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Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid
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A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that
exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters under thermal friction
and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of
dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is universal in the form
of an expanding Rankine vortex (i.e., top-hat distribution) independent of initial conditions. This highlights a
fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous
diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics
and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present
experimental results of expanding vortex clusters in a quasi-two-dimensional Bose-Einstein condensate that are
in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid
theory can be observed with as few as N ∼ 11 vortices. Our theoretical, numerical, and experimental results
establish the validity of the vortex fluid theory for superfluid systems.
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I. INTRODUCTION

A defining feature of quantum fluids is that they exhibit
quantized vortices. These stable topological defects have a
circulation that is quantized in units of � = h/m, where h is
Planck’s constant and m is the mass of a fluid particle. Despite
this key difference from classical viscous fluids, many features
of turbulence, i.e., the complex, collective behavior of many
vortices, are common to classical and quantum fluids. In three-
dimensional quantum turbulence, which has been extensively
studied in bulk superfluid helium [1,2], examples include the
Kolmogorov energy cascade [3,4], the dissipation anomaly
[5], and boundary layers [6]. More recently, experimental ad-
vances in quasi-two-dimensional (2D) ultracold atomic gases
[7–11] and superfluid optomechanical systems with thin-film
helium [12] have renewed interest in turbulence and vortex dy-
namics in two dimensions, where markedly different behavior
to three dimensions is often observed. Here, 2D quantum fluid
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analogs of phenomena such as the von Kármán vortex street
[13,14] and negative temperature vortex equilibria [15–18]
have recently been demonstrated experimentally [19–21].

One might expect the emergence of classical phenomena
from quantum vortex dynamics to follow from Bohr’s cor-
respondence principle; provided many quantum vortices of
the same sign are bundled together, collectively they should
mimic classical vortex tubes. In two dimensions, however,
recent theoretical work has shown that a dense system of
chiral (i.e., same sign) quantum vortices at large scales may be
treated as a kind of fluid in its own right [22]. In such a vortex
fluid, the dynamics are governed by a hydrodynamic equation
that contains anomalous stress terms absent in the standard
Euler equation, allowing for phenomena such as analog edge
states of the fractional quantum Hall effect [23]. This theory
was recently extended to describe dissipative effects [24],
accounting for mutual friction due to the interaction between
the superfluid and a stationary thermal component present
in experiments. However, exact solutions to the vortex fluid
theory equations, and by extension the collective dynamics
of many-vortex systems, are still lacking. Furthermore, an
understanding of how the anomalous stresses affect large
ensembles of quantum vortices remains unexplored. Despite
the relevance of the theory to many experimental systems,
neither the conservative nor dissipative vortex fluid theory
have been demonstrated experimentally.

Here we consider the dynamics of a 2D chiral vortex clus-
ter within the dissipative vortex fluid theory [24]. Generally,
solving for the out-of-equilibrium dynamics of many-body
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systems poses significant challenges. We provide an analytical
solution to this theory, demonstrating a universality class in
the out-of-equilibrium dynamics of dissipative superfluids.
We show that dense vortex clusters evolve into a Rankine
vortex (i.e., top-hat distribution) at long times independent
of the initial vorticity distribution. This behavior is markedly
different to the case of a classical viscous fluid, where not only
is the Rankine vortex forbidden, but the expansion of a vortex
is governed by ordinary viscous diffusion [25].

To corroborate the theory, we simulate large collections
of point vortices and demonstrate that any distribution of
vorticity evolves into a Rankine vortex. Beyond the vortex
fluid theory, at long times we observe frustrated ordering
of the vortices that becomes highly correlated at both short
and long distances. Finally, we experimentally observe the
emergence of a Rankine vortex in a quasi-2D 87Rb Bose-
Einstein condensate, demonstrating the utility of vortex fluid
theory for a system with as few as N ∼ 11 vortices. Our
findings establish a connection between the abstract concepts
of the vortex fluid theory developed in Refs. [22,24] and their
physical realizations. Through our numerical and experimen-
tal results, we demonstrate a platform for further experiments
investigating the vortex fluid theory.

II. POINT VORTEX MODEL

We consider the motion of N vortices in a homogeneous
quasi-2D superfluid characterized by healing length ξ , speed
of sound c, and vertical thickness d . We assume that d ∼ ξ

so that the longitudinal excitations of the vortex line are
suppressed and hence the vortex motion is effectively 2D,
with all vortex cores parallel to ẑ [26,27]. Each vortex carries
singly quantized circulation �i = κih/m with κi = ±1. In
the limit where the velocity of the vortices is far below
the speed of sound (v � c) and the intervortex separation
is greater than the healing length (� � ξ ), we are able to
approximate vortices at positions ri = (xi, yi ) as pointlike
particles generating vorticity ω(r) = ∑

i �i δ(r − ri ) and a
fluid velocity field u(r) = 2π

∑
i �i ẑ × (r − ri )/|r − ri|2.

Hence we can describe the motion of the vortices with a point
vortex model [28,29].

The incompressible kinetic energy of a 2D fluid can be
expressed in terms of the relative vortex positions. In free
space (i.e., in the absence of boundaries), the Hamiltonian is

H = − ρs

2π

∑
i< j

�i� j ln
( ri j

L

)
, (1)

where ρs is the 2D superfluid density, ri j = |ri − r j |, and L is
an arbitrary length scale [30]. Using Hamilton’s equations for
the point vortex system,

�i
dxi

dt
= ∂H

∂yi
, �i

dyi

dt
= −∂H

∂xi
, (2)

and setting ρs = L = 1 for simplicity, the velocity of vortex i
is expressed in terms of the other vortex positions as

vi = 1

2π

∑
j �=i

� j

r2
i j

(−yi j

xi j

)
, (3)

where xi j = xi − x j , yi j = yi − y j , and r2
i j = x2

i j + y2
i j .

For systems at finite temperature, interactions between the
superfluid and thermal component result in the dissipation
of energy proportional to the relative velocity of the two
components [31]. In two dimensions, the thermal component
is typically stationary due to viscous clamping in superfluid
helium [12] or strong trap anisotropy in atomic gas superfluids
[32]. The effect of dissipation is described with the equation
of motion

ṙi = vi − κiγ (ẑ × vi ), (4)

where the dimensionless mutual friction coefficient γ (typi-
cally � 1) characterizes the strength of the dissipation. In the
context of superfluid helium, Eq. (4) and the mutual friction
coefficient can be rigorously derived from the interactions
between a vortex and a thermal phonon bath, where the
mutual friction coefficient is temperature dependent, i.e., γ ∝
T [33–35]. In the context of ultracold atomic gases and as-
suming superfluid density gradients are negligible, Eq. (4) can
be rigorously derived from the dissipative Gross-Pitaevskii
equation (dGPE) [36],

ih̄∂t� = (1 − iγ )

(
− h̄2

2m
∇2 + V (r) + g|�|2 − μ

)
�, (5)

where � is the condensate wave function, m is the atomic
mass, V (r) is the trapping potential, g is the two-body contact
interaction parameter, and μ is the chemical potential of
the system. The dGPE describes a weakly interacting Bose-
Einstein condensate (BEC) coupled to a uniform stationary
thermal reservoir. The parameter γ in Eq. (4) is the same
parameter that describes the dissipation in Eq. (5).

III. DISSIPATIVE VORTEX FLUID THEORY

A system containing a large number of well-separated 2D
quantum vortices can be viewed as a fluid in its own right and
its dynamics described by a set of anomalous hydrodynamic
equations [22,24]. For a chiral system where all vortices
have the same-sign circulation (

∑
iκi = ±N), the collective

dynamical variables are vortex density ρ ≡ ∑
i δ(r − ri )

and vortex fluid velocity field ρv ≡ ∑
i viδ(r − ri ). Note that

here ω = �ρ.
A complete description of the dynamics of dissipative

chiral vortex fluids is presented in Appendix A. The full
equations of motion are complex and ultimately not needed
for the purposes of this paper. Here, we consider only the evo-
lution of the vortex fluid density. For a vortex fluid governed
microscopically by Eq. (4), the anomalous hydrodynamical
equation for the vortex fluid density is

Dv
t ρ = −γ

[
�ρ2 + �

8π
∇2ρ − v × ∇ρ − �

8π

|∇ρ|2
ρ

]
, (6)

where Dv
t ≡ ∂t + v · ∇ is the material derivative, and γ v ×

∇ρ describes transverse convection [24].
In Eq. (6) the term ∝ ∇2ρ describes uphill diffusion of

ρ, which, in contrast to ordinary viscous diffusion, serves to
steepen local vorticity gradients. The damping term −γ�ρ2

strives to suppress regions of high density and, together with
the nonlinear term, balances the uphill diffusion to prevent a
singular solution.
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While Eq. (6) is intractable, by considering the competition
of terms we assume a uniform vortex fluid density, i.e., ∇ρ =
0. This simplifies Eq. (6) to ∂tρ = −γ�ρ2, which has the
solution

ρ(t ) = (
ρ−1

0 + γ�t
)−1

, (7)

where ρ0 = ρ(0) is the initial density. This solution describes
an expanding Rankine vortex, where the density distribution
is uniform within the cluster and zero outside [37].

The Rankine vortex expansion is characterized by the mean
radius

〈r(t )〉 = 2

3

√
N

π

(
1

ρ0
+ γ�t

)1/2

, (8)

which shows that the cluster exhibits diffusive-type growth.
The canonical angular momentum of the fluid reads L f =
− ∫

dr r2ω/2 = −9πN〈r(t )〉2/8, and hence its dynamics
is fully determined by Eq. (8).

The energy of the cluster, calculated from H =
ρs

∫
dr |u|2/2 with the velocity field of the Rankine vortex

uφ (r < rc(t )) = r�ρ/2; uφ (r > rc(t )) = �N/(2πr), evolves
as

H (t ) = ρs�
2N2

8π

(
1

2
− ln

[
N

πR2

(
1

ρ0
+ γ�t

)])
. (9)

To demonstrate the stability of the Rankine vortex, we
show its solution is robust against density fluctuations within
perturbation analysis. Consider a local density perturbation
ρ = ρa + δρ to the universal expansion solution, where
ρa is given by Eq. (7), |δρ| � |ρa|, and δρ(|r| → ∞) = 0.
For simplicity, we assume that δρ has cylindrical symmetry,
namely, δρ(r) = δρ(r). Substituting the perturbed Rankine
vortex solution into Eq. (6) and keeping the leading-order
terms in δρ, we obtain

∂δρ

∂t
+ γ�

8π
∂2

r δρ + γ (2�ρaδρ + va∂rδρ) = 0, (10)

where va = r�ρa/2. The last two terms in Eq. (10) become
less relevant at long times as the coefficients in front of δρ and
∂rδρ are proportional to ρa, which tend to zero in the long-
time limit. Hence the evolution of the vorticity distribution
will eventually be dominated by a diffusion equation with
a negative diffusion coefficient. The only physical solution
(i.e., no singularities during the time evolution) is therefore
constant density. We have solved Eq. (10) numerically for
several cylindrically symmetric perturbations and find each
decays to zero as the system is evolved (see Appendix A for
details).

We ultimately find that the Rankine vortex is an asymp-
totic solution of the full anomalous hydrodynamical equation
[Eq. (6)] independent of initial conditions. The combination of
the damping and negative-viscosity terms in Eq. (6) suppress
density fluctuations in the cluster and yield the formation
of a Rankine vortex that is an attractor of the dissipative
dynamics. These results suggest that an initially nonuniform
density will evolve towards the universal Rankine scaling
solution described by Eq. (7). In classical viscous fluids,
an axisymmetric vortex expands via diffusion, and the late-
time profile of an isolated line vortex instead tends to the
Lamb-Oseen vortex [25]. This distinct behavior highlights

the fundamentally different dissipation mechanisms between
finite-temperature superfluids and classical viscous fluids.

IV. NUMERICAL RESULTS

A. Universal expansion regime

We further demonstrate the universality of the Rankine
vortex by numerically simulating large ensembles of vortex
clusters. In Fig. 1 we show the results of simulating the
expansion of five ensembles of N = 1000 vortices accord-
ing to the point vortex model [Eq. (4)] with γ = 0.01. The
initial conditions are drawn from three axisymmetric states:
a top-hat, Gaussian, and ring distributions, as well as two
nonaxisymmetric states: a one-dimensional line and a ran-
dom distribution of multiple clusters. Without dissipation, the
top-hat and Gaussian distributions (in the limit of N → ∞)
are thermal equilibrium solutions for the vortex distribution
[38]. The ring distribution and the nonaxisymmetric states
are highly nonequilibrium initial conditions [38,39]. In each
row of Fig. 1, we plot the cluster at a different time through
the expansion indicated on the left (we have chosen γ τ =
4.8 × 10−2 2πR2/� as a convenient unit of time), with the
relative size of the cluster labeled on the right. After sufficient
evolution (t ∼ 1000γ τ ), each of the vortex clusters are well
within the universal expansion regime.

In the final row of Fig. 1 [t = 1.3 × 105γ τ ], we have plot-
ted the position of the vortices and highlighted dislocations
in the cluster to show the emergence of crystallization. It is
evident that beyond this local structure, the final states are
identical and the universal expansion regime holds regardless
of initial condition. In Fig. 2(a), we find excellent agreement
in comparing the mean radius of the clusters from the sim-
ulations and the analytic solutions of the vortex fluid theory
[Eq. (8)] for the three axisymmetric cases [Figs. 1(a)–1(c)].
The nonaxisymmetric states [Figs. 1(d) and 1(e)] behave very
similarly to the ring distribution to their highly nonequilib-
rium nature. Thus for the remainder of the paper, we focus
only on the top-hat, Gaussian, and ring cases. In the bottom
panel of Fig. 2(a), we plot the error between the theory and
simulation, defined as ε = (〈r〉VFT − 〈r〉PVM)/〈r〉PVM, and ob-
serve it to approach zero as the cluster expands. We similarly
find strong agreement for the energy of the cluster, as seen in
Fig. 2(b).

To further emphasize the uniformity of the expanded clus-
ters and indeed the emergence of the Rankine vortex as
predicted by the vortex fluid theory, we plot the average
radial density (averaged over n = 100 realizations of each
distribution) of each ensemble throughout the expansion. Fig-
ures 3(a)–3(d) show that the cluster evolves towards unifor-
mity, with the density of each cluster becoming more uniform
at different rates. The ring initial condition exhibits a slower
timescale in evolving towards a top hat due to its highly
nonequilibrium initial state. The specific value of γ we have
chosen here is unimportant; γ simply determines how quickly
the cluster reaches the regime of universal dynamics, after
which it is simply a scaling factor in time. To understand and
demonstrate the effect of the dissipation, i.e., the cause of the
expansion, we also provide comparisons with the conservative
dynamics (γ = 0) for all scenarios in Fig. 9 (see Appendix B).
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(a) (b) (c) (d) (e)

FIG. 1. (a) Exemplar vortex distributions throughout the expansion in free space with γ = 0.01. We show the (a) top-hat, (b) Gaussian,
and (c) ring initial distributions as well as two nonaxisymmetric initial conditions in (d) and (e). The time in the simulation is indicated on the
left. The radii of the dotted lines in the first three rows, emphasizing the expansion, have a constant radius of r = 0.2. The r = 0.2 dashed line
is omitted in the final row as it cannot be seen. In the bottom row we have highlighted lattice dislocations (defined when vortices have either
five or seven nearest neighbors) with black points.

The universal dynamics we observe in the expanding regime is
in contrast to the nonergodicity observed in conservative point
vortex dynamics, where large ensembles of point vortices can
get trapped in asymmetric, nonequilibrium stationary states
[40].

At sufficiently late times, however, the cluster begins to
crystallize; additional features emerge at length scales com-
parable to the typical intervortex spacing, going beyond the
vortex fluid theory predictions. Vortices at the cluster edge
gradually organize into concentric circles, leading to a density

FIG. 2. Comparison between vortex fluid theory (VFT) and nu-
merical results for (a) average radius of vortex cluster and (b) energy
of the vortex cluster. In the bottom panel we plot the error between
the hydrodynamic solution and the numerical simulation.

peak at the boundary, with periodic oscillations decaying
into the bulk [Fig. 3(d), t = 1000γ τ ]. Nevertheless, coarse
graining the densities in Fig. 3(d), as demonstrated by the
black curve, yields quantitative agreement with the vortex
fluid theory. We note these oscillations may be related to the
predictions of Ref. [23], where it was found that the super-
fluid Rankine vortex supports an edge layer with a number
of interesting properties, including a density overshoot and
soliton solutions with quantized charge. The emergence of the
short-length-scale features in the density can better be seen in
Fig. 3(e), where we plot the density as a function of radius and
time for the top-hat initial distribution. At early times (i.e.,
t � 100γ τ ), the density is uniform. As the cluster evolves,
discrete peaks form at the outer edges of the distribution and
eventually in the bulk of the vortex cluster.

B. Beyond vortex fluid theory: Crystallization

To investigate this emerging density structure and quantify
the ordering and crystallization of the vortex lattice, we calcu-
late the vortex-vortex correlation function,

g(s) = 1

ρN
∑

i

∑
j �=i

1

s(2π − �θi )
δ(s − ri j ), (11)

where s is the spatial separation of a pair of vortices, N is
the number of vortices contributing to separation s, and �θi is
the accessible angle at distance s for a given vortex assuming
a circular distribution [41]. The correlation functions of the
top-hat, Gaussian, and ring initial distributions are shown in
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FIG. 3. Normalized ensemble radial vortex density for the top-
hat, Gaussian, and ring initial conditions at times (a) t = 0, (b) t =
10γ τ , (c) t = 100γ τ , and (d) t = 1000γ τ averaged over n = 100
different realizations for each distribution. The black curve in (d) is
the coarse-grained density for the top-hat initial distribution. (e)
Normalized average density as a function of radius and time for the
top-hat initial distribution.

Fig. 4(a). No correlation is indicated by g(s) = 1, as is the
case for the initial top-hat distribution [blue curve in Fig. 4(a)].
As the cluster expands, periodic correlations emerge for all
ensembles during expansion, as seen in Fig. 4(c) at t =
1000γ τ . In the long-time limit, the separation of vortices on
opposite sides of the cluster also become correlated due to the
formation of concentric rings as discussed in Sec. IV A. The
correlation functions for the three ensembles exhibit the same
period (i.e., there is a characteristic nearest-neighbor distance,
next-nearest-neighbor distance, etc.) but differ in the strength
of the correlation for the same evolution time.

To understand the magnitude of the correlations in the
vortex cluster, we quantify the dynamics of the crystalliza-
tion in Fig. 4(e). We plot the evolution of the geometric
disorder parameter σg = σnn/μnn, where σnn and μnn are the
standard deviation and mean of the nearest-neighbor distances
of vortices in the cluster, respectively [42]. For a perfectly
ordered Abrikosov lattice, σg = 0. It is clear the strength of

FIG. 4. Vortex-vortex correlation function g(s) at times (a) t = 0,
(b) t = 100γ τ , (c) t = 1000γ τ , and (d) t = 1.3 × 105γ τ . (e) Decay
of the geometric disorder parameter, σg, averaged over n = 100 runs.
The shaded area represents a region where σg ∼ t−α with α  4/9.

the correlation function depends upon how ordered the cluster
is, e.g., the top-hat expansion (the most ordered state given by
the lowest σg) is marked by the strongest correlations.

We find there is a period where all three ensembles evolve
approximately as σg ∼ t−α with fitting parameter α  4/9
[gray region in Fig. 4(e)]. Although we do not have a theo-
retical explanation for the observed scaling, we note that it
was found to be independent of γ for γ � 0.01, suggesting
it is a robust feature of the expansion. Additionally, there
is a late time plateau where the disorder parameter ceases
to decay. This persists for a wide range of N (albeit fluctu-
ating slightly), suggesting limt→∞ σg �= 0 is not an artifact
due to a particular choice of vortex number. At this stage
of the expansion, where all the vortex clusters are equally
ordered, the vortex-vortex correlation function for each of
the three cases exhibits approximately the same magnitude
in the peaks [Fig. 4(d)]. The tendency for the cluster to
reach a steady state where the disorder is nonzero suggests

033138-5



OLIVER R. STOCKDALE et al. PHYSICAL REVIEW RESEARCH 2, 033138 (2020)

+

+

time

++++ +++++
+

+

+
+++

++
++
++ +

(a) (b)

(c)
8

0

FIG. 5. (a) Schematic of the procedure used to create the initial vortex cluster. An elliptical stirrer is swept around the annulus as its length
is decreased over time, creating same-signed vortices (denoted by a +) which become pinned to the central barrier. However, some vortices can
become stray and remain in the bulk of the fluid. The radius of the central barrier is then shrunk to zero, and the pinned circulation (denoted
by large + at the center) splits into singly charged vortices which are free to expand. (b) Experimental image after 0- and 2-s hold time and
3-ms time-of-flight expansion showing resolved vortex cores as dark holes in the atom density. White circles indicate a vortex detected by the
Gaussian fitting algorithm. (c) Two-dimensional histograms of the vortex positions over time, averaged over ∼40 runs. The red dashed circle
indicates the cutoff radius for cluster analysis (see text).

the outer concentric rings of vortices prevent the emerging
Abrikosov lattice from spreading throughout the entire cluster.
Despite clear signatures of an Abrikosov lattice emerging in
patches of the clusters [Fig. 1, t = 1.3 × 105γ τ ], they are
broken by dislocations that arise in the dynamics and persist.
The frustrated structure observed is distinct from the familiar
vortex lattices seen in rotating superfluid systems [43–45] as
this system is out of equilibrium.

V. EXPERIMENT

A. Experimental procedure

In this section, we compare the results of the vortex fluid
theory to data from experiments observing the expansion of
vortex clusters in a quasi-2D BEC. A planar 87Rb BEC of
Nc ∼ 2.2 × 106 atoms is trapped in a gravity-compensated
optical potential. The horizontal confinement of the atoms in
the x-y plane is provided by a repulsive blue-detuned optical
dipole potential that results from the direct imaging of a
digital micromirror device; here it is configured to produce a
disk-shaped trap with radius R = 50 μm. This results in the
approximately hard-walled confinement of the BEC with a
near-uniform density. In the vertical direction, a red-detuned
optical dipole potential provides harmonic trapping with fre-
quency ωz = 2π × 108 Hz, leading to a vertical Thomas-
Fermi radius of 6 μm. The healing length of the BEC is
ξ ∼ 500 nm [46].

A schematic of the preparation of the initial vortex cluster
is shown in Fig. 5(a). We form the BEC in the disk trap
before transferring it to an annular trap by ramping-on an ad-
ditional repulsive central barrier with a radius of R0 = 15 μm
over 200 ms. Simultaneously, an elliptical stirring barrier is
introduced with a major and minor axis of 50 and 2 μm,
respectively. This barrier crosses the annulus, which results
in a split ring. Following previous techniques for stirring
persistent currents in ring-trapped BECs [47,48], the stirring
barrier is linearly accelerated at 980 μm s−2 for a time of 400

ms around the annulus. While still accelerating, the barrier
height is then linearly decreased to zero by reducing both the
barrier width and length over 100 ms, effectively removing the
stirring barrier through to the central barrier. After a 400-ms
period of equilibration in the annular trap, the central barrier
is removed over 200 ms by linearly reducing its radius to zero.

This procedure results in a high-energy cluster of N ∼ 11
vortices within a radius of rc ∼ 8 μm near the trap center.
During the removal of the stirrer, occasionally one or two
stray vortices (of the same sign) are produced away from the
main cluster [see left image in Fig. 5(b)]. The system has a
condensate fraction of Nc/N ∼ 80%, and the small thermal
cloud leads to weakly dissipative vortex dynamics.

We observe the expansion of the vortex cluster for 7 s,
destructively sampling ∼40 independent images at intervals
separated by 250 ms. High-resolution images of the BEC and
vortex cores are obtained as in Ref. [19], where a short 3-ms
time of flight expansion allows the vortex cores to expand and
become visible using darkground Faraday imaging [49]. The
radial distribution of the condensate is essentially unchanged
during this expansion. Two example images are shown in
Fig. 5(b) at t = 0 s and t = 2 s. The vortex positions were
identified using a Gaussian fitting algorithm [19,42], which
can fail to detect vortices at early times when vortices are not
well separated [e.g., t = 0 s in Fig. 5(b)]. In Fig. 5(c), we show
the two-dimensional histograms of observed vortex positions
at 1-s intervals to demonstrate the expansion of the vortex
cluster in the BEC.

B. Experimental results

To better visualize the vortex cluster expansion, we plot
the average radial density of the cluster for three different
time intervals in Figs. 6(a)–6(c). In each case, we have
fitted a top-hat distribution where the radius is found from
measuring the cluster size in the experiment. We find that
as the cluster expands, the density evolves towards a top-hat
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FIG. 6. (a–c) Radial density of vortex clusters averaged over 1 s
(period given in top right) along with top-hat distribution fit. Insets:
corresponding 2D histograms of vortex positions. The red dashed
line represents the cluster cutoff radius. (d) Error between histograms
and top-hat fit.

distribution [Fig. 6(c)], which is further supported by the
corresponding 2D histograms of vortex positions shown in
the insets. In Fig. 6(d) we plot the error between the radial
density and the top-hat fit at each 0.25-s interval, defined
as ε = n−1∑

n|ρexp − ρt-h|/ρexp, where n is the number of
bins, ρexp is the experimental density, and ρt-h is the top-hat
density. We find the error decreases over time and approaches
zero, suggesting the cluster does indeed become more uniform
over time. In the insets of Figs. 6(a)–6(c), we have drawn a
red circle around the central cluster to indicate that vortices
outside the circle are deemed to be strays for the purpose of
the cluster analysis. Slight changes in the cutoff radius (i.e.,
±1 μm) in the following produces negligible change in the
results.

In Fig. 7(a) we plot the mean radius of the central cluster as
a function of time and find excellent agreement with the 〈r〉 ∼√

t prediction of the vortex fluid theory. To emphasize the
strength of the agreement, we fit a linear curve (dashed line) to
the late-time data. We fit a dissipation constant of γ = 3.2 ×
10−3; this is consistent with previous experiments of atomic
BECs [19,32,50] and sets the experimental time in units of
γ τ to be ∼4.1 × 104 γ τ (for comparison with simulation).

Figure 7(b) shows the energy decay of the vortex cluster.
Given the experiment is in a circular bounded domain of
radius R, the Hamiltonian for the vortex cluster is now

H = − ρs

4π

∑
i< j

�i� j ln

(
r2

i j

R2

)
+ ρs

4π

∑
i=1

�2
i ln

(
R2 − r2

i

R2

)

+ ρs

4π

∑
i< j

�i� j ln

(
R4 − 2R2ri · r j + r2

i r2
j

R4

)
, (12)

where ri = |ri| is the magnitude of the radial position of the
vortex [51]. The first term of Eq. (12) describes the energy due
to vortex-vortex interactions and is simply Eq. (1). The second

FIG. 7. (a) Comparison of vortex fluid theory and experimental
measurements of the average vortex radius 〈r〉. The dashed line is a
linear fit to the late-time data. The gray region is prior to the removal
of the pinning potential. (b) Energy of experiment and vortex fluid
theory. Experimental energy is also shown after being scaled (hollow
points) by a constant factor (see text). (c) Average measured number
of vortices in the system (i.e., cluster and stray vortices) and the
number of vortices measured in the cluster. Each exhibits an artificial
growth due to imaging techniques. (d) Observed geometric disorder
σg of the vortex cluster compared with point vortex simulations with
and without stray vortices used to calculate the dynamics. Legend
in (a) applies to all four subfigures. Uncertainty in the experiment is
given by the standard error.

and third terms describe the interactions with fictitious image
vortices that enforce the boundary condition u · n̂|r=R = 0,
which ensures the superfluid flow normal to the trap boundary
is zero. As the vortex cluster is located towards the center of
the trap (even at late times), the additional energy due to the
confinement is negligible (i.e., the second and third term have
little contribution to the energy).

As mentioned in Sec. V A, we encounter difficulty in imag-
ing vortices when the cluster radius is small, which manifests
as an artificial growth in N , as seen in Fig. 7(c). Due to the
strong dependence of energy upon N (H ∼ N2), we plot H/N2

to factor out the vortex number dependence upon the energy.
We observe a discrepancy in energy between experiment and
theory due to only having N ∼ 11 vortices in the experiment
as the vortex fluid theory assumes N � 1. However, we
find that applying a simple scaling factor N2/(N2 − 2N ) fits
the theory well [52]. Performing point vortex simulations of
varying N in a bounded disk, we find this scaling to yield
good agreement with the vortex fluid theory for all N � 10
(see Appendix C for further details).

Finally, in Fig. 7(d) we measure the disorder of the vortex
cluster σg experimentally and compare it to simulations of
the bounded point vortex model using the ensemble of initial
vortex positions taken from the experiment at t = 1.0 s. We
simulate the entire ensemble of vortices observed (i.e., stray
vortices included) but only plot the ordering of the central
cluster. We find strong agreement between the point vortex
model and the experiment, which both show the cluster does
not become more ordered over time. If we only simulate the
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dynamics of the vortices in the central cluster (i.e., do not
include the stray vortices in the initial conditions), we find the
simulations predict a decrease in σg with time, as was found
in Sec. IV B. This suggests that the stray vortices significantly
suppress the ordering of the vortex cluster. Figure 7(c) shows
that at the end of the experiment, there tends to be only one
stray vortex in the system. Remarkably, this suggests a single
stray vortex is sufficient to destroy the ordering of the cluster.
Without stray vortices, our simulations show that dissipation
can provide sufficient ordering to study the crystallization
dynamics in future experiments with larger vortex numbers.

VI. CONCLUSIONS

We have analytically shown within dissipative vortex fluid
theory that any dense vortex cluster in a finite-temperature
quantum fluid evolves to form a Rankine vortex, confirming
a new universality class in dissipative superfluids. Numerical
simulations of the microscopic dynamics of the vortices con-
firms this universal expanding regime, as well as revealing
phenomena beyond the predictions of vortex fluid theory.
We presented the emergence of a frustrated lattice structure
within the vortex cluster, which is approached through a
power-law decay in the geometric disorder and is marked by
strong vortex-vortex correlations. Finally, we have presented
experimental observations of vortex cluster expansions in a
quasi-2D BEC and found they are in good agreement with
the vortex fluid theory and our numerical simulations, despite
being for a cluster of only 11 vortices. Our experimental
results validate the vortex fluid theory, paving the way to
better understand dissipative mechanisms in quantum fluids.

Whereas the Rankine vortex is forbidden in viscous classi-
cal fluids [25], our results suggest it may be highly relevant in
finite-temperature dissipative superfluid systems. Our findings
also suggest that recently predicted phenomena associated
with the superfluid Rankine vortex, such as quantized edge
solitons [23], may be within reach experimentally provided
larger vortex numbers can be achieved. Superfluids with a
larger ratio between the system size and healing length, such
as strongly interacting Fermi gases [11] or thin-film superfluid
helium [21], may be promising alternative platforms to test
these predictions. Beyond the vortex fluid theory, the emerg-
ing fractured lattice structure in the vortex clusters could
have Kibble-Zurek–type behavior, as well as demonstrating
qualities reminiscent of the hexatic phase observed in systems
such as liquid-crystal films [53].

ACKNOWLEDGMENTS

We thank A. S. Bradley for useful discussions. This re-
search was supported by the Australian Research Council
Centre of Excellence in Future Low-Energy Electronics Tech-
nologies (Project No. CE170100039), the Australian Research
Council Centre of Excellence for Engineered Quantum Sys-
tems (Project No. CE170100009), and was funded by the
Australian Government. This work was also supported by the
US Army Research Office through Grant No. W911NF17-
1-0310. X.Y. acknowledges support from NSAF through
Grant No. U1930403. O.R.S. acknowledges the support of

an Australian Government Research and Training Program
Scholarship.

APPENDIX A: DISSIPATIVE VORTEX FLUID THEORY

1. Vortex fluid velocity field

In the universal expanding regime, where ∇ρ = 0, the
vortex fluid velocity field v is not needed in order to determine
the dynamics of the vorticity distribution. However, for our
work to be complete and self-contained, we provide the full
set of equations that describe a dissipative chiral vortex fluid.

Dissipation effects due to thermal friction can be taken
into account by considering a dissipative point-vortex model
[Eq. (4)], where the dimensionless mutual friction coefficient
γ (typically � 1) characterizes the strength of the dissipation.
A general dissipative binary vortex fluid theory (containing
vortices and antivortices) has been formulated in Ref. [24].
Here we only consider the chiral limit, where κi = +1. We
define the vortex density ρ ≡ ∑

i δ(r − ri ). The conservation
of vortex number implies the following continuity equation
[24]:

∂tρ + ∇ · J′
n = 0, (A1)

where the number current J′
n = Jn − γ ẑ × Jn and Jn =∑

i δ(r − ri )vi. The vortex velocity field v is defined ac-
cording to the hydrodynamic relation Jn ≡ ρv. Rewriting
Eq. (A1), we obtain the dissipative Helmholtz equation

Dv̂
t ρ = −γ (8πηρ2 + η∇2ρ − v × ∇ρ), (A2)

where v̂ ≡ v − γ η∇ ln ρ and η ≡ �/(8π ) = h/(8πm). Fol-
lowing a similar coarse-graining procedure used in Ref. [24],
we obtain, in Cartesian components,

Dv
t va − ρ−1∂b�̂ab + ∂a p̂ = −8ηγπρva + ρ−1Fa, (A3)

which governs the dynamics of the vortex velocity field, where
the modified Cauchy stress tensor �̂ab = �ab + �′

ab with

�ab = −ρτab − 8η2πρ2δab − η2ρ∂b(ρ−1∂aρ), (A4)

�′
ab = ηγ (2δab − 1)�aa′�bb′[∂a′ (ρvb′ ) + ∂b′ (ρva′ )], (A5)

τxy = τyx = η(∂xvx − ∂yvy), (A6)

τxx = −τyy = −η(∂xvy + ∂yvx ), (A7)

and

Fa = −ηγ ρ−1εabεcd∂bρ∂c(ρvd ), (A8)

p̂ = p − 2ηγ (g + ḡ). (A9)

Here �aa = 0, �a �=b = 1, εab is the antisymmetric tensor
(εxy = −εyx = 1), and g is determined by ∂z̄g = πρv̄. The
coefficient ηγ might be identified as the viscosity of the vortex
fluid. Since (1/2)tr(�′

ab) = ηγ∇ · (ρv), it may also play the
role of second viscosity.

The pressure p̂ can be eliminated by taking the curl of
Eq. (A3):

εac∂t∂cva + εac∂c(vb∂bva) − εac∂c(ρ−1∂b�̂ab)

= −8ηγπεac∂c(ρva) + εac∂c(ρ−1Fa). (A10)
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FIG. 8. Time evolution of perturbation δρ for different initial
distributions: (a) δρ(r, 0) = 0.2 exp(−r2); (b) δρ(r, 0) = 0.2/(1 +
r)2; (c) δρ(r, 0) = 0.2 exp[−(r − 1)2]; (d) δρ(r, 0) = 0.1(sin 2r +
1) exp(−r). Here we choose � = 1, ρ0 = 1, and γ = 0.01.

Hence the complete set of equations for dissipative chiral
vortex fluids reads

∂tρ + (v − γ η∇ ln ρ) · ∇ρ

= −γ
(
8πηρ2 + η∇2ρ − v × ∇ρ

)
, (A11)

εac∂t∂cva + εac∂c(vb∂bva) − εac∂c(ρ−1∂b�̂ab)

= −8ηη∗πεac∂c(ρva) + εac∂c(ρ−1Fa), (A12)

∂ava = 0. (A13)

2. Dynamics of density perturbations

We demonstrate that the Rankine vortex solution [Eq. (7)]
is an asymptotic solution of Eq. (6) of the main text (anoma-
lous hydrodynamical equation for the vortex density) in the
long-time limit, independent of initial vortex distributions.
Consider a local density perturbation ρ = ρa + δρ to the
universal expansion solution, where ρa is given by Eq. (7),
|δρ| � |ρa|, and δρ(|r| → ∞) = 0. For simplicity, we as-
sume that δρ has cylindrical symmetry, namely, δρ(r) =
δρ(r). Keeping the leading-order terms in δρ, we obtain

∂δρ

∂t
+ γ�

8π
∂2

r δρ + γ (2�ρaδρ + va∂rδρ) = 0, (A14)

where va = r�ρa/2. Solving Eq. (A14) numerically for a
variety of initial conditions, we find that for all cases the
perturbation decays over time and reduces to zero across the
fluid δρ(t → ∞) → 0. Figure 8 shows four examples where
the initial perturbation takes different forms, as specified in the
figure caption. Here the boundary conditions are δρ regular at
r = 0 and δρ(r → ∞) → 0.

This result suggests that the top-hat distribution is an
attractor of the dissipative vortex fluid dynamics and hence
further supports our conclusion that any initial distribution of
vortex density will eventually tend towards a Rankine vortex.

APPENDIX B: COHERENT EVOLUTION OF VORTEX
CLUSTERS

To emphasize the dramatic difference between the dynam-
ics of large clusters of vortices in the presence or absence
of dissipation, we plot the evolution of the five different
initial distributions when the dissipation is zero [i.e., solve
Eq. (4) for γ = 0]. In Fig. 9, it is clear that the Rankine
vortex does not emerge in these situations and instead the final
vortex distributions are strongly dependent upon the initial
conditions.

APPENDIX C: POINT VORTEX SIMULATIONS FOR
FINITE-SIZED SYSTEMS

The vortex cluster expansion experiments we describe in
the main text are performed with ∼ 11 vortices in an atomic
gas BEC. The superfluid is confined in a flat-bottomed, disk
trap of radius R using the experimental techniques described
in the main text and Ref. [54]. Similar systems have been
realized for superfluid helium [21,55].

The vortex fluid hydrodynamic theory, however, is for an
infinite system with no boundaries in which the vortex density
is coarse grained and treated as a continuous quantity. Thus
an important question is, How applicable is the vortex fluid
theory to the experimental observations? In this section we
compare simulations of point vortex dynamics in the disk trap
with the predictions of the time dependence of the cluster
radius and energy from the vortex fluid theory.

The Hamiltonian for N vortices at positions ri in a circular
domain of radius R is given in Eq. (12). Hamilton’s equations
of motion for this system are given by Eq. (2), which yields
the equation of motion for vortices in a circular disk,

vi = 1

2π

∑
j �=i

� j

r2
i j

(−yi j

xi j

)
+ 1

2π

∑
j

�̄ j

r̄2
i j

(−ȳi j

x̄i j

)
, (C1)

where xi j = xi − x j , yi j = yi − y j , and r2
i j = x2

i j + y2
i j . The

first term of Eq. (C1) arises from the flow field of the other
vortices, while the second term arises from the image vortices.
The barred terms x̄i j = xi − x̄ j , r̄2

i j = x̄2
i j + ȳ2

i j , etc. corre-
spond to the positions of the image vortices, with circulation
�̄ j = −� j , located outside the disk at the inverse point r̄i =
R2ri/|ri|2. Using Eq. (C1) for the bounded vortex velocities in
Eq. (4) of the main text, we solve for the dynamics of bounded
vortices in the dissipative regime.

When a vortex approaches the boundary and pairs with its
image, the energy of the system reduces while the velocity
of the vortex increases dramatically. This can be seen in
Fig. 10(a), where we plot the energy (left axis) and radius
(right axis) of two positive vortices in the bounded point vor-
tex model. Unsurprisingly, the hydrodynamic approximation
is a poor description of the radius of the vortex pair (plotted
as the solid curve), as the core assumption is that vortices
are densely packed so the vorticity can be coarse grained.
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FIG. 9. Evolution of vortex clusters without dissipation (i.e., γ = 0) for initial distributions corresponding to (a) top-hat, (b) Gaussian,
(c) ring, (d) one-dimensional line, and (e) multiple random clusters. The upper and middle row are exemplar snapshots of the cluster at
the beginning and end of the simulation (as labeled). The bottom row is the average radial density (averaged over n = 20 realizations) of
distributions before and after evolution.
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FIG. 10. Comparison of radius and energy of point vortex cluster
expansion with the predictions of the vortex fluid hydrodynamics.
(a) A system of N = 2 vortices initially equidistant from origin
separated by θ = π . The black curves correspond to the left y axis
and are the energy of the vortex cluster, while the orange curves
correspond to the right y axis and indicate the average radius of
the vortex cluster. Dashed lines are from simulations of the point
vortex model within a disk, and the solid lines are the solution to the
vortex fluid hydrodynamics. (b) N = 5 vortices. (c) N = 10 vortices.
(d) N = 20 vortices.

Comparing this result with Fig. 10(b), where we plot the
energy and radius of an expanding cluster of N = 5 vortices
(the initial condition is drawn from a uniform distribution and
sits within r = 0.1R), we see that the boundary has much less
of an effect upon the dynamics. As there are more vortices
within the center of the disk, the energy is dominated by
vortex-vortex interactions, unlike the N = 2 case where the
images strongly influence the dynamics. As image vortices
are positioned at the inverse point, their effect upon the system
reduces significantly for vortices far from the boundary. As a
result, we begin to see signatures of the anomalous hydrody-
namics [i.e., 〈r〉 ∝ √

t and H ∝ − ln(t )] despite there being
only N = 5 vortices.

Upon further increasing the number of vortices to N =
10 in Fig. 10(c), the difference between the bound simula-
tions and the free-space anomalous hydrodynamics is further
reduced. This particular result is close to the experimental
system, and we see good agreement between the vortex
fluid theory and bound point vortex simulation. For N = 20
[Fig. 10(c)], the expansion of the cluster in the point vortex
model is close to the vortex fluid prediction. For even larger
numbers the difference continues to decrease, and so in con-
clusion, it seems that for a sufficiently large vortex number
(N > 20), an expanding cluster in a bounded circular domain
can be closely approximated as a free-space expansion until
the cluster radius nears the boundary.

There is a distinct difference, however, between the energy
in the point vortex simulation and that of the anomalous
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hydrodynamic solution. Given the anomalous hydrodynamics
assumes N � 1, we find there are finite N effects for a
small number of vortices. For N > 10, we find that scaling
the point vortex simulation energy (and indeed the exper-

iment, seen in the main text) by N2 − 2N gives excellent
agreement with the scaled hydrodynamic energy H/N2. It
can be seen that the difference vanishes in the N → ∞
limit.
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