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Model for self-replicating, self-assembling electric circuits with self-controlled growth
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Tile self-assembly models have proved to be important theoretical tools for studying nanoscale manufacturing
techniques, and have provided insight into the computational capabilities of systems inspired by molecular
biology. A tile assembly model (rcTAM), whose tiles are composed of simple electric circuit components,
exhibits three important properties akin to those found in living organisms. First, it grows from a seed tile
by self-assembly of component tiles. Second, it autonomously stops growth when a maximum size is reached,
as determined by parameters associated with the tiles. Third, when the circuit assembly has reached the limit
of its growth, it generates an identical copy of the original seed, which then will grow to replicate a copy
itself. The size of the assembled circuit is controlled by values of the circuit components (voltage sources,
resistors), and a threshold voltage for tile attachment. Since every new tile attachment instantly changes the
circuit properties, such as voltage drops and currents across resistors, as well as equivalent resistances, the
model exhibits instantaneous distant communication and cooperation between components, as well as dynamic
behavior. Proofs are given for a bound on growth, the self-replicating property, and possible aging phenomena
that produce a stable circuit population. The model might have application to electrochemical growth processes
at the nanoscale, and provides insight into self-replicating systems that are not necessarily composed of organic
materials. In addition, it models certain features of bioelectric networks that contribute to pattern formation in
collections of cells.

DOI: 10.1103/PhysRevResearch.2.033165

I. INTRODUCTION

Understanding the origin of living systems requires an-
swers to fundamental scientific questions [1–3], such as how
they employ the mechanism of self-assembled, self-controlled
growth to self-replicate themselves. In self-assembly [4],
components construct larger, more capable systems through
localized interactions. Examples in living systems are amino
acids and proteins, lipids and membranes, and cells and higher
organisms. As a technology, molecular self-assembly is an on-
going topic of research [5], and has primarily been applied to
the growth of nanostructures. Algorithmic assembly controls
growth through programed interactions between component
parts, which are represented as matching glues that, for
example, have been implemented with complementary DNA
oligonucleotides [6,7]. Self-control limits the growth of living
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systems with mechanisms contained within the components
themselves, as well as interactions with the environment.
Biological growth from proteins to higher organisms requires
a source of energy to sustain. For example, bacterial colonies
are limited by their nutrient supply, and, as nutrition has
improved, human beings have become larger.

Here, self-replication is defined as a process in which an in-
dividual senses a mature stage in its development that triggers
the growth of a copy of itself. For example, in eukaryotes, sig-
naling pathways initiate mitosis, which is a process in which
two or more daughter cells are produced by cell division from
an identical parent. Von Neumann pioneered computational,
artificial self-replicating systems in the 1940s, and proposed
an abstract machine that has the power of replication in
cellular automata [3,8]. Moreover, a self-replicating molecular
assembler has been a dream of nanoscale engineering [9]. In
molecular biology, focus has been on self-replicating systems
of RNA, DNA, or proteins, with the most prominent being the
RNA world hypothesis [10].

In this paper, we propose a replicating circuit tile assem-
bly model (rcTAM) that combines self-assembly and self-
replication in a nonbiological system, where the self-assembly
of ladder circuits from resistive circuit tiles is controlled by
a voltage source whose consumption during growth controls

2643-1564/2020/2(3)/033165(11) 033165-1 Published by the American Physical Society

https://orcid.org/0000-0002-3157-7297
https://orcid.org/0000-0001-9552-2255
https://orcid.org/0000-0001-6760-4421
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033165&domain=pdf&date_stamp=2020-07-29
https://doi.org/10.1103/PhysRevResearch.2.033165
https://creativecommons.org/licenses/by/4.0/


YASMIN, GARZON, AND DEATON PHYSICAL REVIEW RESEARCH 2, 033165 (2020)

the extent and shape of the resulting structures. In rcTAM,
a growing circuit senses when growth has reached its limit,
and, in response, initiates growth of a new circuit identical
to itself. Moreover, all of these capabilities are achieved in
relatively simple resistive circuits with diodes and voltage
sources, without an appeal to molecular biology, or even
organic chemistry. On the supposition that living matter self-
assembled from nonliving components [2,11] (abiogenesis),
many models have focused on the transition from inorganic
to organic molecules. Thus, the rcTAM models a system
in which many of the basic characteristics of life at the
molecular level are captured (self-assembly, self-control, self-
replication), and which could be leveraged for enhanced capa-
bilities of man-made technologies and new insights into how
self-replicating systems might arise.

Though the rcTAM is not a biological system, it might be
a useful abstraction of bioelectric networks among somatic
cells that interact with genetic mechanisms to guide pattern
and shape formation, including morphogenesis, embryogene-
sis, tissue regeneration, and regulation of cellular abnormal-
ities [12–16]. Endogenous electric fields and the consequent
distribution of electric potentials arise from the distribution
of action potentials across cell membranes and gap junctions
between cells. These bioelectric networks are ancient mech-
anisms to control anatomy [14]. Control over pattern and
form is established through rapid feedback mechanisms that
are characteristic of electrical systems [14–16]. Likewise, the
rcTAM attempts to model ancient mechanisms with primitive
electrical components with a threshold mechanism, as in
ion channels or gap junctions. In the preceding circuit tile
assembly model (cTAM) [17], the goal was to control pattern
formation with the shape of a potential distribution established
by a voltage source and boundary conditions. The current
state (growing or terminated) of an assembly was commu-
nicated instantaneously throughout the circuit by changes in
current and voltage. Electric fields in gap junctions transport
materials between cells [18], and cTAMs model this type of
electrochemical growth phenomenon [17]. The advantage of
the cTAM models is that they are amenable to exact analysis
and characterization of their properties, and thus, from a
theoretical perspective, might produce better understanding of
information processing in bioelectric phenomena.

The cTAM in [17,19–21] consisted of resistive circuits
and voltage sources, and only achieved self-assembled and
self-controlled growth. Here, it is augmented with diodes and
dependent voltage sources to achieve self-replication. The
goal has been to achieve the desired functionality with circuits
that are as simple as possible. In Sec. II, the rcTAM model is
defined. In Sec. III the self-replicative property of the rcTAM
model is demonstrated. In addition, a bound on the maximum
length of the assembly is derived, and an aging mechanism is
addressed. Finally, some discussion of possible applications
and concluding remarks are given in Sec. IV.

II. A SELF-REPLICATING CTAM (RCTAM)

In the circuit tile assembly model cTAM [19–21], larger
circuits are self-assembled from smaller unit circuits, called
circuit tiles. Combining chemically inspired glues and
resistive electrical circuits, circuit tiles attach if the glues

match at the attachment points and the voltage drop across the
attachment points equals or exceeds a certain threshold τ . As
the voltage at attachment points is dissipated by resistive volt-
age dividers with each new tile addition, growth eventually
ceases at a maximum size, and thus is self-controlled. The rc-
TAM augments the capabilities of the cTAM by adding diodes
and dependent voltage sources to achieve self-replication.

Definition II.1 (rcTAM circuit). An rcTAM circuit is a tu-
ple � = (N, E ,C, g, ∂N ) on a graph (N, E ) where N denotes
the set of nodes, corresponding to electrical nodes in the
circuit, E denotes the set of edges, C is a set of circuit com-
ponents (chosen from resistors, diodes and voltage sources)
assigned to edges e(i, j) ∈ E where {i, j} ∈ N , and g maps
some subset of nodes ∂N to some subset of glues labeled
from a finite alphabet �, i.e., g : ∂N → �. ∂N = Nin ∪ Nout

consists of two finite subsets of nodes, input nodes Nin and
output nodes Nout to the circuit, and are the points at which
glues bind tiles together on the boundary of the circuit.

The rcTAM tiles (rcTiles) are small rcTAM circuits, and
represent the most primitive, elementary circuits from which
all others are assembled. Each rcTile contains a voltage di-
vider made of resistors, as well as voltage sources and diodes.
A diode is an electrical device that functions as a switch. In
an ideal diode, if the voltage across it is greater than or equal
to a threshold Vthr, then it is forward biased and the diode acts
as a perfect conductor, or short circuit with zero resistance to
current flow. Otherwise, it is reverse biased and behaves as
a perfect insulator, or open circuit with infinite resistance to
current flow.

Definition II.2 (Replicating circuit tile assembly system).
A replicating circuit tile assembly system (rcTAM) is a tuple
C = (�, S, τ, ν, ζ ), where � is a finite set of rcTiles, S ⊂ �

is a set of seed rcTiles, τ ∈ R+ is the threshold voltage that
sets one of the criteria for further attachment, and ν ∈ R+ is
the electric node potential in the circuit. ζ is a glue indicator
function that indicates whether glues on input nodes of rcTiles
match or bind to glues on output nodes of rcTAM circuits, or
ζ : �(Nin ) × �(Nout ) → {0, 1}.

In the rcTAM, an assembly is a sequence of resistive
electrical ladders that are connected, but electrically isolated
from each other. Each ladder is obtained from the previous
or an initial seed tile by attachment of rcTiles. A ladder that
has finished growth through addition of rcTiles has reached
“adulthood,” and has a certain number t of tiles. An index k ∈
{1, . . . , nt, . . .}, indicates a specific tile in the ladder assembly,
as well as a time step, where n is the number of adult ladders in
the current assembly. The current tile in the ladder that offers
a glue for attachment (current last tile added to an assembly)
is denoted kτ , and the voltage drop between its output nodes
is the “tip” voltage of the circuit. Once started, the assembly
does not stop as long as conditions for attachment are met.
Because any replication process that terminates after a finite
number of steps would lead to eventual extinction of that
species, a prerequisite to a viable self-replication process
would be one that is theoretically capable of running forever,
as the rcTAM.

Voltages (potential differences between nodes) and cur-
rents in the ladder are a function of the location k and
tile parameters. Thus, voltages will be denoted as V γ

(i, j)(k),
where the first node i in an edge refers to the more positive
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FIG. 1. Tile A (seed tile) for the rcTAM consisting of one DC
voltage source ν0 and two resistors, R and αR. It has one pair of
output nodes {1, 2} across the resistor R. Node 1 has glue a and node
2 has glue b.

potential for a particular rcTile γ ∈ �. The tip voltage at the
current last tile in the ladder, where a new tile attachment
is determined, is denoted V γ

(i, j)(kτ ). (The indices γ and k
may be omitted when the location of the tile in the ladder
is clear.) In general, two nodes {i, j} ∈ Nout of an rcTAM
circuit ψ1 can attach to two nodes {l, m} ∈ Nin of an rcTile cir-
cuit ψ2 if ζ (ψ1(i), ψ2(l )) = 1 and ζ (ψ1( j), ψ1(m)) = 1, and
either V γ

(i, j)(kτ ) = ν(i) − ν( j) � τ or V γ

(l,m) = ν(l ) − ν(m) �
τ , where V(l,m) is a voltage across input nodes in a single rcTile
(i.e., not yet part of a ladder). Ideally, growth is restricted to
input nodes of rcTiles attaching to output nodes of a larger,
growing rcTAM circuit. Once attached, a given input node and
given output node become one node electrically, though the
distinct node numbers associated with the attaching rcTiles
will be retained.

If life is taken as the prototypical self-replicating system,
then one usually thinks of a living entity as one that grows by
consuming resources from the environment, produces signals
indicating that it has reached maturity and is capable of
reproduction, and then engages in processes that result in
close facsimiles of itself as offspring. The rcTAM has been
designed with this in mind.

Definition II.3 (Self-replication). A self-replicating rc-
TAM is a cTAM that grows to a maximum size, senses that
this specific stage in its growth has occurred, and, in response,
initiates a new process to grow another identical assembly.

To exhibit self-replication in an rcTAM, three rcTiles will
be defined. For clarity, matching glues are denoted like DNA
Watson-Crick complementary oligonucleotides, so that a glue
a matches its complement a. In addition, node numbers are
referenced to specific, individual rcTiles, and not the entire,
growing assembly. Once the adult ladder has replicated, the
tile numbering (k) continues on at the seed for the new,
replicated ladder. Tile A is the seed tile for the assembly
process. There is only one per assembly at position k = 1.
It consists of one independent voltage source [ν0 = V A

(1,0)(1)]
on e(1,0), and two resistors with R on e(1,2) and αR on e(2,0)

(Fig. 1). This configuration acts as a voltage divider circuit
where the voltage drop across R, V A

(1,2)(1) = ν0
R

R+αR = ν0
1

1+α
.

Tile A has output nodes {1, 2} across resistor R, whose voltage
difference V A

(1,2)(1) is compared to the threshold τ to deter-

FIG. 2. Tile B (replicating seed tile) for the rcTAM. It has a
voltage source of ν0, resistors R and αR, and an ideal diode D6. It
has one output node pair {1, 2} across R and one input node pair
{3, 2} across D6. Node 1 has glue a, node 2 has glues (b and d), and
node 3 has glue c.

mine eligibility for further growth. Tile A has glues g(1) = a
and g(2) = b.

Tile B serves as the seed for replicated ladders, and is at
position k = nt + 1 after n rounds of replication. Tile B has
the same value for its voltage source V B

(4,3)(nt + 1) = ν0 as
tile A, with resistor R on e(1,2), αR on e(1,4), and ideal diode
D6 on e(3,2) with Vthr = 0. The diode is connected such that
it is reverse biased and acts as an open circuit (Fig. 2). The
polarity of the voltage across this open circuit is opposite to
that required for attachment to tile C at nodes {3, 4}. It has
one pair of output nodes {1, 2} across the resistor R, and one
pair of input nodes {3, 2} across the diode D6. Because D6

is open circuited, V B
(1,2) is zero, and hence it is not eligible

for attachment. Tile B has glues g(2) = {b, d} (two glues
attached), g(3) = c, and g(1) = a.

Tile C is the primary tile that contributes to growth of a lad-
der and determines whether replication occurs. Tile C consists
of one dependent voltage source Vx on e(6,2), three resistors
with R on e(1,2), αR on e(2,7), and βR (β � 0) on e(1,5), and
five diodes (D3 on e(3,4), D1 on e(6,5), D2 on e(1,4), D4 on e(5,3),
and D5 on e(4,3), parallel to D3), as shown in Fig. 3. Here, the
dependent voltage source, Vx = 2τν0

ν0
= 2τ is activated only

when connected to a circuit with ν0 (tile A or B). This tile
has two pairs of output nodes {1, 2} and {3, 4}, one pair of
input nodes {1, 7}, and has g(1) = {a, a}, g(2) = b, g(3) = c,
g(4) = d , and g(7) = b. The voltage V C

(1,2)(k) depends on
voltage division between R and αR. Resistor βR has a large
value so that Vx has a minimal impact of Vx

1
1+β

on V C
(1,2)(k)

and thus on growth. Four diodes are connected across resistor
βR. Diode D2 and diode D4 electrically isolate a replicated
assembly from current in resistor βR, and vice versa. Diodes
D3 and D5 are connected in parallel with opposite polarity
between nodes 3 and node 4. All diodes except D3 have
Vthr = 0. Diode D3 has Vthr = 2τ , so that it is an open circuit
throughout the growth process, with a voltage V C

(3,4)(k) equal
to that across resistor βR. When replication occurs, diode D5

completes the open loop connection across diode D6 of tile
B so that current can flow. V C

(3,4) thus determines whether
replication will occur or not.
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FIG. 3. Tile C (circuit tile) for the rcTAM consisting of three resistors R, αR, and βR. Diode D3 has Vthr = 2τ , and D1, D2, D4, D5 have
Vthr = 0. It has two pairs of output nodes at {1, 2} and {3, 4}. The input node pair is {1, 7}. Node 1 has two glues: a and a. Node 2, node 3,
node 4, and node 7 have glues b, c, d , and b, respectively.

III. SELF-REPLICATION

The rcTAM has two types of tile attachments: one for reg-
ular growth and another for replication. The desired behavior
of the assembly process is shown in Fig. 4. Assume the system
has one seed tile A, multiple tiles B, and multiple tiles C. As
will be shown later, unwanted attachments between tiles that
are not connected to a seeded ladder assembly do not occur.
For regular growth, we must have V A

(1,2)(1) � τ for tile A. Tile
C attaches to tile A. As long as V C

(1,2)(k) � τ , k � 2, growth
of the ladder proceeds with tile C attaching to tip tile C in the
ladder. Eventually, as ν0 is dissipated by the voltage divider in
the ladder, V C

(1,2)(k) < τ (for example k = t = 3) for the last
tile C in the ladder (Fig. 4). At this point, as will be shown
below, with a proper choice of Vx, α, and β, Vx will forward

bias D1 and drop enough voltage across βR so that V C
(3,4)(t =

3) � τ . Tile B will then attach at nodes {3, 4} of tile C, causing
D5 to become forward biased, providing a conducting path
so that current flows through R in tile B and thus growth of
a new ladder starts. Diodes D2 and D4 are ideal diodes that
are used to isolate the parent circuit from the child circuit.
Thus, for replication to occur, the circuit needs to undergo a
conformation change from an open circuit to a closed circuit.
In summary, when V C

(1,2)(kτ ) � τ , then V C
(3,4)(kτ ) < τ and only

regular growth occurs. When V C
(1,2)(t ) < τ , then V C

(3,4)(t ) � τ ,
and replication growth occurs, only once per parent ladder
assembly.

The ideal growth regions are depicted in Fig. 5. To summa-
rize: when V C

(1,2)(kτ ) � τ , then regular growth occurs where

FIG. 4. Example of an assembly process. Here, an assembly starts from the seed tile A, and then two tile C’s are attached to the seeded
growth. As V C

(1,2)(3) falls below τ , a tile B is attached to start replication. Attachments between tiles are shown as dashed lines.
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FIG. 5. The regions for regular growth and replication. When
V C

(1,2)(kτ ) � τ , regular growth occurs as V C
(3,4)(kτ ) < τ . When

V C
(1,2)(kτ ) < τ , V C

(3,4)(kτ ) � τ and self-assembly starts replication.

V C
(3,4)(kτ ) < τ ; when V C

(1,2)(kτ ) < τ , V C
(3,4)(kτ ) � τ and repli-

cation growth occurs; and when V C
(1,2)(kτ ) > 2τ , the diode

D1 is reverse biased and, in turn, V C
(3,4)(kτ ) = 0. Moreover,

replication occurs only once at the maximum size of the
ladder, t .

The goal of this section is to prove the following theorem
in several stages.

Theorem III.1. There exists an infinite number of rcTAM
systems exhibiting self-controlled regular growth, followed by
replication in which this cycle repeats infinitely often.

As mentioned above, for the self-replication process to
proceed as desired, certain attachments must be prevented, as
described next.

Lemma III.1.1. Only attachments between rcTiles and a
seeded ladder assembly (one containing tile A) are possible.

Proof. If tile C is not attached to a seeded assembly, be-
cause Vx is a source dependent on being in a circuit connected
to ν0, V C

(1,2)(k) = 0 < τ and V C
(3,4)(k) = 0 < τ , and no attach-

ments can occur between two unseeded tiles C’s. Unless tile B
is part of a circuit with tile A, D6 is reverse biased and an open
circuit, and no current flows in R. Thus, V B

(1,2)(k) = 0 < τ ,
and no attachments occur between tiles B and C. In addition,
the polarity of V(3,2) in tile B is opposite to that required for
attachment to nodes {3, 4} of tile C.

Lemma III.1.2. If ν0/(1 + α) � τ , at least one tile C at-
taches to tile A.

Proof. For minimal growth, at least one tile C should attach
to seed tile A. Therefore tile A must satisfy V A

(1,2)(1) � τ .
According to Kirchoff’s voltage law (KVL) [22] for the seed
tile A (k = 1, Fig. 1),

ν0 = V A
(1,2) + V A

(2,0). (1)

Using Ohm’s law V A
(1,2) = IR [22], where I is the current, in

Eq. (1) yields

ν0 = IR + αIR, ν0 = V A
(1,2) + αV A

(1,2).

Thus, V A
(1,2) = ν0/(1 + α) and tile C can attach to the seed. �

To ensure regular growth and replication, a suitable value
of Vx needs to be determined.

Lemma III.1.3. If Vx = 2τ and V C
(1,2)(k) < τ , then

V C
(3,4)(k) > τ .

Proof. If V C
(1,2)(k) < τ , then, regular growth has ceased.

Since Vx = 2τ > V C
(1,2)(k), D1 is forward biased (VD1 = 0.)

Applying KVL [22] to the loop (Vx, D1, βR, R) yields

Vx − VD1 − VβR − VR = 0,

Vx − 0 − V C
(3,4) − V C

(1,2) = 0,

V C
(3,4) = Vx − V C

(1,2).

Since Vx = 2τ , then

V C
(3,4)(k) = 2τ − V C

(1,2)(k), (2)

Now V C
(1,2)(k) < τ gives the conclusion V C

(3,4)(k) > τ . �
Lemma III.1.4. If Vx = 2τ and V C

(1,2)(k) > 2τ , then
V C

(3,4)(k) < τ .
Proof. Since V C

(1,2)(k) > Vx = 2τ , D1 is reverse biased, no
current flows through βR and V C

(3,4)(k) = 0 < τ . �
Lemma III.1.5. If Vx = 2τ and τ < V C

(1,2)(k) � 2τ , then
V C

(3,4)(k) < τ .
Proof. Since τ < V C

(1,2)(k) � Vx = 2τ , D1 is forward bi-
ased and current flows in βR, hence V C

(3,4)(k) �= 0. Again, sub-
stituting in τ < V C

(1,2)(k) � 2τ into equality (2) above gives

0 � V C
(3,4)(k) < τ,

where V C
(3,4)(k) = 0 when V C

(1,2)(k) = 2τ . In this case, D1 is
forward biased, but no current flows in βR. �

Lemma III.1.6. If Vx = 2τ and V C
(1,2)(k) = τ , then

V C
(3,4)(k) = τ .

Proof. Since V C
(1,2)(k) = τ < Vx, D1 is forward biased,

current flows through βR and V C
(3,4)(k) �= 0. Substituting in

V C
(1,2)(k) = τ into Eq. (2) gives

V C
(3,4)(k) = τ.

Lemmas III.1.3–III.1.6 altogether imply that the desired
behavior of the rcTAM is obtained, except when V C

(1,2)(k) = τ

(Lemma III.1.6). In that case, undesirably, both regular growth
and replication will occur. Therefore, the model parameters
should be chosen such that V C

(1,2)(k) �= τ for all k. Moreover,
when τ � V C

(1,2)(k) � 2τ , diode D1 is forward biased and it
creates a closed loop among Vx, D1, βR, and R that would
inject an additional current Id = 2τ/(R + βR) into R. De-
pending on the value of resistor αR, there could be several
loops where diode D1 is forward biased, and these additional
Id currents could influence the final size of the ladder assem-
bly. Finally, since tiles are added in parallel to previous tiles,
the equivalent resistance between nodes {1, 2} could decrease
according to Rayleigh’s monotonicity law [23], which could
cause V(1,2) to decrease below τ as more tiles attach. These
potential problems, however, can be avoided if we chose α

such that the voltage in the last two tiles added, V C
(1,2)(nt )

and V C
(1,2)(nt − 1), go from at least 2τ to under τ with the

attachment of one tile. Therefore, for a ladder assembly of
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length t , the goal is to find some combination of ν0, τ , and α

such that V C
(1,2)(nt ) < τ for the last tile, and V C

(1,2)(nt − 1) �
2τ for the next to last tile. In that case, current would only
flow in βR, producing a V C

(3,4)(k) �= 0 for only the last tile at
position nt . This also assures that only the last tile in an adult
ladder at nt will have V C

(1,2)(k) < τ .
An exact formula for the potential distribution of a one-

dimensional ladder has been derived in [20] as

V C
(1,2)(nt ) = ν0(−1)nt

Ant + Ant−1
= ν0

|Ant + Ant−1| � 0, (3)

V C
(1,2)(k) = ν0(−1)kAk−1

nt−k∑
j=0

1

Ak+ j−1Ak+ j
� 0 (4)

for every node 1 � k < nt , where Ak = ρ2k+2−1
ρk (ρ2−1) and ρ =

−(2+α+√
α(α+4))

2 < −1 for α > 0.
Lemma III.1.7. For a ladder assembly of size t > 0, there

exist ν0, τ , and α > 0 such that V C
(1,2)(nt − 1) � 2τ and

V C
(1,2)(nt ) < τ .

Proof. Using Eq. (3) for the last tile, the desired condition
is equivalent to

V C
(1,2)(nt ) < τ,

ν0(−1)nt

Ant + Ant−1
< τ,

|Ant + Ant−1| >
ν0

τ
.

The value of |Ant + Ant−1| is

|Ant + Ant−1| =
∣∣∣∣ ρ2nt+2 − 1

ρnt (ρ2 − 1)
+ ρ2nt − 1

ρnt−1(ρ2 − 1)

∣∣∣∣
=

∣∣∣∣ρ2nt+1(1 + ρ) − (1 + ρ)

ρnt (ρ2 − 1)

∣∣∣∣
=

∣∣∣∣ (ρ2nt+1 − 1)(1 + ρ)

ρnt (1 + ρ)(ρ − 1)

∣∣∣∣
=

∣∣∣∣ (ρ2nt+1 − 1)

ρnt (ρ − 1)

∣∣∣∣,
|Ant + Ant−1| =

∣∣∣∣ ρnt+1

ρ − 1
− 1

ρnt (ρ − 1)

∣∣∣∣ >
ν0

τ
.

Therefore, it suffices to ensure that∣∣∣∣ ρnt+1

ρ − 1

∣∣∣∣ >
ν0

τ
. (5)

Next, further constraints for the condition V C
(1,2)(nt − 1) �

2τ are determined. According to Rayleigh’s monotonicity
principle, voltages only decrease as the ladder grows, which
guarantees that V C

(1,2)([nt − 1]τ ) � 2τ . V C
(1,2)(nt − 1) can be

calculated using Eq. (4):

V C
(1,2)(nt − 1) � 2τ,

ν0(−1)nt−1Ant−2

[
1

Ant−2Ant−1
+ 1

Ant−1Ant

]
� 2τ,

ν0(−1)nt−1

[
Ant + Ant−2

Ant Ant−1

]
� 2τ. (6)

Since

Ant + Ant−2 = ρ2nt+2 − 1

ρnt (ρ2 − 1)
+ ρ2nt−2 − 1

ρnt−2(ρ2 − 1)

= ρ2nt+2 − 1 + ρ2nt − ρ2

ρnt (ρ2 − 1)

= (ρ2nt − 1)(1 + ρ2)

ρnt (ρ2 − 1)

and

Ant .Ant−1 =
[

ρ2nt+2 − 1

ρnt (ρ2 − 1)

]
×

[
ρ2nt − 1

ρnt−1(ρ2 − 1)

]
,

the term in square brackets in the inequality (6) can be
reduced to

Ant + Ant−2

Ant .Ant−1
= (ρ4 − 1)(ρnt−1)

ρ2nt+2 − 1
,

where, ρ = −(2+α+√
α(α+4))

2 .
Further, since ρ2nt+2 � 1, a sufficient condition for the

second inequality can be further simplified (by ignoring the
−1 in the denominator) to

ν0(−1)nt−1

[
(ρ4 − 1)(ρnt−1)

ρ2nt+2

]
� 2τ. (7)

From [20], ρ < −1 and ρ4 is a positive number. The value
of nt is odd if and only if both n and t are odd numbers.
Otherwise, nt is an even number. Therefore, there are two
cases to consider for the length of the ladder nt : even or
odd. If nt is odd, (−1)nt−1 = +1, ρnt−1 is a positive number,
and ρ2nt+2 is also positive. So, (−1)nt−1(ρ4−1)(ρnt−1 )

ρ2nt+2 is a positive

number. On the other hand, if nt is even, (−1)nt−1 = −1,
ρnt−1 is a negative number, and their product in the numerator
is positive. Moreover, ρ2nt+2 is a positive value. Therefore,
(−1)nt−1(ρ4−1)(ρnt−1 )

ρ2nt+2 is a positive number.
Therefore, inequality (7) is equivalent to the following

inequalities:

ν0(|ρ|4 − 1)
|ρnt−1|
|ρ2nt+2| � 2τ,

ν0

2τ
(|ρ|4 − 1) � |ρ2nt+2|

|ρnt−1| ,

|ρ|nt+3 � ν0

2τ
(|ρ|4 − 1),

and

|ρ|nt+3

|ρ|4 − 1
� ν0

2τ
. (8)

Combining inequalities (5) and (8), a sufficient condition
for self-replication is thus

2|ρ|nt+3

|ρ|4 − 1
� ν0

τ
<

∣∣∣∣ ρnt+1

ρ − 1

∣∣∣∣. (9)

Therefore, it suffices to ensure that

2|ρ|nt+3

|ρ|4 − 1
<

∣∣∣∣ ρnt+1

ρ − 1

∣∣∣∣, (10)
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FIG. 6. Feasible region for inequalities (5) and (8) for ν0 = 100
and τ = 1. The y axis indicates the size of a terminal assembly and
the x axis indicates the value of α.

so that there will exist a ρ that satisfies both inequalities (5)
and (8) for a given ν0

τ
. This condition is readily equivalent to

0 < |ρ4| − 2|ρ3| + 2|ρ2| − 1, (11)

which is true for all |ρ| > 1, i.e., there is no restriction on ρ.
�

This argument completes the proof of Theorem III.1.
The range of parameters afforded by condition (10), is il-

lustrated in Fig. 6 for ν0 = 100 and τ = 1. Circuit simulations
of V C

(1,2)(k) using MATLAB-SIMULINK [24] show that, for given
α, τ , and ν0 in the feasible region in Fig. 6, the voltages
V C

(1,2)(nt − 1) � 2τ and V C
(1,2)(nt ) < τ . Therefore, appropriate

input parameters can always be found so that V C
(1,2)(k) �= τ , for

example, ν0 = 100V , τ = 1V , and α = 4.

A. Bounded growth for the ladders

The cTAM model exhibits self-assembly with instant co-
operation and control on the size of the assembly [19,20].
The maximum size depends on the voltage source (ν0) of the
seed tiles A and B, the threshold voltage (τ ), and the ratio of
the resistor values in the tile set, α. We can derive a similar
bound for the rcTAM as shown next. In the rcTAM, because
both seeds, tiles A and B, contain identical voltage sources
and resistors, and each ladder is isolated from each other by
reversed biased diodes, all copies of the ladder are equivalent.
Therefore, the bound is proved for a single ladder.

Theorem III.2. The maximum length of the rcTAM ladder
is bounded by

B =
⌈

ln
[

ν0
τ

β

α+β+αβ

]
ln(1 + α)

+ 1

⌉
. (12)

Proof. The voltage supply ν0 acts as a finite source of
energy that is depleted as the circuit grows. The growth will
stop when the V C

(1,2)(t ) drops below a predefined threshold
value. Using some basic electrical engineering methods, such
as Kirchoff’s voltage law [22], the maximum length t of a
self-assembled ladder is bounded from above. To calculate
the equivalent resistance, each circuit tile has resistor R in
series with another resistor αR, and that combined resistance
is in parallel with R of the previous circuit tile. If diode D1

is forward biased, then the resistor βR is in parallel with
resistor R, whose equivalent resistance is denoted as γ R where
γ = β

1+β
. V C

(1,2)(nt ) can be calculated in terms of V C
(1,2)(nt − 1)

as follows:

V C
(1,2)(nt ) = V C

(1,2)(nt − 1)

(
γ R

γ R + αR

)
+ 2τReq(nt )

Req(nt ) + βR
,

(13)
where Req(nt ) is the equivalent resistance seen by the depen-
dent source Vx from the rest of the ladder. Since R > Req(nt ),
Eq. (13) can be written as

V C
(1,2)(nt ) < V C

(1,2)(nt − 1)

(
γ R

γ R + αR

)
+ 2τR

(1 + β )R
,

V C
(1,2)(nt ) < V C

(1,2)(nt − 1)

(
γ

γ + α

)
+ 2τ

1 + β
.

By Lemma III.1.7, only the last tile will have a forward biased
D1 diode. All other tiles’ diodes will be reverse biased. Hence,
resistor βR will not affect V C

(1,2)(k) for (n − 1)t + 1 � k �
(nt − 1). Thus,

V C
(1,2)(nt − 1) = V C

(1,2)(nt − 2)

(
Req(nt − 1)

Req(nt − 1) + αR

)
,

V C
(1,2)(nt ) = (

V C
(1,2)(nt − 2)

)( Req(nt − 1)

Req(nt − 1) + αR

)

×
(

γ

γ + α

)
+ 2τ

1 + β
,

where Req(nt − 1) indicates the equivalent resistance at tile
position (nt − 1). Since Req(nt − 1) < R for any tile k < nt
because of the parallel combination of resistors, then substi-
tuting Req = R preserves the bound,

V C
(1,2)(nt ) <

(
V C

(1,2)(nt − 2)
)( 1

1 + α

)(
γ

γ + α

)
+ 2τ

1 + β
.

(14)
Iterating the process recursively up to k = (n − 1)t + 1 yields

V C
(1,2)(nt ) < ν0

(
1

1 + α

)t−1(
γ

γ + α

)
+ 2τ

1 + β
. (15)

Thus the growth will stop at a maximum size when
V C

(1,2)(nt ) < τ , i.e., when the following equivalent inequalities
hold:

ν0

(
1

1 + α

)t−1(
γ

γ + α

)
+ 2τ

1 + β
< τ,

ν0

(
1

1 + α

)t−1(
γ

γ + α

)
< τ − 2τ

1 + β
,
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FIG. 7. Quality of the bound on ladder size for model parameters τ = 1, n = 1, β = 1000. This plot confirms the validity of the bound and
how tight it is for values of α = 1, 2. The simulations of the circuits were done with MATLAB-SIMULINK.

(
1

1 + α

)t−1

<
τ − 2τ

1+β

ν0
(

γ

α+γ

) ,

(1 + α)t−1 >
ν0

(
γ

α+γ

)
τ
(
1 − 2

1+β

) ,

(t − 1) ln(1 + α) > ln

[
ν0

(
γ

α+γ

)
τ
(
1 − 2

1+β

)
]
,

t >

ln

[
ν0

(
γ

α+γ

)
τ

(
1− 2

1+β

)]
ln(1 + α)

+ 1,

t >

ln

[
ν0

(
γ

α+γ

)
τ

(
β−1
β+1

) ]
ln(1 + α)

+ 1,

t >
ln

[(
ν0
τ

)(
γ

α+γ

)(
β+1
β−1

)]
ln(1 + α)

+ 1.

Taking ( β+1
β−1 ) ≈ 1 for large β, the bound is preserved, and,

substituting γ

α+γ
= β

α+β+αβ
, then

t >
ln

[(
ν0
τ

)(
β

α+β+αβ

)]
ln(1 + α)

+ 1. (16)

�
From Theorem III.2, the effect of the additional circuit

components to achieve replication is small (<1), namely, an
additive term [ln ( β

(α+β+αβ
)]. Figure 7 confirms the soundness

of this bound. Here, the maximum size of a circuit tile
assembly model is calculated both as the bound B in Eq. (12)

and by using a simulation with MATLAB-SIMULINK [24]. The
same procedure was done for values of α equal to 1 and 2.

Therefore, an rcTAM generates a circuit assembly system
that is self-controlled and self-replicated with identical copies.
For example, consider a terminal circuit configuration for
input parameters νo = 50, τ = 1, α = 1, and β = 1000. This
circuit ladder grows up to length t = 5. Then V C

(1,2)(5) falls
below τ and V C

(3,4)(5) becomes greater than τ . A tile B is
attached to the V C

(3,4)(5) node terminals and starts to replicate
a copy of itself. Figure 8 shows V k

(1,2) for 1 � k � t and t = 5.
Four replications are considered, i.e., n = 5. The pattern of
voltages is the same in the original and replicated ladders.

FIG. 8. V(1,2)(k) after tile attachment for model parameters ν0 =
50, τ = 1, n = 5, α = 1, and β = 1000. In this example, replication
occurs after t = 5 tile attachments. This figure illustrates that the
pattern of V(1,2)(k) repeats identically after every replication. The y
axis shows the potential drop across the R resistor for the terminal
assembly. The x axis indicates the total tile size of the assembly. After
25 steps, four replications have occurred.
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B. Aging and the ecology of rcTAMs

Biological individuals do not replicate forever, but age
and die. Likewise, electrical components, or wires for that
matter, will not function indefinitely. As components age,
they will experience performance degradation and eventual
failure. For example, electromigration, a process that causes
circuit failure by increasing the resistivity of a wire [25],
is accelerated by high temperatures [26], [27]. The time to
failure [25] is a common measure of reliability. In rcTAM,
the maximum current will flow in resistor αR of either seed
tile A or B. Therefore, these resistors are most likely to fail
after some time M, the time to failure or lifetime of that
component. Thus, this age-based failure mechanism ensures
that the rcTAM will produce a stable population of ladders.

Theorem III.3. An rcTAM will produce a stable population
of size 
M

t �, where M indicates the lifetime of a resistor and
t is the number of time steps required for a ladder to reach
adulthood (maximum size) and start to replicate.

Proof. Let M be the time to failure of resistor αR in tile A
or B. An rcTAM starts its growth from the tile A, and after a
certain amount of time or number of attachments the growth
stops at an adult assembly. After that, the replication process
starts and the growth of the child ladder continues according to
the replication dynamics of rcTAM. The number of time steps
(tile attachments) for the ladders to become an adult again is
t , the size of the adult ladders. Assuming that a tile attaches
at the rate of 1 tile per time unit, for the original ladder to
replicate we must have M > t . The resistor αR of tile A or
B will fail after M time steps, so the total living population
has roughly M

t ladders. When αR fails, that ladder becomes
electrically inactive. On the other hand, if a replicated ladder
has started growing, it will complete its life cycle and become
an adult, replicating in turn. Therefore, the total population
of ladders or the size of the assembly remains ultimately
constant, with size 
M

t � complete ladders. �
For example, if M = 15.5 and t = 4, the assembly has

three mature ladders and one partial ladder when the first lad-
der dies. Nevertheless, the last ladder will complete the growth
process and initiate another replication. This cycle repeats all
over again. Thus the total living population stabilizes at size

 15.5

4 � = 3.

IV. DISCUSSION AND CONCLUSION

We have proposed the rcTAM model of self-assembly
consisting of basic circuit components (resistors, diodes, and
voltage sources) with a self-controlled growth mechanism.
Except for the dependent source, the components do not
include transistors and are not organic. The model exhibits in-
stant cooperation among components that results in provable
properties, such as self-controlled growth and self-replication.
In addition, realistic failure mechanisms were used to prove
that the system produces a stable population of adult as-
semblies. Therefore, the rcTAM is a family of models of
nonbiological systems that exhibit lifelike properties, such
as self-assembly, self-controlled growth, and controlled self-
replication. Usually, organic chemistry is assumed for lifelike
systems (though not exclusively). Several researchers have
been exploring inorganic chemical systems that have certain

properties of biological life, including self-replication, and
asking the question whether organic chemistry is a prerequi-
site to lifelike systems [11]. In that spirit, rcTAMs have some-
thing to offer. Given their simplicity, it is somewhat surprising
that rcTAMs exhibit such seemingly advanced capabilities.
This emphasizes, perhaps, the power of self-assembly. For
example, would a static circuit in the rcTAM have the same
properties if it did not self-assemble?

An open question is to characterize the computational
power of the rcTAM model. Given its parentage in al-
gorithmic self-assembly models where glues provide the
computational power, with sufficient number and types of
glues, rcTAM would also be Turing universal. The question
is really whether the electrical mechanisms present in the
model allow computational universality to be achieved with a
small glue set. In recent work [28], one-dimensional resistive
ladders with annealing schedules of a decreasing sequence
of thresholds were found to be capable of super-Turing
computation.

Although an abstract, theoretical model intended to ex-
plore mechanisms of self-replication, the rcTAM might have
application in self-assembly of nanostructures in general.
Electric phenomena are useful in a variety of artificial growth
processes, such as additive manufacturing [29], electrospray
technology [30], and other nanomanufacturing technolo-
gies [31–33]. Electrostatic interactions have been reported as
a mechanism to control nanoscale assemblies [34–36], and the
rcTAM affords a theoretical framework to explore the ability
of potential fields to control self-assembly size and shape.

The model also might have relevance to several examples
of biological function, self-assembly, and organization. For
example, galvanotaxis is the movement of cells under the
influence of an electric field, and is a mechanism for both
wound healing as well as embryonic cell migration [37].
The biological molecules that inspire artificial approaches
to self-assembly, namely lipids, nucleic acids, and amino
acids, are charged molecules, and electric phenomena are
directly involved in their formation and stability [38]. Electric
circuits, like the Hodgkin-Huxley model, have been used to
describe mechanisms that produce action potentials in cells,
particularly neural [39].

As described in Sec. I, endogenous fields from potential
distributions in collection of cells interact with genetic mech-
anisms for pattern formation during tissue regeneration or
embryo development [12–16]. There are similarities between
the cTAM models and the effects of these bioelectric net-
works. The cTAM is potentially an abstract model for how
electric signals might propagate in bioelectric networks, and
the rcTAM for how they might replicate. Both the cTAM mod-
els and models of bioelectric networks capture how electric
potentials can influence shape, size, and pattern. Except for
small frequency-dependent capacitive effects, the electrical
connection between cells across the gap junction is primarily
Ohmic [40], and thus, the resistive ladder of the rcTAM is
an approximate equivalent circuit for bioelectric intercellular
communication among cells in a network [41]. rcTAM and re-
lated models describe growing networks of circuit tiles whose
properties are dynamic as the network structure changes.
During processes like embryogenesis, networks of somatic
cells are also dynamic, and thus the methods used to analyze
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cTAM networks might enable theoretical predictions to be
made about them. In addition, in preliminary work [28], the
cTAM is shown to be a powerful model of computation,
and might elucidate the role of computation in bioelectric
networks and information processing in biological systems.
Therefore, the rcTAM and related models capture some of
the characteristics of bioelectric networks, though abstracted
to make analysis simpler, and that connection would be an
interesting area for future investigation.

In conclusion, a tile assembly model, rcTAM, whose
components are simple electric circuits, exhibits the lifelike

properties of self-assembled and self-controlled growth with
self-replication. It accomplishes this without explicit biolog-
ical components or mechanisms. Nevertheless, there seem
to be mechanisms that are necessary that have analogs in
biology, namely self-assembly, a source of energy that is
consumed to drive growth, a threshold value for control, and
even, when replication occurs, conformational change. Thus,
the rcTAM has potential not only to study self-assembly of
nanostructures that are driven by an electric field, but also to
provide insight into the necessary properties for systems to
achieve characteristics similar to living systems.
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