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Atomic-scale expressions for viscosity and fragile-strong behavior
in metal alloys based on the Zwanzig-Mountain formula
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We combine the shoving model of 7-dependent viscosity of supercooled liquids with the Zwanzig-Mountain
formula for the high-frequency shear modulus using the g(r) of molecular dynamics simulations of metal alloys
as the input. This scheme leads to a semianalytical expression for the viscosity as a function of temperature,
which provides a three-parameter model fitting of experimental data of viscosity for the same alloy for which
g(r) was calculated. The model provides direct access to the influence of atomic-scale physical quantities such
as the interatomic potential ¢ () on the viscosity and fragile-strong behavior. In particular, it is established that

a steeper interatomic repulsion leads to fragile liquids, or, conversely, that “soft atoms make strong liquids.”
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I. INTRODUCTION

Different views of the glass transition have led to quite
different descriptions of the viscosity of supercooled liquids.
The kinetic view of the glass transition, which relies on a sub-
stantial continuity between liquid and solid glass, goes back to
the pioneering ideas of Frenkel [1,2] and provides the basis for
Dyre’s shoving model and its ramifications [3]. The entropic
view of the glass transition, instead, based on the Adam-Gibbs
scenario and later developed into a random first-order (ideal
glass) transition, has led to a suitably modified Vogel-Fulcher-
Tammann (VFT) equation with parameters that can be related
to the entropy of cooperatively rearranging zones [4]. Another
approach based on the Adam-Gibbs scenario led to the Mauro
equation for the viscosity [5]. Yet a different type of approach
based on Doremus’ model [6] of viscosity where bonds are
broken under shear flow leads to a two-exponential form for
the viscosity as a function of temperature [7], which typically
provides a better fitting to experimental data compared to
single-exponential expressions [8].

In general, closed-form expressions for the viscosity of
supercooled liquids contain three fitting parameters, which are
typically related to microscopically poorly defined quantities
such as free volume or entropy. The shoving model developed
by Dyre [3] provides a different approach in this sense, as
it links viscosity to thermally activated jumps of atoms out
of the nearest-neighbor cage, as in Frenkel’s and Eyring’s
early approaches, with an activation energy which is described
rigorously by means of continuum mechanics. In particular,
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the activation energy is expressed via the product of the
high-frequency shear modulus of the liquid and an activation
volume, which follows from the analysis of the work done by
a particle to shove around the surrounding atoms to escape
from the cage. A similar relation between energy barrier and
shear modulus is provided by the cooperative shear model
(CSM) where, however, the characteristic volume is larger and
can be connected to the concept of shear transformation zones
(STZs) [9].

The shoving model provides the starting point for a more
microscopic description of the viscosity and relaxation time
of supercooled liquids. In particular, upon approximating the
shear modulus G, with Born-Huang (affine) lattice dynamics
(as appropriate for the high-frequency modulus), G, can be
directly related to the short-range part of the radial distribution
function (RDF) g(r) and hence to the interatomic potential.
This led to the Krausser-Samwer-Zaccone (KSZ) equation
[10], which expresses the T-dependent viscosity in closed-
form in terms of the thermal expansion coefficient a7, the
interatomic repulsion steepness parameter A (obtained from
a power-law fitting of the RDF up to the maximum of the
first peak), and the activation volume V, mentioned above. The
KSZ equation reads as

(T) V.C T
D ool )]}

where Cg is the value of the G, at T, again evaluated analyt-
ically with the Born-Huang formula. This equation provides a
two-parameter fitting of viscosity data, since X is determined
by fitting of the g(r) data, «r is an experimentally determined
quantity, which leaves ng, T,, and V. as the only parameters,
with the important constraint that V, ~ 1073 m3. The glass
transition temperature 7,, in the above formula, defines the
temperature at which the glass state loses its rigidity [11].
Furthermore, it has been shown that the repulsion parameter A
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can be mapped accurately on realistic microscopic parameters
of Thomas-Fermi screening length and Born-Mayer repulsion
for the electron-gas screened repulsion between two ions in
metals.

In spite of its success in providing, for the first time, a
direct connection between viscosity (and fragility) and the
microscopic physics of atomic-scale structure and interactions
[12], the KSZ equation suffers from an intrinsic ambiguity in
determining the A parameter from experimental or simulated
g(r) data. While the fitting protocol of Ref. [10] provides a
consistent assessment of the effect of interatomic repulsion
on T-dependent viscosity and the fragility m [defined as the
slope of n(T) near T,], other protocols [13] have provided am-
biguous results. In particular, the original protocol of Ref. [10]
has shown that a steeper interatomic repulsion results in a
fragile behavior of the glass-forming liquid, whereas a softer
repulsion is associated with strong liquids. A different proto-
col for extracting A with less prescriptive constraints on the
fitting was used in Ref. [13]. In that approach, A was taken
to be a free parameter which also depends on temperature,
and the opposite scenario, i.e., softer repulsion leads to fragile
behavior, was found. However, it was later demonstrated that
A does not depend on temperature [14], which invalidates this
fitting protocol.

Here we develop a different, perhaps more sophisticated
approach which combines the shoving model with the micro-
scopic Zwanzig-Mountain formula for the G, of liquids. This
leads to semianalytical expressions for n(7") and for m, which
directly link these quantities to the g(r) and to the interatomic
potential ¢(r). Upon successfully calibrating these expres-
sions for the case of CusgZrsp, a new interatomic repulsion
parameter / is identified which is unambiguously linked with
the repulsive part of ¢(r). Upon letting this parameter vary,
fictive materials with different interatomic repulsion softness
are generated. The model analysis demonstrates that steeper
interatomic repulsion leads to fragile behavior, thus reaffirm-
ing the correctness of the fitting protocol of Ref. [10] for the
identification of X in the KSZ equation above. It also confirms
the qualitative increasing trend of fragility m increasing with
potential repulsion steepness [ or A and recovers the linear
trend already seen for m(X) in Ref. [10].

II. THEORY

A. The shoving model

We base our derivation of the viscosity of liquid metals
here upon the so-called shoving model [3]. The assumption at
the basis of this model is that, within the transition state theory
[1], the activation energy of the average relaxation time is
determined by the work done in shoving aside the surrounding
liquid to allow “flow events.” The main result of this model is
the temperature dependence of the viscosity, which is related
to the temperature dependence of the high-frequency limit of
the shear modulus G (T):

ey

VeGoo(T)
n(T) = no exp [—]

kgT
where 1 is a constant prefactor and V, is the characteristic

volume of the group of atoms involved in the shoving event
(on the same order of magnitude of the nearest-neighbor

cage) and is a weakly dependent function of 7 such that
this dependence is typically neglected. The T dependence of
viscosity n is thus directly controlled by the 7" dependence
of G, while V, has a dependence on temperature which is
more difficult to assess and for simplicity is normally taken
as T independent [3]. The values of V, typically found are
on the order of the atomic size, which is much smaller than
the values of the characteristic volume normally found within
the CSM model. In Frenkel’s original derivation, activation
energy in the Arrhenius exponential of Eq. (1) is given by
E = 871G rAr?, where r is the cage radius and Ar is the
increase of the cage radius due to thermal fluctuations, which
enables the atom to escape the cage (see page 193 in Ref. [1]).

B. High-frequency shear modulus from the Zwanzig-Mountain
formula

Zwanzig and Mountain derived a popular expression for
the high-frequency shear modulus of liquids, which reads [15]

2 o0
Goo = pksT + %pz /0 drg(r)%[r“fl—ﬂ, 2
where g(7) denotes the RDF of the atoms in the liquid (average
of the atomic species in an alloy), p(T) is the total atomic
density, and ¢(r) is the average interatomic potential between
any two atoms.

Two crucial inputs to evaluate G, are, therefore, the
RDF g(r) and the interatomic potential ¢(r). In lieu of a
theoretical expression for g(r) valid for real metal alloys,
which is obviously beyond reach, we base our analysis on
molecular dynamics (MD) simulations data of the average
g(r) in CuspZrsg alloys from Ref. [12].

In order to provide an analytical handle on the various
features of the g(r), which in turn are connected to features
of the interatomic potential ¢(r) as shown below, we proceed
to the following parametrization of the g(r).

C. Analytical parametrization of g(r)

The parametrization of g(r) is given by a sum of three
terms, and it depends on six parameters. The first term
describes, at the same time, the short-range repulsion and
impenetrability of the atoms as well as behavior for large
interatomic separations. This is mathematically expressed by
the following asymptotic limits: g(r) goes to zero for small
r and tends to 1 for r — co. These asymptotic behaviors are
encoded in the hyperbolic tangent. The second term represents
the first nearest-neighbor shell, which corresponds to the first
peak of the RDF, while the third term describes the decrease of
structure with the distance, which corresponds to the decreas-
ing height of the second peak and of the following Friedel
oscillations. The first peak is given by a Gaussian, while the
second peak and the Friedel oscillations are described by a
decaying exponential multiplied by an oscillating function.
Here we report the parametrization:

2
g(r) = tanh [(2)1] + kexp [—%}

wrann | (5) Jsin (L)exp (<)
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FIG. 1. (a) Analytical parametrization of the g(r) simulations
data for the binary CusyZrsy alloy. The values of the parameters
are reported in the main text. The inset shows the analytical fit of
the main panel together with a power-law trend line ~(r/a)’, with
I =20. (b) The average interatomic potential (potential of mean
force) obtained from the analytical fitting of g(r).

This expression contains six parameters for which we now
give a qualitative description. Parameter a is approximately
the position of the first peak (i.e., the center of the Gaus-
sian). Parameter b is linked to the width of the first peak
since it is proportional to the variance of the Gaussian. Pa-
rameter [, which is the most important for our subsequent
analysis, gives the asymptotic power-law trend of the first
term, and hence it represents the steepness of the ascending
part of the first peak of g(r). Parameter k is the height of
the Gaussian distribution, so it is linked to the height of
the peak, which is also influenced by the other two terms.
Finally, w is related to the frequency of the Friedel oscil-
lations, while % controls the decay of the envelop of the
oscillations.

The fitting of the MD simulations data of g(r) for the
CuspZrsg system is shown in Fig. 1(a) and has been obtained
with the following values of parameters: k = 1.646 (dimen-
sionless), a = 2.716 (angstrom), b = 0.054 91(angstrom2),
! = 18.77 (dimensionless), h = 4.589 (angstrom), w = 7.265
(dimensionless). It is also shown [inset of Fig. 1(a)] that
the ascending part of g(r), before the first peak, is perfectly
described by a power law ~(r/a), with [ = 20, over more
than two decades in r.

D. Determination of the interatomic potential ¢(r)

The RDF is related to the potential of mean force, ¢(r), via
the reversible work theorem:

Bo(r) = —Ing(r), “

the proof of which can be found in the textbooks [16]. The
mean interatomic potential between two atoms ¢(r) deter-
mined in this way thus accounts for many-body effects from
the surrounding electronic and atomic environment. Using
the fitting of the MD g(r) data for the CusyZrsy alloy, we
obtain the interatomic potential profile shown in Fig. 1(b).
The potential features a rather steep interatomic repulsion due
closed electron shell repulsion followed an attractive bonding
minimum mediated by the nearly free electrons. After the
minimum, the oscillations represent the Friedel oscillations in
the electronic density.

III. RESULTS AND DISCUSSION

A. T-dependent viscosity

Using Egs. (3) and (4) calibrated on the g(r) data for the
CusoZrsg alloy inside the Zwanzig-Mountain formula Eq. (2),
we are now able to evaluate the 7-dependent viscosity n by
means of the shoving model, Eq. (1). Upon denoting the kgT -
normalized integral in the Zwanzig-Mountain formula Eq. (2)
as I, we therefore arrive at the following expression for the
viscosity:

T —exp [vcp(T)(l + 2—”p(T)1(l>>]. )
1o 15

Note the cancellation of a kT factor contained in G, [and
recall that ¢(r) = —kgT In g(r)] with the kgT factor in the
denominator of the argument of the exponential in Eq. (1).
Here the T-dependent density p is expressed in terms of the
thermal expansion coefficient o7, using the definition of the
latter a = V~1(dV/dT )7, leading to

p(T) = poexp [—ar(T —To)l, (6

where pg = 7 x 10°[kg/m?] is a known value of density at the
reference temperature 7p = 298 K [17]. The above relation is
normally linearized due to the small value of a7, leading to
p(T) =~ poll — ar(T — Tp)]. Also, one should note that the
integral / in Eq. (2) is also T' dependent due to the kzT factor
in the definition of ¢(r) in Eq. (4).

In Fig. 2 we report the fitting of the viscosity data of
CusoZrsg as a function of temperature (measured with a levi-
tating drop method in Ref. [12]) by means of Eq. (5). There are
two fitting parameters in the comparison—one is the effective
thermal expansion coefficient a7 = 0.003 77 K~!, which is
significantly larger than the typical values for metallic melts
(~10~*K~") and effectively compensates for the neglected
T dependence of the activation volume V, and of the atomic
structure given by g(r), since their 7 dependence is not
known. In particular, the 7 dependence of V., may play an
important role, since it was shown to be a rapidly decreasing
function of T upon approaching 7, from below [18]. However,
the dependence of V. on T in the high-temperature liquid
phase is not known, and this may explain the larger value of
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FIG. 2. Model fitting of experimental viscosity data from
Ref. [12] using Eq. (5) with V, = 5.6 x 1072 m?, ny = 14 mPas,
I given by the integral in Eq. (2), with ¢(r) given by Eq. (4) and
g(r) from the analytical parametrization Eq. (3) of MD simulations
data of g(r) from Ref. [12]. An effective value of thermal expansion
coefficient has been taken, a7 = 0.003 77 K~ for the comparison.

the fitted oy coefficient, which makes up for neglecting the
decrease of V, upon increasing 7.

The other fitting parameter is V, which is found to be equal
t0 5.6 x 1072 m3, i.e., in close agreement with typical values
of the shoving volume found in previous works [10], and
corresponds to the characteristic size of the nearest-neighbor
cage in disordered metals. However, it is significantly smaller
than the typical size of a cooperative flow event [9].

Allin all, Eq. (5) provides a three-parameter fit of viscosity
data over a broad range of 7', and unlike other popular three-
parameter models such as VFT, the Avramov-Milchev (AM)
equation [19], and the Mauro equation [5], all the parameters
can be traced back to atomic-scale structure and interactions,
being similar to the KSZ equation [10]. The latter still retains
the favorable advantage over Eq. (5) of being in simple, fully
analytical form.

B. Effect of interatomic potential on viscosity
and fragile-strong behavior

Thanks to the direct connection that the above model
provides between 7(7") and microscopic atomic-scale param-
eters, it is possible to analyze the effect of the interatomic
potential ¢(r) on the viscosity and on the fragile-strong be-
havior. We use the interatomic repulsion steepness parameter
! in Eq. (3) as a proxy to design fictive materials of varying
interatomic repulsion with the aim of studying the effect of
the interatomic repulsion on viscosity and fragility.

We start from the level of the RDF g(r) and vary the
repulsion steepness parameter / around the value (I = 20) that
we found in the fitting of MD simulation data [Fig. 1(b)].
We thus obtain the fictive RDFs shown in Fig. 3(a). It is
clear that large values of [ correspond to a sharp rise of the
first peak of the RDF, whereas low values of / correspond to
a less steep rise of the peak. Using Eq. (4) we then obtain
the corresponding potentials of mean force describing the
interatomic potential, shown in Fig. 3(b) for the same values
of / shown in Fig. 3(a). It is evident that large [ values (I 2 20)
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FIG. 3. (a) Evolution of g(r) upon varying the interatomic steep-
ness parameter / around the value / &~ 20 used in the fitting of g(r)
in Fig. 1(a). From left to right [ = 4, 18, 30, 60. (b) The average
interatomic potential (potential of mean force) for the same values
of the [ parameter shown in panel (a).

result in steep interatomic repulsion, whereas low values of /
(i.e., / < 10-20) result in softer repulsive potentials. Based on
Eq. (3), when r/a < 1 (i.e., at short range before the first peak
of the RDF) the tanh can be approximated as a linear function,
hence ~(r/a)'. Before the peak the parameter / is thus closely
related to the A parameter of the KSZ equation, defined as
g(r) ~ (r —o)*, where o is a hard-core atomic size. Even
though the power-law trend to describe the interatomic repul-
sion is a common feature of KSZ and of the present approach,
the presence of a hard-core cut-off size o in the KSZ model
is a significant difference which quantitatively may lead to
different values of / and A, although it should not affect the
qualitative trends.

It is interesting to note that the parameter / affects only
the repulsive part of the potential, whereas, remarkably, the
attractive part of the potential, from the minimum on, is almost
unaffected. This allows us to single out the effect of the
interatomic repulsion, which strongly depends on the atomic
composition of the metal.

The corresponding viscosities as a function of T calculated
based on the RDFs and ¢(r) profiles of Fig. 3 are shown in
Fig. 4(a). Upon varying the interatomic steepness /, it is clear
that the slope of n(T) changes. In particular, larger values
of steepness / correspond to larger (steeper) slopes of the
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FIG. 4. (a) Viscosity as a function of temperature calculated
upon varying the interatomic steepness parameter / around the value
| = 18.77 (red symbol) used in the fitting of Fig. 1(a). From left to
right, [ = 4, 18, 30, 60. (b) Fragility m calculated upon varying the
interatomic repulsion steepness parameter /. Here the data point with
| ~ 20 corresponding to CusyZrs is highlighted by the arrow.

viscosity curves. The microscopic explanation for this behav-
ior resides in the kgT-normalized integral / in the Zwanzig-
Mountain formula Eq. (2). The value of I in Eq. (4) increases
systematically upon increasing /, which results in a G, more
steeply rising with 7 and hence in a larger slope of (7). This
is mainly due to the factor % [r4‘;—‘7:] inside the integral, which
clearly gives larger contributions as the repulsive decay of
¢(r) becomes steeper. This fact can be easily checked on the
simple example of a power-law repulsive decay ¢(r) ~ r=":
the larger the exponent n, the larger the contribution of this
factor to the integral.

The fragility of a glass-forming liquid is given as the slope
of the viscosity at glass transition temperature, that is, m =

(WNT:E [20]. Upon applying the definition to our
viscosity formula Eq. (5), we obtain the following expression:

VoarT
m(l) = <2178
In(10)

4
p(Tg)(l + Ep(Tg)I(l)), @)

which can be evaluated by computing / for different values of
I by keeping all the other model parameters the same as in the
fitting of Fig. 2 .

The fragility evaluated according to Eq. (7) is plotted in
Fig. 4(b) as a function of the interatomic repulsion steep-
ness parameter /. It is evident that the fragility m increases

monotonically with the repulsion steepness [/, or, in other
words, the fragility m is lower (the liquid is stronger) with
softer repulsion steepness. This fact reaffirms the conclusions
of Ref. [10] that “softer atoms make stronger liquids,” with
a surprising robustness of this law across different materials,
from colloids [21] to metals.

It is important to note that the estimate via Eq. (7) is
not quantitatively predictive because we used a viscosity
fitting calibrated at significantly higher T than T, where, by
definition, the fragility should be evaluated (recall 7, = 700 K
for CusgZrsg). However, Eq. (7) is valid and reliable as a
prediction of the qualitative trend for m as a function of /.
This is because the only parameter in Eq. (7) which depends
on [ is the factor 7, while all other parameters are independent
of the interatomic repulsion steepness and act mainly as scale
factors. This includes o7, which depends on the attractive part
of the potential but not so much on the repulsive part [22].

It is to be noted that the fragility m in Fig. 4 is predicted
to go through a crossover from a rapidly varying increasing
trend for / < 20 to a linear trend for / > 20. The latter linear
trend perfectly recovers what has been found with the KSZ
equation in [10], indeed in a range of larger m values. Instead,
the crossover from a quickly rising initial trend of m with
repulsion [/ into the (more slowly growing) linear m vs [
regime is a new prediction of the present work.

IV. CONCLUSIONS

In summary, a microscopic model of the viscosity and
fragile-strong behavior of liquid metals in the supercooled
regime has been developed based on combining the shoving
model with the Zwanzig-Mountain (ZM) formula for the
high-frequency shear modulus, G, of liquids. The model
has been evaluated using MD simulations data for the g(r)
of the CusoZrsp alloy, from which the interatomic potential
of mean force, ¢(r), has been determined upon analytically
parametrizing the g(r) data. These inputs allowed us to eval-
uate the G, with the ZM formula and in turn the viscosity
as a function of 7. This led to a semianalytical formula
for n(T) which provided an excellent three-parameter fit of
experimental viscosity data for the CusyZrsy alloy from the
literature [12]. Compared to other popular three-parameter
models, such as VFT and the Mauro equation [5], this ex-
pression, Eq. (5), features only microscopic parameters and
provides direct access to atomic-scale structural and interac-
tion quantities such as g(r) and ¢(r).

The analytical parametrization of the g(r) led to the pos-
sibility of studying the slope of viscosity as a function of T
and hence the fragile-strong behavior of the liquid in terms
of microscopic interaction potential parameters. It has been
shown that a crucial parameter which controls the fragility
is the interatomic potential repulsion steepness [ (related to
Born-Mayer repulsion and to the A parameter of the KSZ
equation [10]). It has been demonstrated that the fragility m
of an atomic liquid is a monotonically increasing function of
the potential repulsion steepness /. This result is independent
of the values of the other parameters entering the fragility
formula Eq. (7) and depends exclusively on the integral /
in the ZM formula, which gives a direct insight into the
microscopic explanation for this phenomenon. This analysis
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thus reaffirms that “soft atoms make strong liquids,” in full
agreement with previous claims on vastly different materials
such as metal alloys [10] and colloids [21,23].

Finally, we also note that the above double-exponential
form for n(T), Egs. (5) and (6), has the potential to effec-
tively describe the non-Arrhenius to Arrhenius crossover that
has been observed in supercooled liquids [24-30], since a
crossover to a single-exponential Arrhenius form [Eq. (1)]
is predicted to occur when the thermal expansion coefficient
a7 is very low. In future work, this consideration may be the

starting point to rationalize the extreme variability of the non-
Arrhenius to Arrhenius crossover with material chemistries
and bonding in terms of the bonding anharmonicity.
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