictions of (36). At the same time, as previously
remarked, the inflation of the boundary also increases the
radiative efficacy of each channel as described by (43) (further
discussed in Ref. [68] and Sec. III). Via the connection of
Asym [U�] to Asym [G0

� ], (13), this causes the conservation
of real power to become a more restrictive constraint for
generating strong polarization currents throughout the vol-
ume available to structuring. (That is, maintaining the ratio
of Im [〈S(1)|T〉] and 〈T| Asym [U ]|T〉 becomes increasingly
restrictive, while maintaining the ratio of Re [〈S(1)|T〉] and
〈T| Sym [U ]|T〉 becomes increasingly simple.) Subsequently,
rather than completely releasing to an enhancement value
approaching ζmat, the bound slips and catches.

For periodic films, all features seen at both wavelength and
ray optic thickness scales are fully accounted for by the con-
servation of real power and the associated radiative efficacies
of Asym [G0] at normal incidence. Detailed discussions of
these quantities are given in Ref. [68] and Ref. [72]. The most
interesting result, that the bounds plateau for film thickness
between roughly t/λ = 10−4 and 10−2, is caused by the fact
that at these thicknesses only a single symmetric mode is
bright. Accordingly, the power radiated to the far-field by the
excited polarization current can not be canceled, and only

half of the total power of the incident wave can be extracted
through absorption [68].

C. Ray optics regime (R/λ � 1, t/λ � 10−1)

In the large boundary limit, achievable scattering interac-
tions in any given channel are increasingly dominated by the
conservation of real power through the growth of radiative
losses. Correspondingly, the dash bounds, calculated by as-
serting only that the sum of the scattered and absorbed power
must not exceed the power drawn from the incident beam,
coincide with those arising from total power conservation
to increasingly good accuracy. Making this reduction, limits
for either cross-section enhancement quantity become largely
congruous to the angle-integrated absorption bounds given
in Ref. [68]. The planewave expansion coefficients of (34)
exhibit exactly the same per-channel characteristics consid-
ered in that paper, and so, the same asymptotic behavior
is encountered. Regardless of the selected susceptibility χ ,
for a sufficiently large radius, each of the power objectives
described in Sec. II begins to scale as the geometric cross
section of the bounding sphere. For absorption, this leads to
a value equal to the geometric cross section of the confining
ball, πR2. For extinction and scattering, a value of 4πR2 is
found, two times larger than what would be expected based
on the extinction paradox [181,182]. The genesis of this
additional factor is presently unknown, and investigation of
the properties of the optimal polarization current of these
curious results merits further study.

VI. SUMMARY REMARKS

The ability of metals and polaritonic materials to confine
light in subwavelength volumes without the need for any
other surrounding structure (plasmon-polaritons [183,184]),
coupled with the variety of geometric wave effects achiev-
able in dielectric media (band gaps [185,186], index guiding
[187,188], topological states [189,190]), rest as the bedrock
of contemporary photonic design. Yet, the relative abilities of
these two overarching approaches for controlling light–matter
interactions remains a widely studied topic [191–193]. The
broad strokes are well established. The possibility of sub-
wavelength confinement and large field enhancements offered
by metals is offset by the fact these effects are fundamentally
linked to substantial material loss [192]. Through interfer-
ence, dielectric architectures may also confine and intensify
electromagnetic fields, and can do so without large accompa-
nying material absorption [51]; but, accessing this potential
invariably requires larger domains and more complex struc-
tures. While comparisons within rigidly defined subclasses
have been made [64], the merit of a particular method for a
particular design challenge is almost always an open question.
As with the rising need for limits in computational approaches
highlighted in the introduction, a central driver of debate is the
lack of concrete (pertinent) knowledge of what is possible,
beyond qualitative arguments.

We believe that the simple instructive cross-section ex-
amples shown in Sec. V are compelling evidence that the
generation of bounds based on constraints derived from the T
operator and Lagrange duality offers a path towards progress;
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and that by translating this method beyond the spectral basis
employed here, onto a completely geometry agnostic nu-
merical algorithm, it will be possible to analyze the relative
trade offs associated with various kinds of optical devices.
Through bound calculations varying material and domain
parameters, the significance of different design elements from
the perspective of device performance should be ascertainable
in a number of technologically relevant areas. The basic
scattering interaction quantities given in Sec. II lie at the
core of engineering the radiative efficacy of quantum emitters
[88,89], resonant response of cavities [90–92], design char-
acteristics of metasurfaces [160,194,195], and the efficacy of
light trapping [7,126] devices and luminescent [94,95] and
fluorescent [96,97] sources. They are also central building
blocks of quantum and nonlinear phenomena like Förster
energy transfer [196], Raman scattering [78], and frequency
conversion [51].

As seen in Sec. V, relations (14) and (15) are amenable
to numerical evaluation under realistic photonic settings (for
practical domain sizes and materials) and sufficiently broad
to provide both quantitative guidance and physical insights:
as the size of an object interacting with a planewave grows,
there is a transition from the volumetric (or super volumetric)
scaling characteristic of subwavelength objects to the geo-
metric cross-section dependence characteristic of ray optics;
critical sizes exist below which it is impossible to create
dielectric resonances; material loss dictates achievable inter-
actions strengths only once it becomes feasible to achieve
resonant response and significant coupling to the incident
field.

Several generalizations of the formalism should be pos-
sible. First, there is an apparent synergy with the work of
Angeris, Vučković, and Boyd [39] for inverse design applica-
tions. The optimal vectors found using (17) provide intuitive
target fields. Second, following the arguments given in the
work of Shim et al. [99] it would seem that (17) can be further
enlarged to include finite bandwidth dispersion information,
accounting for the full analytic features of the electric suscep-
tibility χ (ω). Finally, by combining the respective strengths
of both classes of materials, hybrid metal-dielectric structures
offer the potential of realizing more performant devices. The
generalization of (17) to incorporate multiple material regions
(multiregion scattering [69]) as an aid to these efforts stands
as an important direction of ongoing study. As we have stated
earlier, as the method relies only on scattering theory, almost
all lines of reasoning we have presented apply equally to
acoustics, quantum mechanics, and other wave physics.
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APPENDIX A: NUMERICAL STABILITY OF THE
ARNOLDI PROCESSES

With perfect numerical accuracy, the convergence of A�

is guaranteed in a finite number of iterations. The strictly
diagonal elements of each U� matrix, V †−1

� , remain constant
while the off diagonal coupling coefficients introduced by
Sym [G0†

� ] gradually decay with every iterations. Thus, at a
certain point, the diagonal V †−1

� entries eventually overwhelm
all other contributions, terminating the U� matrix. (As the
magnitude of the susceptibility considered increases, V †−1

shrinks and more Arnoldi iterations are required.)
Still, there are pitfalls that must be avoided when nu-

merically implementing an Arnoldi iteration, caused by the
singularity of the outgoing N waves at the origin. The issue
is illustrated by considering the image of RN under G0 (26),
with

N�,m(x) =
√

�(� + 1)

r
h(1)

�
(r)A(3)

�,m + ∂
(
x h(1)

�
(r)

)
r

A(2)
�,m, (A1)

using the normalized vector spherical harmonics as described
in Ref [197]. Near the origin, r → 0, the leading order radial
dependencies of (28) and (A1) are

RN�,m =
(

� + 1

(2� + 1)!!
(r)�−1 + O(r�+1)

)
A(2)

�,m

+
(√

�(� + 1)

(2� + 1)!!
r�−1 + O(r�+1)

)
A(3)

�,m, (A2)

N�,m =
(

i�(2� − 1)!!

r�+2
+ O(r−�)

)
A(2)

�,m

+
(−i(2� − 1)!!

√
�(� + 1)

r�+2
+ O(r−�)

)
A(3)

�,m. (A3)

From (26), the image of RN�,m under the Green function
restricted to a spherical domain with radius R is

G0RN = RN(r)RNco(r) + N(r)Nco(r) − RN(r) A(3)
�,m,

(A4)

where the final term is the δ-function contribution, and the
RNco(r) and Nco(r) terms are given by

Nco(r) = i
∫∫

�′

∫ r

0
r′2RN(r′)RN(r′)dr′d�′,

RNco(r) = i
∫∫

�′

∫ R

r
r′2N(r′)RN(r′)dr′d�′. (A5)

Exploiting the orthogonality of the vector spherical harmon-
ics, the leading radial order for Nco(r) is r2�+1. Therefore the
N(r)Nco(r) term has a leading radial order of r�−1, the same
as the starting vector RN(r). At first sight, RNco(r) is more
troubling. The dominate radial orders are r′−� for r′2N(r′)
and r′�−1 for RN(r′). Thus it would seem that the integrand
has an r′−1 dependence, which would result in a logarithmic
divergence at the origin. A more careful consideration, how-
ever, shows that the leading order terms from A(2)

�,m and A(3)
�,m
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cancel as

RNco(r) = i
∫∫

�′

(
i�(� + 1)

2� + 1
r′−1A(2)

�,m · A(2)
�,m

− i�(� + 1)

2� + 1
r′−1A(3)

�,m · A(3)
�,m + O(r′)dr′

)
d�

=O
(
r2

)
. (A6)

The key to this cancellation is the ratio of the A(2)
�,m and A(3)

�,m

terms,
√

(� + 1)/�. So long as this ratio is maintained, the
RNco factor does not generate logarithmic contributions, and
in turn this causes the leading order ratio to remain intact
under the further action of G0. By insuring that this does in
fact occur, the Arnoldi process may continue to stably iterate
until convergence is achieved. Consider any vector

P = p

(
r�−1A(2)

�,m +
√

�

� + 1
r�−1A(3)

�,m

)
, (A7)

where p is a constant. (RN�,m are vectors of this form.) The
image under of this vector under G0 is

G0P = RN�,m(r)RNP
co(r) + N�,m(r)NP

co(r)

− p

√
�

� + 1
r�−1A(3)

�,m, (A8)

with

RNP
co(r) = p

∫ R

r

(
i�(2� − 1)!!

r′� r′�−1

− i�(2� − 1)!!

r′� r′�−1 + O(r′)
)

dr′

= C(R) + O
(
r2

)
, (A9)

C(R) a constant of r coming from the fixed upper integration
limit R, and

NP
co(r) = ip

∫ r

0

(
2� + 1

(2� + 1)!!
r′2� + O(r′2�+3)

)
dr

= ip

(2� + 1)!!
r2�+1 + O(r�+3). (A10)

Substituting back into (A8) then gives

G0P =
(

− �p

2� + 1
r�−1 + O(r�+1)

)
A(2)

�,m

+
(

− �p

2� + 1

√
�

� + 1
r�−1 + O(r�+1)

)
A(3)

�,m

+ C(R)RN(r). (A11)

Hence, as anticipated, all components retain a
√

�/(� + 1)
ratio. By induction, this argument extends to every step of the
Arnoldi process, generating vectors well behaved at the origin.

In implementation, care must be taken not to let numerical
error push this component ratio away from

√
�/(� + 1) at

any step. (Otherwise, the logarithmic divergence will quickly
destabilize new image vectors.) This precludes the use of spa-
tial discretization based representations, since for finite grids
discretization error is inevitable and leads to a rapidly growing

instability. We have circumvented this issue by representing
the radial dependence of the Green function and Arnoldi vec-
tors by polynomials (Taylor series). For larger domain sizes,
this approach demands a high level of numeric precision, and
so, the PYTHON arbitrary precision floating-point arithmetic
package MPMATH was used in all calculations [198]. When
determining the image of a vector under the Green function,
the tiny coefficient of r′−1 due to numerical errors from
the finite Taylor series and set floating-point precision were
explicitly truncated (ignored). With sufficiently high precision
and representation order the Arnoldi process can be performed
stably and accurately up to convergence of each U� matrix.
Much of the difficulty, and inefficiency, associated with this
method stems from working in spherical coordinate, which
are inherently ill defined at the origin.

APPENDIX B: RADIATIVE (FOURIER) BASIS FOR FILMS

Working in Cartesian coordinates, consider a planar slab of
thickness t with normal direction ẑ. Let kp denote the in-plane
wave vector with corresponding spatial vector xp. Following
our notation of including an extra factor of k2 as mentioned
above, the Fourier representation of the Green function given
in Ref. [103] below the light line (kp/k < 1) is given by

G0(x, y) = −
∫

Y
δ(x − y)Pẑ + i

∫ 1

0
dkp

∫
Y{

O(+)
kp (x) ⊗ O(+)

kp (y) + X(+)
kp (x) ⊗ X(+)

kp (y) xz > yz

O(−)
kp (x) ⊗ O(−)

kp (y) + X(−)
kp (x) ⊗ X(−)

kp (y) xz < yz

(B1)

with

O(±)
kp (x) = eik(±)x

2π

ô√
2kz

,

X(±)
kp (x) = eik(±)x

2π

∓kzk̂p + kpẑ√
2kz

, (B2)

and o = (kyx̂ − kxŷ). The four terms are, respectively, the
upward traveling and downward traveling ordinary and ex-
traordinary waves [199]. In (B1) and (B2), all wave vectors
are normalized by the standard wave vector k = 2π/λ, and
all spatial coordinates are multiplied by k; kz is defined to be

the positive square root kz =
√

1 − k2
p; k(±) = kp ± kzẑ; and

when a wave appears on the right of a ⊗ symbol complex con-
jugation is implied. Antisymmetrizing, the skew-Hermitian
component is

Asym[G0](x, y) =
∫

kp�1

∫
Y

dkp

∑
(±)

ρGO(±)

kp

(
R̂O

(±)
kp

(x) ⊗ R̂O
(±)
kp

(y)
)

+ ρGX(±)

kp

(
R̂X

(±)
kp

(x) ⊗ R̂X
(±)
kp

(y)
)
, (B3)

033172-17



MOLESKY, CHAO, JIN, AND RODRIGUEZ PHYSICAL REVIEW RESEARCH 2, 033172 (2020)

with

R̂O
(+)
kp

(x) = eikpp

2π

√
2 cos(kzz)ô√

t (1 + sinc(kzt ))
,

R̂O
(−)
kp

(x) = eikpp

2π

√
2 sin(kzz)ô√

t (1 − sinc(kzt ))
,

R̂X
(+)
kp

(x) = eikpp

2π

√
2(kz cos(kzz)k̂p − ikp sin(kzz)ẑ)√

t
(
1 + (

k2
z − k2

p

)
sinc(kzt )

) ,

R̂X
(−)
kp

(x) = eikpp

2π

√
2(kz sin(kzz)k̂p + ikp cos(kzz)ẑ)√

t
(
1 − (

k2
z − k2

p

)
sinc(kzt )

) , (B4)

and

ρGO(±)

kp
= t

4kz
(1 ± sinc(kzt )),

ρGX(±)

kp
= t

4kz

(
1 ± (

k2
z − k2

p

)
sinc(kzt )

)
. (B5)

Above the light line (kp/k > 1), the Green function becomes
Hermitian and (B2) is replaced by

G0(x, y) = −
∫

Y
δ(x − y)Pẑ +

∫ ∞

1
dkp

∫
Y{

O(+)
ke (x) ⊗ O(−)

ke (y) + X(+)
ke (x) ⊗ X(−)

ke (y) xz > yz

O(−)
ke (x) ⊗ O(+)

ke (y) + X(−)
ke (x) ⊗ X(+)

ke (y) xz < yz

, (B6)

where

O(±)
ke (x) = eikpxp∓kzxz

2π

ô√
2kz

,

X(±)
ke (x) = eikpxp∓kzxz

2π

∓ikzk̂p + kpẑ√
2kz

, (B7)

and kz has been redefined as kz =
√

k2
p − 1. Although

Asym [G] = 0, by analytic extension a “radiative” basis
(symmetric and anti-symmetric combinations of the two or-
dinary and extraordinary waves) is given by

R̂O
(+)
kp

(x) = eikpp

2π

√
2 cosh(kzz)ô√

t (1 + sinch(kzt ))
,

R̂O
(−)
kp

(x) = eikpp

2π

√
2i sinh(kzz)ô√

t (sinch(kzt ) − 1)
,

R̂X
(+)
kp

(x) = eikpp

2π

√
2(kz cosh(kzz)k̂p − ikp sinh(kzz)ẑ)√

t
((

k2
p + k2

z

)
sinch(kzt ) − 1

) ,

R̂X
(−)
kp

(x) = eikpp

2π

√
2(kz sinh(kzz)k̂p − ikp cosh(kzz)ẑ)√

t
((

k2
p + k2

z

)
sinch(kzt ) + 1

) .

(B8)

The above basis waves are also valid for periodic films. The
only change required is to replace the continuous index kp by
its appropriate discrete counterpart.

APPENDIX C: INVERSE DESIGN PROCEDURE

All computational geometries were discovered following
a standard topology optimization algorithm [44], where each
pixel (susceptibility value) within the bounding sphere is
considered as an independent design parameter, based on the
method of moving asymptotes [200]. To begin, each pixel
(index by x) is allowed to linearly explore a continuous
spectrum of susceptibility values varying between the back-
ground χx = 0 and the stated material χx = χ . The resulting
parameter values are then iteratively used as starting points for
new optimizations subject to increasingly strict regularization
filters, as described by Jensen and Sigmund [43], in order to
enforce binarization (each pixel must correspond to either the
material χ or background).

The primary challenge of applying this approach to max-
imize the scattered power from a planewave incident on a
three-dimensional compact object, Eq. (5), lies in the com-
putational cost of Psct

flx , which is typically evaluated several
thousand times during the course of any one optimization.
Without simplification, each evaluation requires a new solu-
tion of Maxwell’s equations in three-dimensional space. To
avoid this otherwise significant computational challenge, the
results presented in Sec. V exploit a fluctuating–volume cur-
rent (FVC) formulation of electromagnetic scattering [69,201]
and the efficiency of stochastic singular value decomposition.
(Descriptions of the various subroutines entering into this
program are given in Refs. [104,202,203].) This approach
both limits the spatial solution domain to the bounding sphere,
and allows the central matrix-vector multiplication, G0|Jg〉, to
be accelerated via the fast-Fourier transform.

More precisely, optimization is carried out using the first
form of the scattered power quoted in (5),

Psct
flx = k

2Z
〈T| Asym[G0]|T〉 (C1)

with |T〉 = Tss|Ei〉, as an objective. To compute the real num-
ber associated with this form for any particular structure, one
inverse solve (sped up by applying a fast-Fourier transform)
is needed to determine |T〉, which from (1) is proportional to
the generated current |Jg〉. The gradient of Psct

flx with respect
to the susceptibility degrees of freedom then follows from the
defining relation T = (V−1 − G0). (At this step, a nonzero
but arbitrarily small scattering potential is assumed to exist
at all points within the domain so that V−1 is well defined
throughout the ball.) Parametrizing the susceptibility at each
pixel by the single material linear equation χx = tx χ , with
tx ∈ (0, 1],

∂txT = χTV−1δx,xV
−1T = χW δx,xW .

Using this result, the total gradient (with well defined tx → 0
limits) is then

∂Psct
flx

∂tx
= − k

Z
〈T| Sym[δx,xW Asym[G0]]|T〉 (C2)

Hence, only a single additional solve is required to obtain
complete gradient information for the optimization objective.
For the periodic films, the optimization is carried out using
the rigorous coupled wave approach recently presented in
Ref. [163].

033172-18



GLOBAL T OPERATOR BOUNDS ON … PHYSICAL REVIEW RESEARCH 2, 033172 (2020)

[1] M. S. Eggleston, K. Messer, L. Zhang, E. Yablonovitch, and
M. C. Wu, Optical antenna enhanced spontaneous emission,
Proc. Natl. Acad. Sci. U.S.A. 112, 1704 (2015).

[2] I. Aharonovich, D. Englund, and M. Toth, Solid-state single-
photon emitters, Nat. Photonics 10, 631 (2016).

[3] J. Liu, M. Zhou, L. Ying, X. Chen, and Z. Yu, Enhancing the
optical cross section of quantum antenna, Phys. Rev. A 95,
013814 (2017).

[4] A. F. Koenderink, Single-photon nanoantennas, ACS
Photonics 4, 710 (2017).

[5] K. C. Cox, D. H. Meyer, F. K. Fatemi, and P. D. Kunz,
Quantum-Limited Atomic Receiver in the Electrically Small
Regime, Phys. Rev. Lett. 121, 110502 (2018).

[6] S. Mokkapati and K. R. Catchpole, Nanophotonic light
trapping in solar cells, J. Appl. Phys. 112, 101101
(2012).

[7] X. Sheng, J. Hu, J. Michel, and L. C. Kimerling, Light trapping
limits in plasmonic solar cells: an analytical investigation, Opt.
Express 20, A496 (2012).

[8] V. Ganapati, O. D. Miller, and E. Yablonovitch, Light trap-
ping textures designed by electromagnetic optimization for
subwavelength thick solar cells, IEEE J. Photovoltaics 4, 175
(2013).

[9] M. Shahpari and D. V. Thiel, Fundamental limitations for
antenna radiation efficiency, IEEE Trans. Antennas Propag.
66, 3894 (2018).

[10] M. Capek, L. Jelinek, K. Schab, M. Gustafsson, B. L. G.
Jonsson, F. Ferrero, and C. Ehrenborg, Optimal planar electric
dipole antennas: Searching for antennas reaching the funda-
mental bounds on selected metrics, IEEE Antennas Propag
Mag. 61, 19 (2019).

[11] E. Wientjes, J. Renger, A. G. Curto, R. Cogdell, and N. F.
Van Hulst, Strong antenna-enhanced fluorescence of a single
light-harvesting complex shows photon antibunching, Nat.
Commun. 5, 4236 (2014).

[12] S. K. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout,
and R. Baets, Subnanometer linewidth uniformity in silicon
nanophotonic waveguide devices using CMOS fabrication
technology, IEEE J. Sel. Top. Quantum Electron. 16, 316
(2009).

[13] J. A. Briggs, G. V. Naik, T. A. Petach, B. K. Baum,
D. Goldhaber-Gordon, and J. A. Dionne, Fully CMOS-
compatible titanium nitride nanoantennas, Appl. Phys. Lett.
108, 051110 (2016).

[14] M. Joseph Roberts, M. B. Moran, L. F. Johnson, and W.
Freeman, Maskless lithography of CMOS-compatible ma-
terials for hybrid plasmonic nanophotonics: aluminum ni-
tride/aluminum oxide/aluminum waveguides, J. Nanophoto
nics 12, 026001 (2018).

[15] B. S. Lazarov, F. Wang, and O. Sigmund, Length scale
and manufacturability in density-based topology optimization,
Archive Appl. Mech. 86, 189 (2016).

[16] S. Boutami and S. Fan, Efficient pixel-by-pixel optimiza-
tion of photonic devices utilizing the Dyson’s equation in
a Green’s function formalism: Part II. Implementation using
standard electromagnetic solvers, J. Opt. Soc. Am. B 36, 2387
(2019).

[17] D. Vercruysse, N. V. Sapra, L. Su, R. Trivedi, and J. Vučković,
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Coupled-mode theory for general free-space resonant scatter-
ing of waves, Phys. Rev. A 75, 053801 (2007).

[86] W. M. Merrill, R. E. Diaz, M. M. Lore, M. C. Squires, and
N. G. Alexopoulos, Effective medium theories for artificial
materials composed of multiple sizes of spherical inclusions
in a host continuum, IEEE Trans. Antennas Propag. 47, 142
(1999).

[87] I. Staude, T. Pertsch, and Y. S. Kivshar, All-dielectric resonant
meta-optics lightens up, ACS Photonics 6, 802 (2019).

[88] Yu.-J. Lu, R. Sokhoyan, W.-H. Cheng, G. K. Shirmanesh,
A. R. Davoyan, R. A. Pala, K. Thyagarajan, and H. A. Atwater,
Dynamically controlled Purcell enhancement of visible spon-
taneous emission in a gated plasmonic heterostructure, Nat.
Commun. 8, 1631 (2017).

[89] A. Davoyan and H. Atwater, Quantum nonlinear light emis-
sion in metamaterials: Broadband Purcell enhancement of
parametric downconversion, Optica 5, 608 (2018).

[90] Z. Lin, A. Pick, M. Lončar, and A. W. Rodriguez, En-
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