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Superconducting Kondo phase in an orbitally separated bilayer
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The nature of superconductivity in heavy-fermion materials is a subject under intense debate, and controlling
this many-body state is central for its eventual understanding. Here, we examine how proximity effects may
change this phenomenon, by investigating the effects of an additional metallic layer on the top of a Kondo
lattice and allowing for pairing in the former. We analyze a bilayer Kondo lattice model with an on-site Hubbard
interaction, −U , on the additional layer, using a mean-field approach. For U = 0, we notice a drastic change
in the density of states due to multiple-orbital singlet resonating combinations. It destroys the well-known
Kondo insulator at half filling, leading to a metallic ground state, which, in turn, enhances antiferromagnetism
through the polarization of the conduction electrons. For U �= 0, a superconducting Kondo state sets in at zero
temperature, with the occurrence of unconventional pairing amplitudes involving f electrons. We establish
that this remarkable feature is only possible due to the proximity effects of the additional layer. At finite
temperatures, we find that the critical superconducting temperature Tc decreases with the interlayer hybridization.
We have also established that a zero temperature superconducting amplitude tracks Tc, which reminisces the BCS
proportionality between the superconducting gap and Tc.
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I. INTRODUCTION

The Kondo lattice model (KLM) [1,2] and its closely re-
lated periodic Anderson model (PAM) are believed to capture
some of the basic aspects of magnetism in heavy-fermion
materials [3–6]. Both models describe conduction electrons
coupled to (quasi) localized f moments, and the former may
be viewed as the strong hybridization limit of the latter [7].
The screening of local moments by the conduction electrons
favors a paramagnetic phase made up of singlets; competing
with this, the polarization of the conduction electrons gives
rise to a Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
[8–10], which favors the formation of an antiferromagnetic
state. A quantum phase transition between these two ten-
dencies takes place in the ground state, and many important
physical concepts have emerged as a result of thorough inves-
tigations of these phase boundaries for the KLM, especially
on a two-dimensional lattice [4,11–19].

Another fascinating aspect of the heavy-fermion class of
materials is the proximity of (and sometimes coexistence
with) superconductivity and magnetic order in several com-
pounds [20]. From the theoretical point of view, a convenient
starting point to model superconductivity in these materials is
the KLM. Superconductivity in the standard KLM was found
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in the paramagnetic sector in the uncompensated regime
through variational Monte Carlo simulations [13]; it was also
predicted by dynamical mean-field theory (DMFT) calcu-
lations with special heavy fermion bands [21]. Alternative
approaches based on added terms to the KLM, such as frus-
tration due to second-neighbor hopping [22], or by an extra
orbital [23] have also led to the formation of superconducting
states; in both cases the presence of a direct Heisenberg
interaction between local spins seems to provide the pairing
“glue.”

The quest for alternative scenarios leading to superconduc-
tivity in KLM-like models is therefore a question of current
interest. In particular, we note that the Kondo singlet phase
(both the insulator at half filling and the doped metallic phase)
seems to be quite robust, since the inclusion of local pairing
interactions between the conduction electrons only stabilizes
superconductivity in the strong attractive coupling limit, or
in the weak d- f exchange coupling [24,25]. One possible
route towards superconductivity is the introduction of an extra
layer, with the purpose of altering the band structure in a
fundamental way. Indeed, such strategy has proved fruitful,
for instance, in the case of Ce-based superlattices [26], and
more recently in the twisted bilayer graphene [27,28], which
revealed a wealth of interesting magnetic and superconducting
phenomena. We should mention that proximity effects have
been studied in the context of the Hubbard model in a lay-
ered geometry [29,30], resulting in an induced pairing in the
adjacent layers; electron-phonon coupling could also provide
the appearance of superconductivity in Kondo insulators, by
combining the Holstein model with the PAM [31–33].

With this layering strategy in mind, here we investigate
the effects of spatially separating Kondo and pairing physics
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FIG. 1. Basic structure of our bilayer system. The c electrons on
the top layer may be subject to an on-site pairing interaction −U < 0,
while d and f electrons on the “Kondo layer” are exchange-coupled
(magnitude J). The layers are hybridized through a hopping ampli-
tude tz, and all intralayer hoppings are assumed equal to t .

by considering a bilayer in which the top layer favors super-
conductivity (through pairing of c lectrons) and the bottom
layer has an itinerant d band which is allowed to hybridize
with the f electrons; these two layers hybridize with each
other through a hopping term tz, as shown in Fig. 1. As
a first step towards a better understanding of the nature of
such an interface, it is convenient to resort to less restrictive
methodologies. Thus we use an unrestricted Hartree-Fock
approximation [19,24] to investigate the properties of this
system. Despite working on a two-dimensional lattice, our
results should serve as a qualitative guide both to the interplay
between opposing tendencies in the ground state, and to a
three-dimensional construction, with the two layers as the
repeating unit. The layout of the paper is as follows. In
Sec. II, we present the full Hamiltonian and its Hartree-Fock
version (with the details of derivation being left to Appendix).
Section III presents the results for the ground-state transitions,
while Sec. IV is concerned with effects of temperature. And,
finally, Sec. V summarizes our findings.

II. MODEL AND METHODS

The system is described by a two-layer Hamiltonian,

H = − t
∑
〈i,j〉,σ

(c†
iσ cjσ + d†

iσ djσ + H.c.) − U
∑

i

nc
i↑nc

i↓

− tz
∑
i,σ

(c†
iσ diσ + H.c.) + J

∑
i

sd
i · S f

i . (1)

The first term describes the hopping of electrons both on
the top (conduction, c) and bottom (d) layers (see Fig. 1),
with ciσ (c†

iσ ) and diσ (d†
iσ ) denoting the respective annihilation

(creation) operators in standard second quantization formal-
ism; H.c. stands for Hermitian conjugate of the previous
expression. The hopping integral t sets the energy scale and
is assumed to be the same on both layers, with 〈i, j〉 denoting
nearest neighbor sites on the same layer, and σ =↑,↓ stand-
ing for the electron spins states; we also set the Boltzmann
constant, kB, to unity. The second term favors pairing, driven
by an attractive on-site coupling [34], −U < 0, solely on the
(top) c layer, with nc

i being the c orbital number operator
on site i; a one-dimensional model with Kondo and pairing
interactions was considered in Ref. [35]. The third term is
the interlayer hopping along the vertical direction, so that
tz effectively describes the degree of hybridization between
c and d orbitals. And, finally, the fourth term corresponds
to the Kondo exchange coupling (strength J) between the d
electrons on the bottom layer and the local f moments.

It is important to notice that in the noninteracting limit
(U = J = 0), and at half filling, the system is metallic up to
tz = 4t , beyond which a band gap opens. Therefore, as we
tune in U , J , tz (<4t), and the band filling competing effects
may emerge between superconducting (SC), antiferromagnec-
tic (AFM), and singlet (Kondo) phases. In order to investigate
the main features of this competition, we adopt a Hartree-Fock
approach [24] which allows us to probe the occurrence of
spiral magnetic phases characteristic of the KLM [19]. To this
end, we write the spin operators for the d and f orbitals in a
fermionic basis as

sd
i = 1

2

∑
α,β=±

d†
iασα,βdiβ (2)

and

S f
i = 1

2

∑
α,β=±

f †
iασα,β fiβ, (3)

with σα,β denoting the elements of the Pauli matrices, and
fiσ ( f †

iσ ) being creation (annihilation) operators for localized
electrons. With the transformations of Eqs. (2) and (3), the
Hamiltonian of Eq. (1) acquires quartic operators for the
Kondo terms, in addition to those for the Hubbard one.
Following the procedure outlined in the Appendix, we use
a Hartree-Fock approximation to write the Hamiltonian in a
quadratic form, which becomes

HHF =
∑
kσ

[
(εk − μ)(c†

kσ ckσ + d†
kσ dkσ ) − tz(d†

kσ ckσ + H.c.) + 3JV

4
(d†

kσ fkσ + H.c) + ε f f †
kσ fkσ

]

+
∑

k

[
− U (Pccc†

k↑c†
−k↓ + H.c.) + J

4
(Pdf f †

k↑d†
−k↓ + Pdf f †

k↓d†
−k↑ + H.c.) + J

2
(m f d†

k↑dk+Q↓ − md f †
k↑ fk+Q↓ + H.c.)

]

+ UNP2
cc + JN

(
md m f + 3V 2

2
− P2

df

2

)
+ N (2μn − ε f n f ), (4)

at the price of introducing mean-field variables that should
be determined self-consistently, as described below. Here, we

include μ and ε f as Lagrange multipliers, in order to fix
(on average) the electronic density to the desired values in
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their respective bands, and εk = −2t (cos kx + cos ky) is the
dispersion for the bare conduction electrons. Notice that the
electronic density of the conduction bands c and d is fixed on
average as n = (nc + nd )/2, and for the localized electrons it
is set as n f = 1; N is the number of sites.

A quantitative measure of the hybridization between d and
f bands is given by

Vi = 1

4

∑
σ,σ ′=±

〈d†
iσ 1σσ ′ fiσ ′ + H.c.〉, (5)

where 1 is the unit operator, and we assume Vi = V, ∀i.1 The
nature of magnetic ordering enters in HHF through the wave
vector Q and the magnetization amplitudes, md and m f ; these
describe the average of d and f spins operators as〈

sd
i

〉 = −md [cos(Q · Ri), sin(Q · Ri), 0] (6)

and

〈S f
i 〉 = m f [cos(Q · Ri), sin(Q · Ri), 0], (7)

where Ri is the position vector of site i on the lattice.
And, finally, we note that different dimensionless pairing

amplitudes appear in HHF, defined as

Pαβ ≡ 〈α†
i↑β

†
i↓〉 = 〈βi↓αi↑〉, (8)

where α, β = c, d, f . They measure the relative importance
of the different pairing channels, and we recall that Pcc con-
nects with the Hartree-Fock superconducting gap in the single
layer attractive Hubbard model through � = 2|U | Pcc.

The mean-field Hamiltonian, written in a basis of spinors
with 12 components, can be diagonalized to obtain the ein-
genvalues λk,ν . Then, the Helmholtz free energy is written as

F = −1

2
kBT

∑
k

12∑
ν=1

ln

[
1 + exp

(
− λk,ν

kBT

)]
, (9)

apart from a constant term. Given this, the mean-field vari-
ables are then determined self-consistently by minimizing the
Helmholtz free energy with aid of the Hellmann-Feynman
theorem,〈

∂F

∂μ

〉
=

〈
∂F

∂ε f

〉
=

〈
∂F

∂Qα

〉
=

〈
∂F

∂m f

〉
=

〈
∂F

∂md

〉

=
〈
∂F

∂V

〉
=

〈
∂F

∂Pcc

〉
=

〈
∂F

∂Pdf

〉
= 0. (10)

The calculations have been carried out for lattices of size Nx ×
Ny = 200 × 200 with periodic boundary conditions.

Once convergence is achieved, we are able to investigate
spectral properties, by calculating the single-particle Green’s
function (see, e.g., Refs. [36,37] for details),

Gα
σ (k, τ ) = 〈T [αk,σ

(0)α†
k,σ (τ )]〉, (11)

where T is the time ordering operator, τ is the time, and
α = c, d, and f . Taking the time Fourier transform and

1We have checked the contribution of triplet hybridization terms
[19,24], and found that they are negligible.
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FIG. 2. Hybridization and magnetization amplitudes as functions
of the Kondo coupling, J/t . All data are for n = 1.0 and tz = 1.0.

performing an analytical continuation allow one to obtain the
spectral function,

Aα
σ (k, ω) = 1

π
Im Gα

σ (k, ω + i0+), (12)

from which we obtain the density of states (DOS) as

Dα (ω) =
∑
k,σ

Aα
σ (k, ω). (13)

III. GROUND-STATE PROPERTIES

Let us start by examining the ground-state properties. We
first discuss (Sec. III A) how the presence of a conducting
layer without pairing (that is, we set U = 0 on the conduc-
tion layer) affects the magnetic transition between an AFM
state and the Kondo singlet state. Then, in Sec. III B, we
concentrate on the Kondo phase and study the influence of an
extra conducting layer (still without pairing) on the different
conducting channels. Finally, in Sec. III C, we switch on the
attractive interaction on the conduction layer, and analyze how
the transport properties change.

A. The AFM-Kondo transition (U = 0)

The free energy is minimized for fixed electron density,
n, and Kondo coupling J; at first we set tz/t = 1. From this,
we obtain the magnetization amplitudes, md and m f , as well
as the hybridization, V ; the results for half filling (i.e., one
local moment and one electron per site, n = 1) are shown
in Fig. 2. Similarly to the single-layer KLM [19], there is
a critical value of the coupling, Jc, which, at half filling,
separates a Néel phase of the f electrons (whose interaction is
mediated by the d electrons) from a Kondo-singlet phase. The
appearance of the Kondo phase is accompanied by V jumping
from zero to a finite value. One should notice, though, that
in the present case, the critical coupling Jc is larger than its
value for the single-layer KLM. Indeed, as suggested for the
KLM [38,39] and for the PAM [40], an additional metallic
layer may enhance the effective RKKY interaction between
the local moments, as a result of the induced magnetic order in
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FIG. 3. tz × J phase diagrams for the Kondo-antiferromagnetic
(AFM) phase transition at different band fillings, when U = 0.

the conduction layer; simultaneously, the interlayer hopping,
tz, weakens Kondo-singlet formation. The latter effect can be
seen more clearly if one allows tz/t to vary: as shown in Fig. 3,
a Kondo-singlet phase gives way to an AFM state above some
critical value of tz, which depends on J .

It is also interesting to examine the effect of tz on the c
band, deep in the antiferromagnetic phase. Figure 4 shows
the c-band DOS for three different values of tz, from which
we see that a gap opens for tz �= 0. This occurs as a result
of c electrons acquiring an induced polarization, so that they
also take part in the RKKY mechanism responsible for the
antiferromagnetic ordering of f electrons.

Away from half filling the system is no longer an insulator,
so that the increased electron mobility weakens the RKKY
interaction. Accordingly, Fig. 3 shows that as n decreases
from half filling, Jc for the singlet phase decreases. Within the
mean-field approach used here [see Eqs. (6) and (7)], which
allows for a spiral-type alignment of the spins, the magnetic
wave vector minimizing the energy is Q = (π, q) [or its
degenerate pair, (q, π )]. In the range 0.7 � n � 1, q lies in the
interval [0.6π, π ] and does not change significantly with J ,
although for fixed J < Jc we found that q → π monotonically
when n → 1.

Further decrease in the electronic density drives the system
to a ferromagnetic state, as in the single-layer KLM. However,
since our main interest here is in the effect of the extra layer on
the transport properties in the Kondo-singlet phase, we have
not pursued a detailed analysis of the magnetic properties.

B. Transport properties in the Kondo phase (U = 0)

Let us then examine the effects of the c layer on the trans-
port properties within the Kondo phase. Figure 5 shows the
results for both the density of states and the spectral function
for each band. The discrete nature of the spectrum leads to
a sequence of δ functions (shown as spikes) representing
Aα

σ (k, ω), the magnitude of which being associated with the
height of the spikes; in addition, the spikes trace out ω(k), the
Hartree-Fock energy bands. The leftmost panel shows D(ω)

FIG. 4. Density of states for the c band as a function of ω/�ω

(where �ω = ωmax − ωmin), for different values of the interplane
hybridization tz, and for J/t = 0.8, deep in the AFM phase: the low
energy spin excitations cause a gap opening even in the metallic
layer.

and Aα
σ (k, ω) for the decoupled d and f bands, i.e., J = 0. We

see that the hopping tz between the d and c bands splits the
two degenerate square lattice DOS’s, a feature also present in
the spectral function. Nonetheless, the value tz = t used in this
case is not enough to split the bands to the point of generating
an insulating state, which would happen for tz > 4t .

Let us now switch on the coupling J in such way that the
system is in the Kondo (singlet) phase for half filling and
tz = t . The top row of Fig. 5 shows the density of states for
the c, d , and f orbitals. We see that the c band preserves
its metallic character while the other bands drastically change
the behavior in comparison with the single-layer KLM [37].
First, the usual finite gap in the d band (usually referred
to as the c band in the single-layer KLM) here becomes a
pseudogap, in the sense that the density of states only vanishes
at this single, isolated energy. Second, the f band, which also
displays a gap in the single layer KLM, here not only acquires
a metallic character, but the DOS is peaked exactly at the
Fermi energy for half filling. Finally, these features manifest
themselves in the total density of states: instead of a gap, as
in the single-layer KLM [37], the overall metallic character
of the system is evident from the peak at the Fermi energy,
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FIG. 5. Density of states (DOS; top row) and spectral function A(k, ω) (bottom row) for the bilayer with U = 0 and tz/t = 1.0: (a1) and
(b1) are data for decoupled d and f bands (J = 0). The remaining columns correspond to data in the Kondo phase (J/t = 3.75): (a2) and (b2)
for the c band; (a3) and (b3) for the d band; (a4) and (b4) for the f band; and (a5) and (b5) are the corresponding total data. All data are plotted
as functions of energy, ω/t (in units of h̄−1), which is set to zero at the Fermi energy of the half filled band.

as shown in the rightmost column in Fig. 5; such a feature is
explored below.

The bottom row of Fig. 5 shows the spectral function for
each band. We see clearly that the Kondo coupling causes yet
another splitting of the bands; this, in turn, is accompanied by
the appearance of nearly dispersionless regimes which favor
the formation of nearly localized states. However, while this
tendency is compensated by nonzero spectral weight at the
Fermi energy for both c and f bands, there is no spectral
weight at the Fermi energy for the d band, thus giving rise
to the pseudogap. Indeed, from the procedure outlined in the
Appendix, we may extract the contributions at the Fermi wave
vectors, kF ≈ (π, 0) and (π/2, π/2), as

Ac
σ (kF , 0) = 9J2V 2

9J2V 2 + 16t2
z

, (14)

Ad
σ (kF , 0) = 0, (15)

A f
σ (kF , 0) = 16t2

z

9J2V 2 + 16t2
z

. (16)

With increasing J/t , due to the stronger bonding of the
d- f singlets, the Kondo layer behaves more and more as if
it were isolated from the c layer. As a result the DOS for the
c electrons becomes very similar to that for an isolated square
lattice, just with the van Hove singularity at the Fermi energy
without the secondary peaks. In addition, for J � 8t , the d
electrons display a gap in the DOS, instead of a pseudogap.

Away from half filling, our self-consistent procedure leads
to quasi-rigid bands, whose corresponding DOS’s are shown
in Fig. 6. The most significant difference relative to the n =
1 case is the suppression of the peak at the Fermi energy
for the f electrons, which is also manifested in the total
DOS. Nonetheless, the metallic character is preserved. In this
respect, we recall that the single-layer KLM displays a gap in
the Kondo phase at half filling which (within Hartree-Fock)

is approximately rigidly displaced upon doping, leading to a
metallic phase [37].

Further insight into how the presence of an extra metallic
layer affects the otherwise insulating character, can be ob-
tained by defining

Vc f = 1

4

∑
σ=↑,↓

〈c†
iσ fiσ + H.c.〉, (17)

V3 = 1

4

∑
σ=↑,↓

〈c†
iσ diσ d†

iσ fiσ + H.c.〉, (18)

which respectively probe c- f hybridization and the triple
c-d- f hybridization. When varying the filling, as displayed
in Fig. 7(a), the d- f hybridization V dominates (in the range

FIG. 6. Same as the top row of Fig. 5, but for n = 0.8 (a1) to (a4)
and n = 0.9 (b1) to (b4). The Fermi energy is set at the origin in both
cases.

033168-5



SEBASTIÃO DOS ANJOS SOUSA-JÚNIOR et al. PHYSICAL REVIEW RESEARCH 2, 033168 (2020)

0.9 1.0
0.00

0.05

0.35

0.40

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04
0.36

0.40(a)

tz/t=1.0

n

V
Vcf
V3

V
α
β

(b)

n=0.9

tz/t

FIG. 7. Calculated hybridizations: V (d- f ), Vc f , and c-d- f V3:
(a) as functions of the band filling, for tz = t , and (b) as functions of
tz/t , for n = 0.9. In both cases, J/t = 3.75.

of n considered), but the relative importance of Vc f and V3

drastically changes across this density range. At half filling,
the resonating d- f and c-d singlets are most tightly bound,
since there are no unmatched electrons; this causes V3 to be
maximum, whilst Vc f vanishes. As one dopes away from half
filling, the depletion on c and d layers causes a decrease in
the triple hybridization since electrons would have to hop
around to find incomplete singlets along the vertical. By
the same token, being a single-step quantity Vc f increases
upon doping, since only one additional unmatched electron
is needed. The emergence of a pseudogap in the d channel
may then be attributed to the singlet resonating between d- f
and c-d combinations, which enhances the mobility of the f
electrons while localizing d electrons. For n = 0.9, Fig. 7(a)
shows that Vc f > V3 so that resonating singlets are less likely.
Further, Fig. 7(b) shows that these additional hybridization
features decrease as tz decreases, as one may expect.

C. Pairing in the Kondo phase

Before proceeding with the effects caused by having |U |
on the additional metallic layer, it is worth recalling what
happens in the case of a single-layer KLM with an attractive
interaction in the d band, in the regime where d and f elec-
trons are strongly hybridized into singlets [24]. In this case,
the tendency for local pairing in the d band requires breaking
the local d- f singlets and, consequently, coexistence between
Kondo phase and (d band) superconductivity is unlikely.
Indeed, due to the high energetic cost to break the singlets,
one needs a very strong attractive interaction to generate pair
coherence.2

By contrast, in the bilayer system the pairing interaction
acts solely on the c electrons of the extra layer. Therefore,
for any small, finite |U | pairs can be formed on the c layer,
without the need to break up singlet pairs formed in the d- f
layer. However, as discussed earlier, the inclusion of such
metallic layer changes the spectral weight at the Fermi level,
which may lead to new pairing features. In view of this, it is
interesting to examine the behavior of the pairing amplitudes
defined in Eq. (8), for both intra- and interorbital channels.

2See, e.g., Ref. [24] for the ground-state phase diagram on a simple
cubic lattice, which, within Hartree-Fock, is qualitatively similar to
what happens on a square lattice.
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FIG. 8. Pairing amplitudes as functions of electronic density for
J/t = 4.0 and U/t = 2.0.

Figure 8 displays the pairing amplitudes as functions of the
band filling, for fixed J/t , U/t , and tz/t . The dominant channel
in the range of fillings considered corresponds to having the
paired electrons in c orbitals, which is to be expected since the
pairing interaction is confined to the c layer. Interestingly, as
also displayed in Fig. 8, other pairing contributions appear:
the second dominant pairing amplitude involves c and f
electrons, followed by the f f one. Notice that these were
the two orbitals with finite spectral weight at the Fermi level,
for the U = 0 case. By contrast, other possibilities involving
the d orbital are always suppressed, and although they do
not vanish completely, they yield a much smaller response
than other channels, which may be attributed to the presence
of the pseudogap in the d DOS. Furthermore, the analysis
of the DOS (not shown) provides a unique SC gap � for
all orbitals; that is, the entire system is superconducting, not
only the additional layer. Thus, recalling that �/t ∼ P (for
a single-orbital approach), these results suggest that we have
a superconducting Kondo phase, i.e., one in which pairing
occurs amongst the quasiparticles of the Kondo fluid formed
by the c, d , and f electrons.

Further insight into this interplay between pairing in differ-
ent channels can be gained by examining the electron densities
on c and d orbitals. At half filling, the minimum free energy
corresponds to nc = nd = 1, but when n = (nc + nd )/2 < 1
the Hubbard attraction induces electron migration to the c
layer, thus causing charge imbalance, nc > nd . This migration,
in turn, depends on the hybridization between c and d orbitals.

Figure 9 shows the pairing amplitudes in different channels
as functions of the interlayer hopping, tz, for fixed J/t , U/t ,
and n. The increasing tz hybridization is deleterious to cc
pairing, while it does not lead to dominant pairing from the
remaining channels; the overall effect of large tz is therefore
to suppress superconductivity altogether. Similar behavior
occurs for other fillings within the Kondo phase. We conclude
that the emergence of this superconducting state was only
made possible due to the spatial separation between the c and
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FIG. 9. Pairing amplitudes in three different channels as func-
tions of the interlayer hopping, tz/t , for J/t = 4.0, U/t = 2.0, and
n = 0.9.

d orbitals, and its ensuing drastic changes in the DOS of the
system.

IV. THERMAL TRANSITIONS

Finally, we briefly discuss thermal effects on the pairing
properties by searching for solutions of Eq. (10) at finite
temperatures. The dominant character of Pcc over all other
amplitudes was found to be preserved at T �= 0. Nonetheless,
notwithstanding their differences in magnitude, when plotted
as functions of temperature (keeping all other control param-
eters fixed) all Pαβ were found to vanish at a common critical
value, Tc.

This fact has two immediate consequences. Firstly, the
existence of a unique Tc for all channels adds credence to
our claim that pairing occurs amongst the quasiparticles of
the Kondo fluid. Secondly, we can use the behavior of Pcc

to extract how the critical temperature changes as other pa-
rameters are varied. For instance, Fig. 10(a) shows Tc as a
function of tz/t for different values of J , all within the Kondo
phase. We note that increasing J causes an increase in Tc,
again consistent with the idea that strengthening df singlets
enhances the pairing tendency in the c layer. The deleterious
role of large d-c hybridization to superconductivity is also
evident at finite temperatures, by the rapid decrease of Tc with
tz/t .

Another finite temperature feature worth discussing is
whether some manifestation of the proportionality between
the superconducting gap function at T = 0 and the critical
temperature is carried over to the present case. While for
the single-band attractive Hubbard model, the gap function
is simply proportional to tPcc, in the multi-orbital case there
is no a priori direct relation between the gap function and
the pairing amplitudes. In order to test this issue, we extract
Pcc(tz/t ) at T = 0 and Tc(tz/t ), from Figs. 9 and 10(a), re-
spectively, and plot them together in Fig. 10(b). Although they
are clearly not proportional to each other, we can say that Tc

tracks Pcc(T = 0). We have verified that this tracking holds
when Pcc(T = 0) and Tc are plotted against other variables.

0

00.1

00.2

T c/t

J/t=4.0
J/t=4.5
J/t=5.0

0 1 2
tz/t

0

00.1

00.2

T c/t,
 

P cc Pcc
Tc/t

n=0.9

J/t=4.0

(a)

(b)

FIG. 10. Superconducting critical temperature, Tc/t , and ground-
state pairing amplitude, Pcc, as functions of the interlayer hopping
tz/t , for U/t = 2.0 and n = 0.9. In (a), only Tc is shown, for three
different values of J/t , while in (b) Tc is compared with the ground-
state pairing amplitude, Pcc, for a single J/t .

For instance, from the data of Fig. 8 we conclude that Tc

indeed decreases monotonically as the system is doped from
half filling.

V. CONCLUSIONS

We have studied some proximity effects arising when a
normal or superconducting layer is close to a layer of singlets,
the latter being either in the insulating or in the metallic state,
as controlled by doping. To this end, we let a Kondo-lattice
layer hybridize (intensity tz) with an additional conducting c
layer, in which we can turn on a pairing interaction, U . Within
a Hartree-Fock approximation, we have found that this setup
drastically changes the spectral properties of the single-layer
Kondo lattice model. On the magnetic side, J < Jc(tz ), the
RKKY interaction is enhanced as a result of the induced
antiferromagnetic order on the c layer. On the singlet side,
hybridization with the c band changes the gap in the d band
into a pseudogap (in the sense that it is only nonzero at the
Fermi energy). The otherwise gapped total density of states
now acquires a peak at the Fermi energy.

With the onset of an attractive interaction on the additional
metallic layer, superconductivity is now possible for any
nonzero |U |, due to the drastic changes in the spectral weight
at the Fermi energy. As a result, we have established that
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pairs may be formed among c and f electrons, suggesting
the occurrence of a superconducting Kondo phase . We have
also established that while the hybridization between the c
and d layers is crucial for superconductivity from the spectral
point of view, on the other hand it also tends to decrease Tc.
This means that application of uniaxial pressure to increase
tz should be carefully controlled. Nonetheless, by adding
another mechanism which induces pairing in the d layer (such
as local spins fluctuations, Heisenberg coupling of local mo-
ments, or magnetic frustration due to next-nearest-neighbor
hopping) one could counteract these effects of tz.
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APPENDIX: HARTREE-FOCK APPROXIMATION

The Hartree-Fock approximation for the attractive poten-
tial term in Eq. (1) leads to

∑
i

nc
i↑nc

i↓ ≈
∑

i

[
nc

2
(c†

i↑ci↑ + c†
i↓ci↓) − n2

c

4
− P2

cc

+ Pcc(c†
i↑c†

i↓ + ci↓ci↑) − 2
〈
sc

i

〉·sc
i + 〈

sc
i

〉·〈sc
i

〉]
,

(A1)

with

Pcc = 〈c†
i↑c†

i↓〉 = 〈ci↓ci↑〉 (A2)

being the dimensionless pairing amplitude; for the single-
layer attractive Hubbard model it reduces to the gap param-
eter, � ≡ 2|U |Pcc, and nc = 〈c†

i↑ci↑ + c†
i↓ci↓〉 is the electronic

density on the c layer, both taken as homogeneous throughout
the sites. The operator sc

i is defined as in Eq. (2). We have
checked for the possibility of any residual polarization in
the c layer and found none; we can therefore drop the spin
terms. We also do not consider the Hartree terms, (c†

i↑ci↑ +
c†

i↓ci↓)nc/2, since they give rise to spurious unbalanced elec-
tronic densities on the layers, with unphysical consequences.
For instance, in the presence of the Kondo interaction, the
Hartree terms stabilize FM phases even close to half filling,
n = (nc + nd )/2 = 1, which is certainly incorrect. The reason
for this spurious behavior is an artificially strong suppression
of the density in the Kondo layer (nd ) due to an increase in nc.
Nonetheless, we have verified that even without the Hartree
terms there is a physically consistent small density imbalance
on the layers due to pair formation and the Kondo coupling.
The mean-field Hubbard term then becomes

−U
∑

i

nc
i↑nc

i↓ ≈ −U
∑

i

[Pcc(c†
i↑c†

i↓ + ci↓ci↑) − P2
cc]. (A3)

Following the procedure presented in Ref. [19], the Kondo
term in Eq. (1), can be decoupled as

∑
i

sd
i · S f

i ≈
∑

i

[
sd

i ·〈S f
i

〉 + 〈
sd

i

〉·S f
i

) − 〈
sd

i

〉·〈S f
i 〉

− 3

2

(
V 0

i

〈
V 0

i

〉 + 〈
V 0

i

〉
V 0

i − 〈
V 0

i

〉〈
V 0

i

〉)

× Pdf

4
( f †

i↑d†
i↓ + f †

i↓d†
i↑ + H.c.) − P2

df

2

]
(A4)

with the operator

V 0
i = V 0

i
† = 1

2

∑
α,β=±

c†
iα1α,β fiβ, (A5)

being the singlet hybridization term; we have also investigated
a possible influence of triplet hybridization terms [19], but
they turned out to be irrelevant.

The mean-field values 〈S f
i 〉 and 〈sd

i 〉 are taken as [19]

〈
S f

i

〉 = m f [cos (Q·Ri), sin (Q·Ri), 0] (A6)

and
〈
sd

i

〉 = −md [cos (Q·Ri), sin (Q·Ri), 0], (A7)

with

Q = (qx, qy) (A8)

being the magnetic wave vector, and Ri the position vector of
site i on the lattice.

By the same token, the mean values of the hybridization
operators are chosen as

〈
V 0

i

〉 = 〈
V 0

i
†〉 = −V. (A9)

Then, our mean-field Hamiltonian, Eq. (4), is obtained by
substituting Eqs. (A3) and (A4) in Eq. (1), using Eqs. (A6),
(A7), and (A9) for the mean values of the spin and hy-
bridization operators, and performing a discrete Fourier trans-
form, with periodic boundary conditions. Such Hamiltonian
is twofold degenerate when written in a Nambu spinor basis
leading to

HMF = 1
2�

†
kĤk�k + const., (A10)

with

�
†
k = (c†

k↑c−k↓c†
k+Q↓c−k−Q↑d†

k↑d−k↓d†
k+Q↓d−k−Q↑

× f †
k↑ f−k↓ f †

k+Q↓ f−k−Q↑), (A11)

where

const. = NUP2
cc + JN

(
m f md + 3

2
V 2 − P2

df

2

)

+ N[2μ(n − 1) − ε f (n f − 1)] (A12)
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and

Ĥk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εk − μ −UPcc 0 0 −tz 0 0 0 0 0 0 0
−UPcc −ε−k + μ 0 0 0 tz 0 0 0 0 0 0

0 0 εk+Q − μ UPcc 0 0 −tz 0 0 0 0 0
0 0 UPcc −ε−k−Q + μ 0 0 0 tz 0 0 0 0

−tz 0 0 0 εk − μ 0 1
2 Jm f 0 3

4 JV − J
4 Pdf 0 0

0 tz 0 0 0 −ε−k 0 − 1
2 Jm f

J
4 Pdf − 3

4 JV 0 0

0 0 −tz 0 1
2 Jm f 0 εk+Q 0 0 0 3

4 JV − J
4 Pdf

0 0 0 tz 0 − 1
2 Jm f 0 −ε−k−Q 0 0 J

4 Pdf − 3
4 JV

0 0 0 0 3
4 JV J

4 Pdf 0 0 ε f 0 − 1
2 Jmd 0

0 0 0 0 − J
4 Pdf − 3

4 JV 0 0 0 −ε f 0 1
2 Jmd

0 0 0 0 0 0 3
4 JV J

4 Pdf − 1
2 Jmd 0 ε f 0

0 0 0 0 0 0 − J
4 Pdf − 3

4 JV 0 1
2 Jmd 0 −ε f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A13)

Here, μ and ε f are included as Lagrange multipliers in order
to fix the electronic densities n and n f , respectively. The
eigenvalues of the Hamiltonian, Eq. (A13), are used to obtain
the Helmholtz free energy, Eq. (9), and, consequently, the set
of nonlinear equations, Eq. (10), whose solutions yield the
sought order parameters.

Effective Hamiltonian Diagonalization

It is instructive to consider the diagonalization of the
effective Hamiltonian (4), at the Fermi level, k = kF , in the
Kondo phase. The corresponding matrix in the spinor basis
�†

σ = (c†
σ d†

σ f †
σ ) for U = μ = ε f = εkF = 0 is
⎛
⎜⎜⎝

0 −tz 0

−tz 0
3

4
JV

0
3

4
JV 0

⎞
⎟⎟⎠, (A14)

where the eigenvector related to the Fermi level band, EkF =
0, is

|ψFL〉 = 1√
9(JV )2 + 16t2

z

⎛
⎝3JV

0
4tz

⎞
⎠. (A15)

The spectral weight for the c, d , and f orbitals are then

Ac
σ (kF , 0) = 9J2V 2

9J2V 2 + 16t2
z

, (A16)

Ad
σ (kF , 0) = 0, (A17)

A f
σ (kF , 0) = 16t2

z

9J2V 2 + 16t2
z

. (A18)
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