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The autonomous heat engine is a model system of autonomous nonequilibrium systems, exploiting nonequilib-
rium flow for operations. As the Carnot engine has essentially contributed to the equilibrium thermodynamics,
an autonomous heat engine is expected to play a critical role in the challenge of constructing nonequilibrium
thermodynamics. However, the high complexity of the engine, involving an intricate coupling among heat, gas
flow, and mechanics, has prevented simple modeling. Here, we experimentally characterized the nonequilibrium
dynamics and thermodynamics of a low-temperature-differential Stirling engine, which is a model autonomous
heat engine. Our experiments demonstrated that the core engine dynamics are quantitatively described by a
minimal dynamical model with only two degrees of freedom. The model proposes a novel concept that illustrates
the engine as a thermodynamic pendulum driven by a thermodynamic force. This work describes an approach to
exploring the nonequilibrium thermodynamics of autonomous systems based on a simple dynamical system.
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I. INTRODUCTION

The characterization of autonomous nonequilibrium sys-
tems is one of the challenging tasks of modern physics. These
systems are typically complex, but there has been a long
pursuit toward deriving universal and simple relations govern-
ing them. For this purpose, the extension of thermodynamics
would be a promising approach because thermodynamics il-
lustrates a universal structure of the system behind the details.
Thermodynamics is originally formulated based on infinitely
slow quasistatic processes [1]. The recent challenge in con-
structing the finite-time thermodynamics tries to characterize
the thermodynamic quantities of nonequilibrium systems by
incorporating the finite-speed dynamics. The finite-time ther-
modynamics was already successful in characterizing the ef-
ficiency at maximum power [2–9], optimal control with mini-
mal energy cost [10–12], the tradeoff relations between power
and efficiency [13–17], and stochastic heat engines [18–20].

A simple model is always the basis of scientific under-
standing. Carnot’s heat engine is one of the most promi-
nent examples in history and has played an essential role in
constructing thermodynamics [21]. As a natural extension,
along with this approach, autonomous heat engines are ex-
pected to play essential roles in the development of finite-time
thermodynamics. The Carnot engine requires control by an
external agent, whereas autonomous heat engines implement
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autonomous regulation. However, the high complexity of the
engine dynamics involving a mechanical motion, heat flow,
and gas flow has prevented simple modeling.

Here, we experimentally characterize the nonequilibrium
dynamics of a low-temperature-differential Stirling engine
(LTD-SE), which is a model autocatalytic heat engine with
a minimal structure (Fig. 1) [22]. We primarily focus on the
bifurcation dynamics because the bifurcation behavior char-
acterizes the system’s universal properties behind the details.
We deduce a simple two-variable model of this engine from
the experimental results based on the previously proposed
theoretical framework [23]. Such simple modeling would
enable us to build a theoretical framework of autonomous
heat engines towards the establishment of the finite-time
thermodynamics.

The Stirling engine is an autonomous and closed heat
engine [24–27]. Given a temperature difference, the engine
cycles the volume, temperature, and pressure inside a cylinder
autonomously without external timing control and rotates
a flywheel unidirectionally. Theoretically, an ideal Stirling
engine, i.e., a Stirling cycle, achieves the Carnot efficiency.
The LTD-SE [22,28] consists of a power piston, displacer, fly-
wheel, two cranks, and two rods connecting the piston and dis-
placer to the flywheel [Fig. 1(a)]. The flywheel rotates when a
sufficiently large temperature difference is given between the
top and bottom plates of the cylinder. The flywheel rotation is
synchronized with the oscillation of the internal displacer and
the power piston. The displacer serves to switch the heat baths
between the top and bottom plates. Thus, the gas temperature
and pressure oscillate and move the power piston up and
down. This piston motion drives the flywheel rotation. The
π/2 phase difference of the displacer and the power piston
makes a cycle. The flywheel provides inertia necessary for a
smooth rotation. When the opposite temperature difference is
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(a)
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FIG. 1. Schematic of the experiments. (a) Thermodynamic dia-
gram of the low-temperature-differential Stirling engine. The heating
from the bottom increases the internal pressure, pushes the power
piston upward, and drives the flywheel rotation, which then pushes
the displacer downward. The displacer serves to switch the heat
baths. When the displacer moves downward, most gas in the cylinder
moves to the upper side and makes contact with the top plate at a
lower temperature of Ttop. The cooling of gas results in the pressure
decrease and pushes the power piston downward, and the cycle re-
stores to the initial state. The rotation can be inverted by an opposite
temperature difference. (b) Experimental setup. The temperatures at
the top and bottom plates are controlled by Peltier modules. The
pressure difference between the outside and inside of the cylinder
is monitored by a differential pressure sensor. The rotation of the
flywheel is monitored at 100 Hz by videoscopy of the target pattern
(three circles aligned in an isosceles triangle configuration) attached
to the crank screw.

given, the flywheel rotates in the opposite direction with an
inverted mechanism.

II. EXPERIMENT

An LTD-SE (N-92 type) was bought from Kontax (UK).
We controlled the temperatures at the top and bottom plates,
Ttop and Tbtm, of the cylinder [Fig. 1(b)] and monitored the
angular position θ (t ) and angular velocity ω(t ) of the flywheel
and the pressure p(t ) inside the chamber. See the Materials
and Methods section for details.

A. Rotation

Without stimulation, the engine was settled at a stationary
position θ � −38◦, where the pressure difference across the

FIG. 2. Steady rotation. (a) The time-averaged angular velocity
〈ω〉 of the limit cycle was plotted against the temperature differences
�T . At |�T | � 8 K, three experimental traces were averaged (cir-
cle). The error bar corresponds to one standard deviation. At |�T | <

8 K, twelve traces were superposed (solid lines, six for �T > 0
and six for �T < 0). (b) The stability of the rotation state at �T =
12 K. The rotation state is stable against perturbations (indicated by
arrows). Dashed lines are fitting curves by exponential functions, of
which the time constant corresponds to I/�. (c) Pressure-volume
curves for �T = 12 K (red) and −12 K (blue) obtained by ex-
periments (solid) and theories (dashed). The cycling direction was
clockwise independent of the sign of �T . The average of �p for the
theoretical curves was forced to zero. (d) The time-averaged angular
velocity 〈ω〉 without (open) or with (closed) additional frictional
load. The solid curves are numerical simulations with � obtained by
measuring the time constant I/� to the perturbation (panel (b) and
Fig. S2 [29]).

power piston and the gravity force on the power piston,
displacer, crank screws, and rods are presumably balanced.
When an initial angular momentum with a sufficiently large
magnitude was given, the flywheel rotated steadily with an
angular velocity determined by �T = Tbtm − Ttop when Ttop

is fixed [Fig. 2(a)]. The rotation direction changed depending
on the sign of �T . When the engine in this steady state was
perturbed by hand, the angular velocity was soon recovered to
the steady rate [Fig. 2(b)], implying a stable limit cycle.
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The pressure-volume curve exhibited a circular shape
[Fig. 2(c)], demonstrating a heat engine. The cycling direction
in the PV diagram was the same independent of the sign
of �T , and the PV curves were nearly symmetric for the
sign of �T . The area increased with |�T | (Fig. S1 of the
Supplemental Material [29]).

The time-averaged steady angular velocity 〈ω〉 changed
nearly linearly with �T [Fig. 2(a)]. |〈ω〉| decreased with
|�T | and vanished at a finite value of �T . The threshold
value, �Tc, was slightly different for the sign of �T ; �T +

c =
6.2 ± 0.3 K and �T −

c = −5.7 ± 0.2 K (mean ± standard
deviation), indicating the asymmetry of the dynamics for the
sign of �T .

The stalling at �T ±
c was accompanied by a steep change

in 〈ω〉, implying a homoclinic bifurcation [30]. The homo-
clinic bifurcation is a kind of a global bifurcation, and is
seen in, for example, a driven pendulum and a Josephson
junction. A stable limit cycle disappears with a steep but
continuous transition at the homoclinic bifurcation point.
However, such the continuity is too steep to be observed
in the experiments because ω is inversely proportional to
− ln |�T − �T ±

c | for |�T | > |�T ±
c | in the vicinity of the bi-

furcation point [30]. Instead, discontinuous change in 〈ω〉 was
observed.

We also induced additional frictional load by pressing a
brush for Chinese calligraphy to the flywheel. The increase
in load suppressed the angular velocity and increased �T +

c
[Fig. 2(c)].

B. Bifurcation analysis

We characterize the bifurcation dynamics in detail. Fig-
ure 3(a) shows two typical trajectories started with different
initial angular velocities at �T > �T +

c . With a large initial
angular velocity, we observed the convergence to the periodic
trajectory determined by �T . As noted, the periodic trajectory
was stable against perturbation and was identified as a stable
limit cycle [Fig. 2(b)].

With a small initial angular velocity, the trajectory was
first attracted to U at (θ, ω) � (153◦, 0) and then collapsed
to S at (θ, ω) � (−38◦, 0) in a spiral-shaped manner, failing
in converging to the stable limit cycle. When �T −

c < �T <

�T +
c , S was the unique stable attractor [Fig. 3(b)]. These

results suggest that U and S are a saddle point and a stable
fixed point (spiral), respectively, and that S and the stable limit
cycle coexist for �T > �T +

c and �T < �T −
c .

Figure 3(c) shows the trajectories of the steady rotations,
ω(θ ), at various �T above the threshold. ω(θ ) was relatively
flat at large |�T | and exhibited a rugged profile at small
|�T |. Specifically, as �T approaches �Tc, a part of the limit
cycle approaches the saddle point U, which is one of the
characteristics of the homoclinic bifurcation.

All the characteristics observed above indicate the homo-
clinic bifurcation of the limit cycle at �Tc [30] and contro-
vert other possibilities, including the Hopf bifurcation where
local stability of the fixed point alters at the bifurcation
point. We will analyze the experimental data based on simple
dynamical-system modeling below in the Theoretical Analy-
sis section.

(a)

(b)

(c)

FIG. 3. Rotational trajectories. (a) Rotational trajectories at
�T = 6.5 K > �T +

c initiated with small (dashed, black) or large
(solid, orange) angular velocity ω. With a large initial angular veloc-
ity, ω gradually increased and the engine settled down to a steady
rotation. With a small initial angular velocity, the engine stopped
the rotation at the stable fixed point S at (θ, ω) � (−38◦, 0) (closed
circle) after passing nearby the saddle point U at (θ, ω) � (153◦, 0)
(open circle). See Fig. 1(a) for the definition of θ . (b) Rotational
trajectory at �T = 5 K < �T +

c . (c) Steady rotational trajectories at
different �T .

C. Oscillatory mode

We also discovered an oscillation branch at �T � −27 K
[Fig. 4(a)]. Here, for exploring a small �T region, Ttop was
set to a relatively large value, 65 ◦C. When we shifted the
flywheel angle slightly from S gently by hand, the flywheel
started a periodic oscillation with a finite amplitude and a
period of about 10 seconds, which can be considered an
oscillatory stable limit cycle.

This limit cycle showed complicated behaviors; the am-
plitude increases accompanied by a period-doubling bifur-
cation (−27.5 K � �T > −33.5 K), seemingly aperiodic
oscillation similar to chaos (−33.5 K � �T > −39.5 K), and
again periodic oscillations accompanied by small additional
oscillations (−39.5 K � �T > −61.5 K). The oscillation
branch disappeared at �T � −61.5 K, and a small pertur-
bation got drawn into a rotation branch. The rotation mode
was observed for all �T < 0 with a sufficiently large initial
angular velocity. The oscillation was not observed for �T >

0. The stable fixed point (spiral) at S became unstable at
�T = −39.5 K (Fig. S3 [29]), indicating that a subcritical
Hopf bifurcation accompanied by the disappearance of an
unstable limit cycle occurred. Although the unstable limit
cycle was difficult to identify by experiments, we may expect
that the oscillatory stable limit cycle and the unstable limit
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(a)

(b)

FIG. 4. Oscillation mode observed at Ttop = 65◦C. (a) θ as func-
tions of time (left), ω (center), and �p (right). (b) Peak angles of the
oscillation (circle), stable fixed points (closed square), unstable fixed
points (open square), and expected unstable limit cycles (dashed
line).

cycle were created in a pair at �T = −27.5 K [30]. We need
further studies to determine the bifurcation characteristics of
the oscillation branch, including the onset and disappearance
of the seemingly aperiodic oscillation.

III. THEORETICAL ANALYSIS

For deducing the model that explains the experimental
observations, we compared the above results with the theory
proposed recently [23]. The theory describes the flywheel
rotation with a simple equation of motion with only two
variables:

θ̇ = ω,

Iω̇ = s[p(θ, ω) − p0]r sin θ − �ω. (1)

Here, I and � are the moment of inertia and frictional co-
efficient, respectively, of the engine’s rotational degree of
freedom. r is the crank radius. s is the sectional area of
the power piston. s[p(θ, ω) − p0] ≡ s�p corresponds to the
force on the crank applied by the power piston via a rod,

and s�p · r sin θ is the torque on the flywheel (a piston-crank
mechanism). p0 is external pressure.

The theory [23] approximates that the gas is in contact with
a single heat bath at an effective temperature T0 + sin θ �T

2 ,
where T0 = (Ttop + Tbtm )/2. The effective temperature oscil-
lates between Ttop and Tbtm synchronized with the displacer
motion. For the quantitative analysis of the experimental data
based on (1), we modeled the system simply as

T (θ, ω) = T0 + α sin(θ − ωτ )
�T

2
, (2)

p(θ, ω) = β
nRT (θ, ω)

V (θ )
. (3)

Here, the effect of the heat transfer on the gas temper-
ature T (θ, ω) is simply implemented by two parameters:
the magnitude α and the time delay τ under an adiabatic
assumption that the temperature equilibration is sufficiently
fast compared to the flywheel dynamics. p(θ, ω) is calculated
based on an effective equation of the state for the ideal gas.
n is the amount of substance of the internal gas, and R is
the gas constant. V (θ ) = V0 + rs(1 − cos θ ) is the volume
of the cylinder, where V0 is the cylinder volume excluding
the displacer volume. The temperature and pressure may be
nonuniform inside the cylinder, and therefore the equation of
the state for the ideal gas may not hold as it is. The coefficient
β is introduced to compensate for such an effect.

The two-variable model (1) with (2) and (3) reproduced
the �T dependence of 〈ω〉 well quantitatively [Fig. 2(a)]
including the steep change in the vicinity of �Tc and the
pressure-volume curve. See Materials and Methods for the
parameters used. The model also succeeded in reproducing the
bifurcation curves for the increased frictional load [Fig. 2(d)].
Here, we used the same parameters except for the frictional
coefficients, which were evaluated from the response curves
under each condition (Fig. S2 [29]). Note that the model (1)–
(3) exhibits the homoclinic bifurcation as |�T | is decreased,
where a stable limit cycle disappears at �T ±

c by colliding with
a saddle point [23]. This is consistent with the experimental
suggestions [arrows in Fig. 3(c)]. These results validate the
model (1). This two-variable model is a minimal model of au-
tonomous heat engines in the sense that at least two variables
are required to describe a limit cycle.

On the other hand, the oscillation branch (Fig. 4) was
not observed by this minimal model. At �T � −31.5 K, the
trajectory θ (ω) possessed an intersection [Fig. 4(a)], meaning
that the description by only θ and ω no longer describes the
oscillation dynamics correctly at some points. Specifically,
p(θ, ω) was a multiple-valued function of (θ, ω) at the inter-
section points, suggesting that (3) is not valid at these points.

IV. DISCUSSION

An autonomous heat engine is a model system of au-
tonomous nonequilibrium systems. The model (1) reproduces
the essential characteristics of the engine, including the bi-
furcation dynamics and the thermodynamic diagram despite
its simplicity. The model contains �T explicitly through
p(θ, ω) [23], proposing the concept that the LTD-SE is a
thermodynamic pendulum driven by a thermodynamic force
characterized by �T . Whereas the model is derived based
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on the LTD-SE, this simple and intuitive formulation is ex-
pected to be applicable to a wide range of autonomous heat
engines with small modifications of, for example, the cycle
shape T (θ, ω) and the piston-crank mechanism r sin θ . The
model does not reproduce the oscillation branch. Although the
oscillation is not an essential operation mode of the engine, it
would be intriguing to explore what modification to the theory
could successfully describe the oscillation.

The formulation of the thermodynamic efficiency of the
autonomous heat engine would be of crucial importance,
which is complementary to the formulation in nonautonomous
heat engines [2,3]. The evaluation of efficiency requires the
measurement of the heat flowing through the engine and
remains for future studies.

V. CONCLUSION

We demonstrated that the essential characteristics of the
complex autonomous heat engine are reproduced by a mini-
mal and intuitive two-variable model (1) quantitatively. The
present work supports an approach to exploring the finite-
time thermodynamics of autonomous heat engines based on
a simple dynamical-system description.

The Stirling engine is attracting growing attention in in-
dustries because it can utilize low-grade heating sources such
as solar power, waste heat in the industries, and geothermal
energy, and also is environmentally friendly. Because of its
autonomous, clean, and simple machinery, the use of the Stir-
ling engine for generating electric power for spacecraft is be-
ing considered [25]. Nevertheless, the physics behind engine
dynamics has not been explored extensively. Our experiments
succeeded in characterizing the bifurcation mechanism. Such
an approach based on physics would be effective in improving
engine performance.

VI. MATERIALS AND METHODS

A. Experimental setup

An LTD-SE (N-92 type) was bought from Kontax (UK).
The temperatures of the top and bottom plates of the cylinder

were controlled by Peltier modules equipped with water flow-
ing blocks [Fig. 1(b)]. The temperatures were monitored at
2.5 Hz by platinum resistance temperature detectors attached
to the surfaces of the plates. A target pattern (three circles
aligned in an isosceles triangle configuration) was attached to
the crank screw connected to the displacer for monitoring the
angular position of the flywheel [Fig. 1(b)]. The image of the
target pattern was recorded by a high-speed camera (Basler,
Germany) at 100 Hz and analyzed in real time to obtain the
angular position and the angular velocity of the flywheel.
A pressure sensor (Copal Electronics, Japan) was fixed at
the side of the cylinder to monitor the inner pressure. We
monitored the angular position θ (t ), angular velocity ω(t ) of
the flywheel, and the pressure p(t ) inside the chamber under
controlled �T (t ). All the experiments were controlled by a
computer equipped with a program developed on LABVIEW
(National Instruments).

B. Bifurcation dynamics

For evaluating �T dependence of the angular velocity
[Fig. 2(a)], we manually provided an initial angular momen-
tum at �T = 36 or −30 K, keeping Ttop = 24◦C, and waited
for about one hour for sufficient relaxation of the temperatures
and flywheel rotation. Then, keeping Ttop = 24◦C, we varied
�T from 36 to 0 K or from −30 K to 0 K in a stepwise manner
at a rate of ±1 K every 180 s for |�T | > 8 K and ±0.02 K
every 60 s or 120 s otherwise.

C. Parameters for theoretical curves

We used the following parameters for the theoretical curves
in Figs. 2(a), 2(c), and 2(d). V0 = 44 900 mm3, s = 71 mm2,
r = 3.5 mm, I = 5.7 × 10−5 kg m2, and p0 = 101.3 kPa. n =
0.001 85 mol, R = 8.314 J/Kmol. We determined α, β, and τ

as 0.17, 0.94, and 15 ms, respectively, by fitting. The friction
coefficient � was measured by evaluating the time constant
after a perturbation (Fig. 2(b) and S2 [29]). The time constant
is approximately given by I/�.
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