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Josephson radiation in a superconductor-quantum dot-superconductor junction
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We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two
conventional superconductors. At strong coupling, such a junction accommodates two Andreev bound states,
which are slightly detached from the continuum outside the superconducting gap. Furthermore, when the dot
is tuned close to resonance, the residual backscattering opens a small gap near the Fermi energy between the
discrete states. Under voltage bias, we formulate a stochastic model that accounts for nonadiabatic processes,
which change the occupations of the Andreev bound states. This model allows one to calculate the current noise
spectrum and determine the Fano factor. Analyzing the finite-frequency noise, we find that the model may exhibit
either an integer or a fractional AC Josephson effect, depending on the bias voltage and the size of the gaps in
the Andreev spectrum. Our results assess the limitations in using the fractional Josephson radiation as a probe of
topological superconductivity.

DOI: 10.1103/PhysRevResearch.2.033158

The Josephson radiation is the electromagnetic signal
emitted by a junction between two superconductors when it
is voltage biased. Its measurement is the first experimental
demonstration of the AC Josephson effect [1]. The charge of
the Cooper pairs, which form the superconducting conden-
sate, appears in the relation between the radiation frequency
and voltage bias, ω = ωJ , where ωJ = 2eV/h̄ is the Josephson
frequency. The coherence property of the Josephson radiation
is usually limited by the electromagnetic environment of
the junction. Tailoring the environment surrounding a super-
conducting tunnel junction recently allowed the regime of
Josephson lasing to be reached [2].

Interest in the Josephson radiation was revived by the pre-
diction of a fractional AC Josephson effect at frequency ω =
ωJ/2 when the superconducting leads forming the junction are
topological superconductors [3–6]. This fractional Josephson
radiation originates from the fact that the supercurrent flowing
through such a topological Josephson junction is carried by
single electrons, rather than Cooper pairs. The single-electron
transfer is made possible by the hybridization of Majorana end
modes in the topological superconducting leads. A topolog-
ical junction admits two degenerate parity sectors, carrying
Josephson supercurrents with opposite values. Therefore, ran-
dom parity switchings generate current noise, and eventually
bring another limitation to the coherence of the fractional
Josephson radiation [7].

On a microscopic level, the Josephson effect can be as-
sociated with the formation of subgap states, also known as
Andreev bound states (ABS), in the junction. The difference
between conventional and topological Josephson junctions is
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associated with the fact that in equilibrium, the ABS energy
depends 2π periodically on the superconducting phase differ-
ence ϕ in the conventional case, while the dependence is 4π

periodic in the topological case. Then the integer or fractional
Josephson radiations simply result from the substitution ϕ̇ =
ωJ in the phase dependence of the current carried by an ABS
whose occupation is fixed. However, such considerations ne-
glect the voltage-induced nonadiabatic processes that change
the ABS occupations and, therefore, reduce the coherence of
the Josephson radiation, even when the effect of the external
environment is negligible. Indeed, it was shown that such
nonadiabatic processes in topological junctions introduce an
intrinsic limitation to the visibility of the fractional Josephson
radiation [8–10]. This mechanism is ultimately related with
the dissipative current that flows through the junction, which
is induced by these processes.

In this work, we investigate the role of nonadiabatic pro-
cesses on the Josephson radiation in a nontopological junction
formed by a quantum dot connected to conventional super-
conducting leads. We find that such conventional junctions
may display either a conventional or a fractional Josephson
radiation as the voltage varies, depending on details of the
ABS spectrum. In particular, a fractional Josephson radiation
is predicted when the gap in the Andreev spectrum near the
Fermi level is crossed diabatically [11,12], while the ABS are
sufficiently detached from the continuum above the supercon-
ducting gap. Furthermore, we determine the contribution of
the nonadiabatic transitions to the linewidth of the Josephson
radiation. Our results assess the limitations in using the cur-
rent noise spectrum to determine whether or not a Josephson
junction is topological.

We consider a junction made of a spin-degenerate single-
level quantum dot that is contacted to two superconducting
leads. We first recall the properties of its Andreev spectrum,
which have been analyzed both in the presence and absence
of Coulomb interaction; see Refs. [13–15]. Let us first start
with the case of strong Coulomb interaction. It allows for
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FIG. 1. Spectrum of the Andreev bound states as a function of the
superconducting phase difference. In the presence of a voltage bias,
the phase increases with time and nonadiabatic transitions may occur
between states |+〉 and |−〉 (red arrows), as well as between state |+〉
and the continuum at energy E > �, or between the continuum at
energy E < −� and state |−〉 (red arrows).

resonant scattering of electrons between the leads in the
normal state thanks to the Kondo effect. For energies smaller
than the Kondo scale TK , the transmission probability is Tπ =
4�L�R/�2, where � = �L + �R, with �L and �R the partial
level widths due to the coupling of the dot to the left and right
leads. For an almost symmetric coupling, the transmission
is almost ballistic, Rπ ≡ 1 − Tπ � 1. When the leads are
superconducting and the superconducting gap is sufficiently
small, � � TK , the junction accommodates two particle-hole
symmetric ABS denoted |+〉 and |−〉. Their energies are
approximated by

E±(ϕ) = ±�

√
T0 cos2(ϕ/2) + Rπ sin2(ϕ/2). (1)

In addition to the gap opening in the Andreev spectrum near
ϕ = π at Tπ < 1 [16], Eq. (1) also shows the detachment
of the ABS from the edge of the continuum spectrum near
ϕ = 0 [17,18], which is controlled by an effective reflection
probability R0 ≡ 1 − T0 of the order of (�/TK )2 � 1 (up to
a logarithmic correction [19]). In Ref. [18], the gap opening
near ϕ = 0 was related with residual local interaction in the
Fermi-liquid description of the Kondo effect. Interestingly,
Eq. (1) also holds in the absence of interactions, after sub-
stituting TK with � � � [20] in the estimate for R0. The ABS
dispersion is illustrated in Fig. 1.

We turn now to the current flowing through the junction.
Each occupied ABS carries a supercurrent,

I±(ϕ) = 2e

h̄

∂E±(ϕ)

∂ϕ
≈ ∓IJ sin

ϕ

2
sgn

(
cos

ϕ

2

)
, (2)

where IJ = e�/h̄, and we used R0, Rπ � 1 in the last equal-
ity. In equilibrium, the average ABS occupations are set by the
Fermi distribution, while the contribution of the continuum
is negligibly small. Thus the equilibrium supercurrent at zero
temperature is given by I−(ϕ).

In the presence of a DC voltage bias, the phase difference
increases linearly with time, ϕ(t ) = ωJt + ϕ0, with a refer-
ence phase ϕ0. (Here we assume V > 0, for concreteness.) As
a consequence, changes in the occupations of the ABS can
occur due to nonadiabatic transitions. Using R0, Rπ � 1 and
V � �/e, we can isolate two kinds of nonadiabatic processes.
Near ϕ = π mod 2π , these are the transitions between |+〉
and |−〉, which occur with the Landau-Zener probability

pπ = exp(−πRπ�/eV ) [21]; pπ increases rapidly from 0
to 1 as V increases in the vicinity of Vπ = Rπ�/e. Near
ϕ = 0 mod 2π , these are nonadiabatic transitions between |+〉
and the continuum states with energy E > � as well as the
continuum states with energy E < −� and |−〉 [22], which
take place with probability p0 = p(V/V0) with V0 = R3/2

0 �/e,
where the function p(x) calculated in Ref. [23] (and Ref. [22]
at V � V0) is such that p0 increases rapidly from 0 to 1 as V
increases in the vicinity of V0.

We assume T � �, so that continuum states with energy
E < −� (E > �) are occupied (empty). We also neglect the
short timescales over which the nonadiabatic processes take
place on the scale of the Josephson period, 2π/ωJ . Then, at
each time, the state of the junction is fully characterized by
the occupations n± = 0, 1. (In particular, we ignore coherent
superpositions between |±〉 states.) The states (0,1) and (1,0)
are the ground and first-excited states in the even-parity sector
of the junction, respectively; the states (0,0) and (1,1) are
the “poisoned” states in the odd-parity sector [24,25]. Within
a Markov model that describes switchings in their random
occupations [23,26], the average supercurrent is

〈I (t )〉 = I (t )[P01(ϕ(t )) − P10(ϕ(t ))]. (3)

Here, I (t ) = I−(ϕ(t )) and Pn+n− (ϕ) with n+, n− = 0, 1 de-
notes the ABS occupations at a given phase. Neglecting any
coupling with an external bath, these probabilities remain
constant within intervals πm < ϕ < π (m + 1) with m integer,
while their values immediately before and after the specific
phases where nonadiabatic transitions can take place are
related with each other through the transition probabilities pπ

and p0,

P[(2m + 1)π+] = LπP[(2m + 1)π−], (4a)

P(2mπ+) = L0P(2mπ−), (4b)

with P(ϕ) = [P11(ϕ), P10(ϕ), P01(ϕ), P00(ϕ)]T and the transi-
tion matrices

Lπ =

⎛
⎜⎝

1 0 0 0
0 1 − pπ pπ 0
0 pπ 1 − pπ 0
0 0 0 1

⎞
⎟⎠, (5a)

L0 =

⎛
⎜⎝

1 − p0 p0(1 − p0) 0 0
0 (1 − p0)2 0 0
p0 p2

0 1 p0

0 p0(1 − p0) 0 1 − p0

⎞
⎟⎠. (5b)

The nonadiabatic processes accounted for by the matrix ele-
ments of Lπ and L0 are illustrated in Figs. 2(b) and 2(c).

The stochastic matrix L ≡ L0Lπ admits normalized right
and left eigenvectors uα and vα , with a common eigenvalue
λα , such that Luα = λαuα , LT vα = λαvα , and vT

α uβ = δαβ .
Furthermore, the eigenvalue λ0 = 1 is associated with the left
eigenvector v0 = (1, . . . , 1)T , while other eigenvalues, λ1 =
1 − p0, λ2 = (1 − p0)2, and λ3 = (1 − p0)(1 − 2pπ ), satisfy
|λα 	=0| < 1. Thus, the probability vector P that solves Eqs. (1)
reaches a solution at long times that does not depend on the
initial condition; it is given by the eigensolution α = 0:

P(ϕ) =
{

u0, 2mπ < ϕ < (2m + 1)π,

Lπu0, (2m + 1)π < ϕ < (2m + 2)π,
(6)
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FIG. 2. (a) The junction state is characterized by the occupa-
tions of the two Andreev bound states. Filled and unfilled circles
depict occupied and unoccupied Andreev bound states, respectively.
(b),(c) Graphs of the transition matrices. Each arrow denotes a
possible transition between two states (n+, n−) and (n′

+, n′
−), and

is labeled by the transition probability. (b) Nonadiabatic processes
described by Lπ can exchange the occupation of states (0,1) and
(1,0) by enabling a particle from one ABS to jump to the other ABS.
(c) Nonadiabatic processes described by L0 can populate the lower
ABS, enabling transitions from (0,0) to (0,1), and from (1,0) to (1,1).
They can also deplete the higher ABS state, enabling transitions from
(1,0) to (0,0) and from (1,1) to (0,1). As the changes of the population
of the lower and upper ABS are independent, the total transition
probabilities indicated in the figure are a product of two probabilities.

with

u0 = 1

N

⎛
⎜⎝

pπ (1 − p0)
pπ (1 − p0)2

N − pπ (1 − p0)(3 − p0)
pπ (1 − p0)

⎞
⎟⎠, (7a)

Lπu0 = 1

N

⎛
⎜⎝

pπ (1 − p0)
pπ

N − pπ (3 − 2p0)
pπ (1 − p0)

⎞
⎟⎠, (7b)

and N = (2 − p0)(1 − λ3). In particular, the ground state
(0,1) is mostly occupied with u0 ≈ Lπu0 ≈ (0, 0, 1, 0)T at
pπ � p0, while all states are approximately equally occupied
with u0 ≈ Lπu0 ≈ ( 1

4 , 1
4 , 1

4 , 1
4 )T at p0 � pπ .

Inserting Eq. (6) into (3), we find the average current in the
long-time limit,

〈I (t )〉 = p0

1 − λ3
[pπ |I (t )| + (1 − pπ )I (t )]

= IDC

(
1 −

∑
n�1

2

4n2 − 1

{
cos[nϕ(t )]

+ 2(−1)nn
1 − pπ

pπ

sin[nϕ(t )]

})
. (8)

The DC contribution,

IDC = 2

π

p0 pπ

1 − λ3
IJ , (9)

relates the dissipative current with nonadiabatic processes
through the gaps in the Andreev spectrum. It corresponds
to the low-voltage regime of multiple Andreev reflections
(MAR). It generalizes formulas derived in superconducting
atomic contacts [21] at p0 = 1, and in topological Josephson
junctions [23] at pπ = 1. The ratio between cosine and sine
harmonics of the Josephson frequency is controlled by nona-
diabatic transitions between ABS with positive and negative
energies. When these processes are rare, the sine harmonics
dominate, such as in the adiabatic case.

Due to the stochastic nature of the nonadiabatic processes,
the current fluctuates. We characterize the fluctuations with
the current noise spectrum,

S(ω) = 2
∫ ∞

0
dτ cos(ωτ )S(t + τ/2, t − τ/2), (10)

where the bar denotes an average over t . Within the Markov
theory, we relate the current correlator,

S(t1, t2) = 〈I (t1)I (t2)〉 − 〈I (t1)〉〈I (t2)〉, (11)

with

〈I (t1)I (t2)〉
= I (t1)I (t2)

∑
n1,n2

(−1)n1+n2 Pn1n̄1|n2n̄2 (ϕ1|ϕ2)P∞
n2 n̄2

(ϕ2)

(12)

at t1 > t2. Here, Pn1n′
1|n2n′

2
(ϕ1|ϕ2) with ϕi = ϕ(ti ) is the condi-

tional probability for the system to reside in state (n1, n′
1) at

phase ϕ1 if it was in state (n2, n′
2) at phase ϕ2 < ϕ1; it solves

the same Eq. (4) as the probability Pn1n′
1
(ϕ1), together with the

initial condition Pn1n′
1|n2n′

2
(ϕ2|ϕ2) = δn1,n2δn′

1,n
′
2
. Furthermore,

we used notations 0̄ = 1 and 1̄ = 0. Using a matrix represen-
tation [in the same basis of states as the one used in Eqs. (4)
and (5)] for the closure relation,

∑
α uαvT

α = 1, we find

P(ϕ1|ϕ2) = Lk1
π

(∑
α

uαλm1−m2
α vT

α

)
L−k2

π , (13)

for (2mi + ki )π < ϕi < (2mi + ki + 1)π , with mi integer,
ki = 0, 1, and i = 1, 2. The second term in the right-hand side
of Eq. (11) compensates the contribution from the terms with
α = 0 when inserting Eq. (13) into (12). Furthermore, the
expectation value of the current operator in the states with α =
1, 2 vanishes. Therefore, only the terms with α = 3 contribute
to Eq. (11). As the result of a long calculation described in
Sec. S1 of the Supplemental Material (SM) [27], we find

S(ω)

S0
= A

[
1 + 4ω̃2 − 4ω̃ sin(πω̃)

] + (B + Cω̃2) cos2(πω̃)

(1 − 4ω̃2)2
[
(1 + λ3)2 − 4λ3 cos2(πω̃)

] ,

(14)
with S0 = I2

J /(πωJ ), ω̃ = ω/ωJ , and

A = 8p0 pπ (1 − pπ )[1 + (1 − p0)2](1 + λ3)/N , (15a)

B = −16pπ (2 − pπ )λ3/N , (15b)

C = 128pπ (1 − pπ )(1 − p0)[1 − λ3(1 − p0)]/N . (15c)
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FIG. 3. Fano factor as a function of p0 and pπ .

Below we discuss the zero-frequency noise as well as struc-
tures related to the AC currents in the frequency dependence
of the noise given by Eq. (14).

The zero-frequency noise is expressed in terms of an
effective charge, e
 = 2�/V , which diverges inversely with
the bias voltage in the MAR regime, and a Fano factor

F ≡ S(0)

e
IDC
= A + B

8p0 pπ (1 − λ3)
. (16)

In particular, F = 1 at pπ � p0, when the bottleneck for the
transfer of quasiparticles across the junction is the gap near the
Fermi level [28]; F = 1/2 at p0 � pπ , when the bottleneck
consists of the two gaps (of the same width) near the edges of
the continuum spectrum. In particular, at pπ = 1, on recovers
the results of Ref. [23] for a topological junction (see Sec.
S2 of the SM [27]). F vanishes at 1 − p0, 1 − pπ � 1, when
quasiparticle transfer across the gap becomes deterministic. In
the general case, 0 < F < 1; see Fig. 3.

From Eq. (14), we see that the noise displays sharp fea-
tures when 1 ∓ λ3 � 1. This is the case when p0, pπ � 1 or
p0, 1 − pπ � 1. We turn now to the noise spectrum in these
limiting cases for the transition probabilities.

At p0, pπ � 1, the noise spectrum displays features with a
narrow linewidth,

γ = 1

2π
(p0 + 2pπ )ωJ , (17)

near ω = nωJ with n integer. In particular, at very low fre-
quency, ω � ωJ ,

S(ω)

e
IDC
= F + (Fapp − F )

ω2

ω2 + γ 2
. (18)

Here, Eq. (9) simplifies to

IDC = 2IJ

π

p0 pπ

p0 + 2pπ

, (19)

and the Fano factor,

F = p2
0 + p0 pπ + 2p2

π

(p0 + 2pπ )2
, (20)

is only accessible in a narrow frequency range, ω � γ , while
an apparent Fano factor,

Fapp = (12 − 4π + π2)p0 + 8pπ

2π2 p0
, (21)

0 0.5 1 2
0
1 0.1

0.3
0.5
0.7

pπ = 0.9

ω/ωJ

S
(ω

)/
S

0

FIG. 4. Current noise spectrum for p0 = 0.1 and several equally
spaced values of pπ between 0.1 and 0.9. The curves are shifted
vertically for clarity.

characterizes the noise in a wide frequency range, γ � ω �
ωJ . Note that Fapp � F if p0 � pπ . Furthermore,

S(ω) = 32n2

(4n2 − 1)2π

(3p0 + 2pπ )pπ

(p0 + 2pπ )2

γ I2
J /π

(ω − nωJ )2 + γ 2

(22)
at |ω − nωJ | � ωJ , up to a negative resonance-frequency shift
of the order of γ 2/ωJ � γ . Comparing Eq. (22) with the
amplitude of the harmonics in Eq. (8), we conclude that the
Josephson radiation at p0 � pπ � 1 is dominated by the
noise, given by Eq. (22); thus it is broadened by nonadiabatic
transitions. On the other hand, the Josephson radiation at
pπ � p0 � 1 is dominated by the sine harmonics in Eq. (8);
thus it is broadened by the environment of the junction.

At p0, 1 − pπ � 1, IDC = p0IJ/π and F = 1/2; the noise
spectrum displays a narrow resonance at half the Josephson
frequency,

S(ω) = I2
J

4

γ ′

(ω − ωJ/2)2 + γ ′2 , (23)

with linewidth

γ ′ = 1

2π
[p0 + 2(1 − pπ )]ωJ , (24)

up to a small resonance-frequency shift, of the order of
γ ′2/ωJ � γ ′, which increases as pπ decreases. Higher-order
resonances around (n + 1/2)ωJ are suppressed. Comparison
between Eqs. (8) and (24) shows that the Josephson radiation
is dominated by the noise, and it is thus broadened by the
nonadiabatic processes. At 1 − pπ � 1, transitions across the
gap at π are very frequent, leading to a large, but random
4π -periodic contribution to the current. Thus, the Josephson
radiation is fractional despite the junction not being topolog-
ical. In the extreme case pπ = 1, where the transitions across
the gap at π are deterministic, the system can be described as
two independent topological junctions in parallel [18,27].

The crossover between a well-resolved fractional or con-
ventional Josephson radiation, when p0 is small and pπ

increases from 0 to 1, occurs through the gradual shift and
broadening of the peaks in the noise spectrum, as illustrated
in Fig. 4. A similar behavior has been reported in topological
junctions, but with a residual coupling to the Majoranas at the
far ends of the superconducting wires [9].
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In a given junction, we can now distinguish two quali-
tatively different behaviors, depending on the ratio between
crossover voltages V0 and Vπ . If V0 � Vπ , F = 1 at V � Vπ ,
then it drops to 0 at V � Vπ . Furthermore, the Josephson radi-
ation is conventional. In the opposite case, Vπ � V0, F = 1/2
at V � V0; then it drops to 0 at V � V0, and there is a voltage
range Vπ � V � V0 where Josephson radiation is fractional.
Both the conventional and fractional Josephson radiations are
broadened by the nonadiabatic processes at V < V0.

In conclusion, we proposed a simple model to analyze
the role of nonadiabatic transitions between Andreev states
in the Josephson radiation of a superconductor-quantum dot-
superconductor junction. Within a simplified model of the
Andreev states’ dynamics, we predicted that such a conven-
tional junction may display either conventional radiation or
fractional radiation, thus mimicking a topological Josephson

junction, depending on its parameters and on the bias volt-
age. On the theory side, it would be interesting to extend
the analysis to a more general description of the Andreev
dynamics, as well as to develop a theory frame to compare
the interplay of the environment (neglected in our study) and
the nonadiabatic transition on the loss of coherence of the
Josephson radiation. On the experimental side, it would be
interesting to compare our prediction with finite-frequency
noise measurements in devices such as the superconductor-
carbon nanotube-superconductor junction in the Kondo re-
gion, whose DC transport and shot noise have been measured
recently [29].

We acknowledge funding by the ANR through Grants No.
Project-ANR-16-CE30-0019 and No. Project-ANR-17-PIRE-
0001.
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