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Generative network model of transcriptome patterns in disease cohorts with tunable signal strength
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Algorithmic methods for interpreting the collective transcriptome (gene expression) patterns of disease cohorts
in the context of biological networks are a cornerstone of systems medicine. The calibration of these algorithms
using synthetic data with predefined statistical properties can be a relevant benchmarking procedure, facilitating
the choice of the appropriate algorithm and the detailed mechanistic interpretation of the results. Here we
present a generative model producing patterns of significantly up- and down-regulated genes for synthetic disease
cohorts, in which the statistical agreement between the given biological network and the transcriptome patterns
can be tuned. Parameters of this generative model are, among others, the size of the cohort, the number of
disease-associated genes, the clustering of differentially expressed genes in the network and the network size.
Several properties of the model can be analyzed analytically. In a first application of this generative model to
produce test instances, we show that considering the subset of significant expression changes occurring in more
than one patient of the cohort as an additional filtering step serves as an efficient noise suppression mechanism
to enhance the recall of the signal contained in the data by the network connectivity.
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I. INTRODUCTION

Over the last two decades a range of algorithmic methods
has been developed for interpreting the collective gene expres-
sion (transcriptome) patterns of disease cohorts in the context
of biological networks (e.g., Refs. [1–7]). These methods
are in the broader context of interpreting clinical data using
biological networks [5,8–12] as a path towards a systems-level
understanding of medical data, i.e., the emerging discipline of
systems medicine. In this way, medical research undergoes a
transformation similar to the one we have seen in Biology with
the advent of systems biology [13–15].

One of the components, which research in systems
medicine is currently lacking, are generative models capable
of producing data sets with similar statistical properties as
real clinical (cohort) data, where the signal type and signal
strength can be tuned via specific model parameters, thus
allowing medical researchers to test, compare—and hence
better select—and calibrate their data analysis methods.

Creating such generative models for medical data sets can
be a novel and highly transformative contribution of statistical
physics to medical research. Over decades already, physics
has contributed to systems biology in a multitude of ways (see
Refs. [16–19] for overviews; see Refs. [20–23] for specific
examples). The design of generative models has for a long
time been an important component of statistical physics. Ex-
amples include suitable random graphs models to benchmark
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the analysis of real networks [24–26], as well as the multitude
of interdisciplinary applications of coupled phase oscillators
[27] and the Ising model, as well as its derivations [28–30].

The goal of “network medicine” [31], the statistical anal-
yses of high-throughput (“omics”) data from a network per-
spective, is to identify systematic differences between healthy
and disease states or between different diseases [9]. The
algorithms differ in the processing of the given biological
network and the transcriptome data characterizing the disease
cohort and the controls, as well as in the quantification of the
network patterns obtained from the individual transcriptome
profiles and the various types of filtering and binning steps
applied to the experimental data (see, e.g., Refs. [4,32–34]).
Due to the often small cohort sizes, the unknown numbers of
disease-associated genes, the noise in the transcriptome data
and uncertainties in the biological networks it is in general
unclear, what “signal strength” can be expected in such an
analysis.

Here we introduce a simple model for generating di-
chotomized gene expression (transcriptome) profiles for dis-
ease cohorts. By “dichotomized” we mean that for each gene
and patient we generate only the presence or absence of this
gene in the set of differentially up- or down-regulated (see
Ref. [4]) genes. Furthermore, we study the properties of this
stochastic model and the statistical features of the generated
disease-specific transcriptome profiles. For some key features
of the model we have been able to derive semianalytical
expressions, as well. Such disease cohort transcriptome data
will differ substantially in signal strength: often it will not be
possible to extract any information on the set of disease genes
(no discernible signal).

Sometimes, statistical methods applied to the individual
patient level will reveal features of the set of disease genes
without the need to include any network information (strong
signal). Often only the combination of network information
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FIG. 1. [(a) and (b)] Depiction of expression densities ρG, ρD, and ρH and their dependence on the parameters G, D, H , and P. Here, G
is the number of genes in the network, D is the number of disease related genes, H is the number of disease unrelated genes, H = G − D,
while P is the number of patients and C is the number of controls. For the densities, ρG is the expression density in the control group, ρD is
the expression density of disease-related genes in the patient group and ρH is the expression density of other genes in the patient group. The
quantity A is the parameter scaling the statistical over-representation of disease genes among patients. (c) Schematic representation of our data
generation and analysis pipeline, including disease pattern creation, generation of cohorts and recalling the disease pattern via filtering.

and cohort information will allow access to some properties
of the set of disease genes (weak signal). This weak signal
scenario is the one addressed here. Our generative model of
transcriptome patterns in disease cohorts has been designed to
create data sets with very small differences between patients
and controls. For this case of weak signals, we show how
the interplay of statistical properties and network information
allows extracting information on the set of disease-associated
genes.

If the biological network is meaningful for the situation
at hand (i.e., for characterizing the gene expression data) we
can expect that the differentially expressed genes display a
certain amount of clustering in the network. By now there is
ample evidence linking neighborhood in biological networks
with disease-gene associations [10,35] and gene coexpression
[1,3].

In our generative model, we mimic this expected clustering
by creating a set of VD disease-associated genes via a version
of a random walk algorithm on the given network. With
this minimal model we thus provide a conceptual tool for
exploring key ideas in systems medicine.

In the following, we will describe the model (Sec. II), next
we will illustrate the capabilities of the generative model using
a simple case study (Sec. III). Then we provide broad descrip-
tion of the results discussing disease cohorts and filtering,
together with some analytical insights (Sec. IV). Lastly, we
put our results in the context of systems medicine (Sec. V).

II. THE GENERATIVE MODEL

The foundation of our generative model of stylized tran-
scriptome profiles for disease cohorts is the existence of a

small systematic difference between patients and controls.
The control group can be expected to be phenotypically highly
diverse. Patients, however, even though similarly diverse,
at least agree in one phenotype (the disease). Thus if the
systematic gene expression differences between patients and
controls can be functionally linked to the disease, we should
see a clustering of the corresponding genes in a biological
network relevant to this functional interpretation.

The generative part of the model consists of generating
a disease, then a cohort and control group. These steps are
described in the present section. The resulting sets then enter
the analysis pipeline, which is described and further studied
in Sec. IV. All these steps are illustrated in the following
schematic depictions: disease and cohort generation: Fig. 1
(right), details are depicted in Appendix B.

A. Disease generation

Let �(VG, E ) be a graph representing a biological network,
where vertices VG denote genes linked (via some biological
relationship) by edges E .

Examples of such networks are gene-centric representa-
tions of metabolic networks [4,36], transcriptional regula-
tory networks [37] and protein-interaction networks trans-
lated into genes via gene-to-protein mappings [38,39]. Such
relationships between gene expression patterns and network
properties have for a long time been a topic of interest
in physics. In [40] random matrix theory has been applied
to gene expression patterns. Reconstructing gene expression
levels pertaining to individual cell types in samples containing
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mixtures of cell types has been studied in Ref. [41]. In an
application of the theory of stochastic processes to gene ex-
pression, the impact of noise correlation time on regime shifts
(sudden changes in systemic behavior) has been analyzed
[42]. The broad question, how connectivity can be inferred
from the response dynamics of a system, has been addressed
in Ref. [43]. In Ref. [44], constraints on gene expression have
been derived from fluctuation theorems. In an application of
Boolean networks to real gene regulatory systems, the link of
network states to an epigenetic landscape has been outlined
[20].

As discussed above, we assume that the signal discriminat-
ing between patients and controls in a disease cohort is asso-
ciated with a set of disease-associated genes. If the network
� is relevant for the disease mechanisms, we can expect that
the disease genes display some type of (occasionally weak)
clustering on the network.

We generate suitable gene sets via a random walk with
occasional jumps (sometimes also called a “teleporting ran-
dom walk” [45]) with a teleportation probability 1 − p. In
this way, the amount of clustering displayed by the set of
genes (nodes) generated by the random walk is regulated by
the parameter p. For the purpose of our investigation, this set
of genes represents the disease. The full procedure can be
summarized as follows. (1) Randomly draw one gene from
the network and mark (color) it as disease-related. (2) With
probability p color one randomly chosen neighbor of the last
colored gene and repeat step 2 or with probability 1 − p go to
the step 1.

Vertices colored in the course of this procedure indicate
disease-related genes and form the set VD. The parameter
p regulates statistical properties of the set VD such as the
average cluster size. The greater p, the larger is the average
cluster, which sizes follow a Poissonian distribution. For p =
0, there is no clustering at all and disease genes are distributed
randomly, while for p = 1 only one large cluster forming a
connected subgraph of �(VG, E ) is created.

B. Cohort generation

We now turn to the generation of the disease cohort. A typ-
ical step in the analysis of real (experimental) transcriptome
data is to identify significantly up- and down-regulated genes
via some suitable statistical test, leading to a binarized version
(a gene is part of the differentially expressed set or not) of
the data. In our model, the transcriptome data are already
generated in this binarized form.

We deliberately decided not to distinguish between up- and
down-regulated genes. There is a multitude of methods for
extracting gene sets from expression patterns with differential
gene expression being only one possibility [see the diverse
discussions in 46–49]. An alternative is to consider the highest
percentile of expression levels of a gene, as it was done in [4]
and [7].

In the following, we describe how the corresponding sets
of differentially expressed genes for an individual patient or
member of the control group (sets V ∗

Gi
) are generated. Here

and in the following the asterisk indicates that these gene sets

are the marked or selected sets (as opposed to the “whole”
static sets like VG).

We assume that for some diseases, the disease-related
genes VD ⊆ VG form clusters in the given biological network
�. Furthermore, we assume that patients have a slightly higher
probability for genes from the set VD to be differentially
expressed than the controls. Across the whole cohort this
results in a set V ∗

D ⊆ VD, which is the data representation of
the (static) set VD. Additionally, patients can also differentially
express genes unrelated to the disease (the rest of the set VG),
VH = VG \ VD.

The whole set of differentially expressed genes of the
patient j is V ∗

Gj
= V ∗

Hj
∪ V ∗

Dj
. Usually for clinical cohorts

focusing on a specific disease a group of patients SP = {Pj}
and the control group SC = {Ci} exist, where |SP| = P and
|SC | = C.

An advantage of large control sets, C � P, is that subsets
of SC of the same size as the patient set can be created and,
hence, the comparison of SC and SP can be done on a broader
statistical level (for several subsets of SC) and hence leads to
a more reliable estimate of VD. As long as C � P, the size of
the control group will not show up as a separate parameter of
our analysis.

The process of generation of artificial expression profiles
adheres to the following algorithm.

(1) Control group. For each member of the control group
take a random subset of the set of all genes V ∗

Ci
≡ V ∗

G,i ⊆ VG

with the probability for each gene to be chosen being ρG.
(2) Patients. For each patient randomly select two subsets

of genes with different probabilities: V ∗
Dj

⊆ VD with proba-
bility ρD and V ∗

Hj
⊆ VH with probability ρH . Then take the

union of these sets, V ∗
Pj

≡ V ∗
Gj

= V ∗
Dj

∪ V ∗
Hj

, as an individual
expression profile.

When filtering (see below) is applied to these sets, we
obtain the patient and control gene sets V ∗

P and V ∗
C discussed

in the illustrative example above. The following shorthand
notations for the sizes of sets:

G ≡ |VG|, G∗
i ≡ ∣∣V ∗

Gi

∣∣,
H ≡ |VH |, H∗

j ≡ ∣∣V ∗
Hj

∣∣,
D ≡ |VD|, D∗

j ≡ ∣∣V ∗
Dj

∣∣,
G = H + D, G∗

j = H∗
j + D∗

j .

(1)

There are two important assumptions with regard to prob-
abilities ρx. (1) There is no difference in the average number
of expressed genes between individual patients from SP and
controls from SC . (2) Patients SP tend to express disease
related genes VD slightly more often than the rest VH and than
the healthy group SC . Thus ρH � ρG � ρD.

Within our generative model and under these two assump-
tions the densities can be parameterized in the following way:

ρDmax = min

[
1, ρG

G

D

]
, (2)

ρD = ρG + A(ρDmax − ρG),

ρH = ρG − D

H
(ρD − ρG),

where A is the parameter scaling over-representation of
disease related genes in the group of patients, hence
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ρD(A = 0) = ρG and ρD(A = 1) = ρDmax . For reference, see
Fig. 1 (bottom left), where the relation between densities is
depicted. Artificial expression profiles created in this way are
ready for further analysis.

Note that we distinguish two steps: generating the disease
(where VD appears) and generating the cohort (where affected
genes are randomly sampled from VD and, to a lesser probabil-
ity, from VG \ VD). The set VP is then the set of genes extracted
(e.g., via filtering) from the patient cohort. The corresponding
set for the controls is VC .

III. A FIRST ILLUSTRATION OF THE
GENERATIVE MODEL

Before describing results generated by the model and the
network-based data analysis method, it is worth to analyze a
specific example, illustrating how a signal embedded in the
data generated with our model can be extracted via the tuning
of the data analysis (“filtering”) parameters.

Let us assume a disease with a certain set VD of disease-
related genes, D = |VD|. In the “disease generation” part of
the model, this set is generated by a random walk on a given
biological network � = �(VG, E ). The nodes of the network
are genes (a set VG, with VD ⊂ VG) and a link describes some
biological interaction (forming the edge set E ).

In the “cohort generation” part of the model, two subsets
of data are generated. (1) Patients. These are represented by
sets of genes with a slight over-representation of disease-
associated genes (for a patient, the probability of selecting
a gene from the set VD, rather than from the remaining set
VH = VG \ VD, is regulated by the parameter A). (2) Controls.
The gene sets for the healthy controls are randomly drawn
from the whole set VG.

Cohorts generated in such a way vary in cohort sizes
(numbers of patients |P|, number of controls |C|), clustering
of disease genes in the network (clustering parameter p),
numbers of genes G = |VG|, and disease-associated genes D.

Another parameter is the number of differentially ex-
pressed genes (regulated via the density parameter ρG). This
parameter can be varied during the statistical analysis via a
(fractional) threshold for determining differentially expressed
genes (see, e.g., Ref. [4]).

The set of differentially expressed genes, together with
their multiplicities, in the patient group and the control group
are then subjected to further statistical analysis. Here, any data
analysis technique from the literature can in principle be ap-
plied to this stylized representation of transcriptome profiles
of a disease cohort. Here we illustrate this procedure using
an extension of the “network coherence” method discussed in
Refs. [3,4], where the connectivity of subgraphs spanned by
gene sets is evaluated. The two ingredients of our statistical
analysis are multiplicity filtering and the computation of sub-
graph connectivity.

Multiplicity filtering of strength f means that a set of
candidate disease genes is constructed from the patient gene
sets, which consists only of genes occurring more than f times
in the patient gene sets. The same is done for the controls.

Subgraph connectivity essentially assesses the agreement
of a set of genes with the network. Here we use the following
definition: Given a set of genes V ∗

G , we consider the induced

subgraph �|V ∗
G

consisting only of nodes from V ∗
G and the sub-

set of edges from E among nodes from V ∗
G . The connectivity

cV ∗
G

is the number of nodes in V ∗
G with nonzero degree in this

induced subgraph divided by the total number of nodes in the
subgraph (i.e., by |V ∗

G |).
Variation of f (selecting genes from the individual gene

sets into a common set according to their multiplicities) and
ρG (varying the number of differentially expressed genes and,
hence, the average size of the individual gene sets) now allows
us to estimate the set of disease-associated genes VD. At a
fixed choice of f and ρG we obtain one common set V ∗

P for
the disease group and one common set V ∗

C for the controls.
Figure 2 shows the comparison of the two sets V ∗

P and V ∗
C

with the disease gene set VD for different values of ρG and
f . Subsets of nodes, together with the links among them, are
highlighted in the following way: true positives (genes in the
intersection of V ∗

P and VD): red; false negatives (genes in VD,
but not in V ∗

P ): yellow; false positives (genes in V ∗
P , but not in

VD): green. Furthermore, the connectivities c∗
P and c∗

C , asf well
as their difference �c are indicated. One can see the variation
of the reconstruction quality (many red, few green and yellow
subgraphs) with the data analysis parameters f and ρG. Also,
the figure provides a first indication that the �c can serve as a
measure for this reconstruction quality.

The generative model described so far is also made avail-
able via a web application, see Ref. [50]. Note that default
settings of this app allow to reproduce Fig. 2

In the following, we will compute this difference of con-
nectivities between the gene sets derived from patients and
controls as a quality measure. The analysis strategy will
then be to vary the data analysis parameters such that �c is
maximized. We expect that the resulting set V ∗

P is the best
predictor of VD.

IV. RESULTS

A. Individual connectivity

The first and simplest analysis strategy is to study, how
the distributions of connectivity c (defined as a fraction of
nonisolated nodes in the subnetwork spanned by differentially
expressed genes) vary between the patients and controls.
Within the framework of our model of disease cohorts, the
averages of these connectivities can be obtained analytically
(see Appendix A for details) and are given by the following
expressions:

cC∗
i

= 1 − (1 − d )G∗
i −1,

cD∗
j
= 1 − (1 − ρD p)2 (1 − d )H∗

j +D∗
j −3ρD ,

cH∗
j
= 1 − (1 − d )H∗

j +D∗
j −1

cP∗
j
=

D∗
j cD∗

j
+ H∗

j cH∗
j

D∗
j + H∗

j

,

(3)

where cC∗
i

is connectivity for the healthy individual i, and cP∗
j

is connectivity of the patient j.
This attempt does not always proof successful, as the

difference in c between these two groups might rarely be
detectable, see Fig. 3 (where three of four panels present
no discernible difference between patients and controls). The

033130-4



GENERATIVE NETWORK MODEL OF TRANSCRIPTOME … PHYSICAL REVIEW RESEARCH 2, 033130 (2020)

FIG. 2. Eight different combinations of the parameters ρG and f
resulting in eight different sets, i.e., groups of selected (“colored”)
nodes. Color coding is as follows: red: true positives VD ∩ V ∗

P ,
yellow: false negatives VD \ V ∗

P , and green: false positives V ∗
P \ VD. A

perfect set would have only red nodes and none of green or yellow.
The closest to it is (d). It also has the highest �c (where �c indicates
how strongly the ratio of nonisolated nodes (connectivity) of the
patient group exceeds the one derived from the control group). Other
parameter values: G = 1000, d = 0.006, D = 50, P = 20, p = 0.3,
and A = 0.25. Different columns stand for subsequent values of ρG:
[(a), (c), (e), and (g)] 0.01 and [(b), (d), (f), and (h)] 0.05. Rows
denote different values of f : [(a) and (b)] 5, [(c) and (d)] 3, [(e) and
(f)] 1, and [(g) and (h)] 0.

reason is that usually D, p, and A are rather low (small
set of disease genes, low clustering in the network, small
enhancement of differentially expression for disease genes).

FIG. 3. Comparison of individual connectivity distributions for
P = 20 patients (red) and C = 20 controls (green) for otherwise
the same parameters as in Fig. 2: G = 1000, d = 0.006, D = 50,
and p = 0.3. The dark red color indicates the overlap of the two
histograms (red+green). From left to right: more differentially ex-
pressed genes; from bottom to top: stronger disease-control differ-
ences. Different columns stand for subsequent values of ρG: [(a) and
(c)] 0.01 and [(b) and (d)] 0.05. Rows denote different values of A:
[(a) and (b)] 0.5 and [(c) and (d)] 0.25.

Comparison of the bottom row of Fig. 3 with Fig. 2 shows
that even in the cases of weak signal and no noticeable
difference on the individual level, the filtering procedure can
allow extracting information on the disease gene set.

B. Collective connectivity

In the following approach, there is no attempt of interpret-
ing the data on an individual level. Instead, the group of the
patients is analyzed as a whole. While individual information
is lost in this analysis, the set of disease-associated genes, as
well as functional clusters in the given biological network can
be extracted with higher quality. Extraction of this information
consists roughly of three steps.

(1) Filtering. This step combines information on differen-
tial gene expression from single patients into one group, and
then filters genes by the number of occurrences. This is a noise
reduction step in order to unveil general underlying biological
mechanisms driving the disease for more details, see Fig. 8 in
Appendix B.

(2) Projection. This step is the process of putting filtered
data onto a given network.

(3) Maximising. The first two steps are meant to be per-
formed as a function of ρG and f , such that a set of these
parameters is searched maximising the difference between
connectivities of the patients group cS and the controls cC .
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This maximization allows to get the best possible recall of the
set of disease-related genes VD for more details, see Fig. 9 in
Appendix B.

The exact implementation of these steps is rather straight-
forward and intuitive. Filtering is summing up sets of ex-
pressed genes to create multiset of all differentially expressed
genes among control C and patients group P:

M∗
C =

C∑
i=1

VC∗
i

= {
v

m(vk )
k

}
C,

M∗
P =

P∑
j=1

VP∗
j
= {

v
m(vk )
k

}
P.

(4)

Notice, that while VC∗
i

or VP∗
j

are the sets of differentially
expressed genes, M∗

C and M∗
P are multisets, which means

that the same elements can be present multiple times in the
same multiset, where vP∗

j
is a single gene and m(vP∗

j
) is

the multiplicity of this gene in combined multiset MP. The
noise suppression step now consists of accepting only genes
repeating itself more than f times, where f is the filtering
threshold:

V ∗ f = {vk|m(vk ) > f }, (5)

where V ∗ f is not a multiset anymore but becomes just an
ordinary set again. In the following we will show that this
filtering procedure performs well in the task of identifying
disease-related genes. We expect this to be true not only
for the synthetic data studied here, but also for real disease
cohorts, particularly when the signal is weak.

On this collective level, the calculation of connectivity is
slightly more complicated than in the individual case, but still
remains feasible. At first, the probability RX ≡ RX (P, ρX , f )
of given gene to remain in the set V ∗ f after filtering is
calculated:

RX =
⎧⎨
⎩

∑P
i= f +1

(P
i

)
ρ i

X (1 − ρX )P−i for f � 0

∑| f |
i=1

(P
i

)
ρ i

X (1 − ρX )P−i for f < 0
, (6)

where X ∈ {G, D, H} and f is the filtering level. While the
typical filtering procedures will use positive integer values for
f , the procedure can also be extended to nonpositive integer
values.

(1) For f > 0, all the genes appearing more than f times
in the multiset M∗ are taken: V ∗ f = {vk|m(vk ) > f }.

(2) For f = 0 all the genes from the multiset M∗ are taken:
V ∗ f = {vk|m(vk ) 	= 0}.

(3) For f < 0 all the genes appearing less or equal than − f
times in the multiset M∗ are taken: V ∗ f = {vk|m(vk ) � − f }.

Hence it is obvious that V ∗ f
P ∪ V ∗− f

P = V ∗0
P . We expect

that, while positive values of f will allow an identification of
the disease mechanisms, negative values of f will address the
diverse disease coping mechanisms of the individuals, as well
as other individual traits, in the cohort.

FIG. 4. Connectivity c for collective expression for different A,
p, and f (while parameters D, P, and ρG are fixed). Simulations are
made on an Erdős-Rényi graph with an edge density of d = 0.006.
Red: c∗ f

P , green: c∗ f
C and orange: connectivity of the complete pure

disease related gene set c f (VD ). Solid lines are from the numerical
experiment with filled areas denoting the span of ±σ , while dashed
lines are the average values obtained analytically. Different columns
stand for subsequent values of f : [(a) and (c)] 0 and [(b) and (d)] 1.
Rows denote different values of A: [(a) and (b)] 0.5 and [(c) and (d)]
0.25.

By analogy with the previous expressions [Eqs. (3)], we
obtain

c∗ f
C = 1 − (1 − d )G∗−1,

c f
D∗ = 1 − (1 − RD p)2 (1 − d )H∗+D∗−3 RD ,

c f
H∗ = 1 − (1 − d )H∗+D∗−1,

c∗ f
P = D∗ c f

D∗ + H∗ c f
H∗

D∗ + H∗ ,

(7)

where we use X ∗ = RX pX , which is true on average in the
realizations of cohorts, with X ∈ {G, D, H}.

Here, c∗ f
P is the collective connectivity calculated from

the group of patients, while c∗ f
C is the collective connectivity

obtained from the control group in the way that P individuals
from the control group are taken randomly. If the size of
the control group allows, this step is repeated many times,
such that c∗ f

C becomes the average connectivity of the control
group, providing us with a null model to properly assess
the patient-derived collective connectivity, c∗ f

P . In particular,
it can be assessed, how the difference between c∗ f

P and c∗ f
C

changes with the filtering threshold f , densities ρx and the
number of patients P. In case of a statistically significant
difference between the two connectivities one can claim that
the disease related cluster of genes has been detected. Figure 4
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depicts how signal (red) and noise (green) are changing as a
function of the disease signal parameter A and the filtering
strength f . Also, the connectivity of the full set VD (orange)
is provided as a reference. Thus, the orange curve indicates
the maximal signal strength, which can be obtained by data
analysis. Note that at low clustering (low p) due to differences
in the sizes of gene sets, the connectivity of the full set can
be systematically smaller than the connectivities derived from
the other two sets. Furthermore, the numerical results (solid
lines, together with their standard deviations) are compared
with the analytical predictions (dashed lines). It is clear, from
this Fig. 4, that agreement between numerical and analytical
results is clearly seen. At A = 0.5, we can see that an in-
crease of f reduces the background signal c∗ f

C and enhances
the disease signal c∗ f

P . This is not always the case, because
for higher f signal can degrade again, for more details see
Figs. S1–S4 in Ref. [51]. In Fig. 4 with increasing p and a
suitable filtering, the red curve, representing signal, should be
more and more different from the green curve, representing
noise. The orange curve is the connectivity of the subgraph
spanned by VD and hence the maximally achievable signal
strength.

Figures S1–S4 [51] show these results for a wider range
of A and f , confirming the general observations from Fig. 4.
Furthermore, they show the interplay, in the generated data,
between multiplicities, patient cohort size, and the signal
strengths A and p, resulting in a nontrivial dependence of
the accuracy on filtering: Moving along a row (i.e., at fixed
A, varying f ), we see in many cases the red curve (signal)
moving away from the green curve (noise) towards the orange
curve (maximally achievable signal strength) and then back
again. A more detailed view on this nontrivial dependence is
offered by Fig. S9–S14.

At lower values of A the disease signal c∗ f
P is only visible

at high clustering p of disease genes. This points to the
“multiplicative” nature of the two disease-related parameters
(disease signal parameter A and network signal parameter p);
if A is not very high, a strong clustering of disease genes in
the network is needed to detect the set of disease genes.

The difference between the red and the green curves is
an indicator, how well the network-based analysis is capable
of discriminating between the patient group and the control
group. Hence, it is helpful to study this difference �c as a
function of the parameters involved. This will be addressed in
the following sections.

C. Optimal filtering

The aim of the method described above is to extract
systematic differences between gene expression patterns of
patients and controls with respect to a given network and, fur-
thermore, obtain information on the set of disease-associated
genes, VD. As a result of the data analysis one obtains filtered
sets of genes V ∗ f . These sets then allow to calculate c values.
For the group of patients SP, V ∗ f

P → c∗ f
P and for the control

group SC , V ∗ f
C → c∗ f

C . It has been stated before, that in the
case of the control group, the average over the ensemble of
many group compositions having P individuals can be taken.

When confronted with real data only two parameters which
can be set: the threshold for differential gene expression
leading to the gene expression density ρG and the filtering
threshold f . The rest of the parameters of the model is coming
from the experimental setup or can be obtained (or estimated)
from biological knowledge, and cannot be changed in the
process of the data analysis. We therefore need to understand,
how the reconstruction of the set VD depends on the values of
ρG and f , in a balance of maximizing information extracted
from the data while minimizing noise.

It is helpful to summarize the parameters and observables
of our generative model again, as the optimal values of ρG and
f will depend on these parameters, as well as on our capability
to extract the connectivity differences from the observables.

In general, the parameters of the model can be divided
into three categories: unknown (D, A, and p) parameters are
coming from the biological reality; they can be estimated from
the data after detailed analysis (Sec. IV D), but are unknown
in the beginning; known (d , P, and G) parameters are the
properties of the experimental settings and are fixed in the
analysis process; and variable (ρG and f ) parameters can be
set during the process of data analysis. The observables are
classified in two categories: direct observables (G∗, c∗ f

P , and
c∗ f

C ), which are obtained directly from the cohort data, and
hidden observables (D∗, H∗, c∗ f

D , and c∗ f
H ), which need to be

estimated indirectly from the data and, hence, are procedure-
dependent (see Sec. IV D).

1. Calculation of optimal filtering from model parameters

If all parameters are available, the optimal or near-optimal
values of f and ρG can be calculated directly. Optimal values
of f and ρG will be denoted as f̄ and ρ̄G and the values are
obtained as follows. From Fig. 1, we see that the fraction
ρD/ρH has its maximum for ρG ∈ (0, D

G 〉, while the difference
ρD − ρH is greatest for ρG = D

G and this is the searched value
of this parameter, because in this specific point both the
fraction and the difference of ρD and ρH have their maximal
values. Hence,

ρ̄G = D

G
. (8)

Having ρ̄G, we can now compute f̄ . We start from the number
of occurrences of a given gene in the patient multiset M∗

P. In
the patient cohort there are two types of genes, VD and VH .
Optimization strategy is about extracting the greatest possible
number of VD genes, while keeping the extracted VH genes on
the lowest possible level. The probability of a given gene to
be present in the patient cohort more than f times is

RX =
P∑

i= f +1

(
P

i

)
ρ i

X (1 − ρX )P−i (9)

and the probability of exactly n appearances is

rX (n) =
(

P

n

)
ρn

X (1 − ρX )P−n. (10)

Furthermore, the average number of appearances is just

〈nX 〉 = P ρX . (11)
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Without a detailed knowledge about the shape of the distri-
butions involved, the most reasonable choice is to put the
filtering threshold f in between of 〈nH 〉 and 〈nD〉 in equal
distance from both:

f̄ ≈ 1
2 (ρD + ρH )P. (12)

This choice provides a near-optimal recall.

2. Extraction of optimal filtering via data analysis

The situation of identifying the optimal choices of param-
eters ρG and f is substantially different, when the key param-
eters characterizing the disease, D, A, and p are unknown. In
particular, the network now becomes a crucial part of the data
analysis procedure. As discussed above, the main observable
of our analysis is the connectivity signal strength defined as
the difference between the connectivity obtained from the
group of patients, c∗ f

P , and from the control group, c∗ f
C :

�c = c∗ f
P − c∗ f

C . (13)

As shown in Appendix C, the quality Q (also defined in
Appendix C) of the retrieved set of genes is positively corre-
lated with �c, which is easily obtained from the data analysis.
Moreover, this correlation persists at relatively high levels for
a broad range of (known and unknown) parameters.

On these grounds, the full method can now be established.
In the model, �c depends on all the parameters, but in the data
analysis part only two are changed, then �c → �c(ρG, f ).
and the same goes for Q → Q(ρG, f ). A sweep of the param-
eter space ρG × f is required, in order to find �cmax which
is very likely to give also Qmax (or a quality value close to it)
and, hence, the set of the genes of the best possible quality.
Qmax = 1 means that whole set of disease related genes is
extracted and none of the unrelated ones.

D. Estimation of disease parameters

From the data analysis and the analytical equations dis-
cussed so far, we can estimate the disease parameters. After
the scan of the ρG × f space, the point where �c(ρG, f ) is
maximal, has been obtained. For the sake of simplicity, we
assume that this point is unique. In practice (in particular
in small empirical data sets) noise can lead to multiple,
coexisting optimal or near-optimal points, which would then
need to be evaluated separately. Furthermore, we assume that
this point coincides with highest quality Q. In this case, the
maximization of �c leads to the optimal parameters ρ̄G and f̄ :
�cmax(ρG, f ) = �c(ρ̄G, f̄ ). This enables us to subsequently
estimate values of the disease-related parameters: D, A, and p
as D̃, Ã, and p̃.

This estimation procedure is performed in a hierarchical
order. First ρ̄G yields D̃, then f̄ and ρ̄G yield Ã and lastly
D̃, Ã, and �cmax yielding p̃. This procedure acknowledges
the underlying dependence scheme of the quantities involved:
ρ̄G → ρ̄G(D), f̄ → f̄ (D, A) and �cmax → �cmax(D, A, p).
Or in reverse fashion: D̃ → D̃(ρ̄G), Ã → Ã(ρ̄G, f̄ ), p̃ →
p̃(ρ̄G, f̄ ,�cmax).

1. Estimation of D

At first, the estimation of D̃ from ρ̄G, is based on Eq. (8)
and yields

D̃ = ρ̄G G, (14)

where ρ̄G is the value of ρG for which �c is maximal. This
is easily done with the data analysis routine and gives an
almost perfect estimation of D, where precision depends on
the resolution of the ρG parameter.

2. Estimation of A

The next step is the estimation of Ã, which is obtained from
the f̄ :

f̄ ≈ 1
2 (ρ̄D + ρ̄G)P. (15)

It is similar to Eq. (12), but now with ρG instead of ρD. This
approximation gives a better estimation and simpler analytical
form. The reason is because in Eq. (12) the quality Q of the
signal was maximized, while in Eq. (15) the actual network
signal �c is maximized. Even though they are close to each
other, they are not always perfectly aligned. Putting ρ̄G to the
Eqs. (2) gives

ρ̃D = ρ̄G + A(1 − ρ̄G). (16)

Now plugging Eq. (16) into Eq. (15) and combining with the
restriction that A cannot exceed 1 yields

Ã = min

{
2

f̄
P − ρ̄G

1 − ρ̄G
, 1

}
. (17)

It should be noted that this is an approximation. However, it
works reasonably well, as can be seen in Figs. 5 and 6, where
also the estimate for p is depicted.

3. Estimation of p

Having obtained D̃ and Ã, the last step is the estimation of
p as a p̃ from �cmax. Equations (7) yield

p̃ = max

⎧⎨
⎩

1 −
√(

1 − c̃ f
D∗

)
(1 − d )−H̃∗−D̃∗+3R̃∗

D

R̃∗
D

, 0

⎫⎬
⎭, (18)

where also from Eq. (7) one has

c̃ f
D∗ = 1

D̃∗
[
c∗ f

P (H̃∗ + D̃∗) − H̃∗ c̃ f
H∗

]
(19)

(20)

and again

c̃ f
H∗ = 1 − (1 − d )H̃∗+D̃∗−1, (21)

where

R̃D =
P∑

i= f̄ +1

(
P

i

)
ρ̃D

i(1 − ρ̃D)P−i, (22)

R̃H =
P∑

i= f̄ +1

(
P

i

)
ρ̃H

i(1 − ρ̃H )P−i, (23)
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FIG. 5. Estimation of parameters A and p as a function of D,
where G = 1000, P = 20, and d = 0.006. Solid lines indicate orig-
inal parameters and dashed lines with dots are estimates. Different
columns stand for subsequent values of p: [(a), (e), (i), and (m)] 0.25,
[(b), (f), (j) and (n)] 0.5, [(c), (g), (k), and (o)] 0.75, and [(d), (h), (l),
and (p)] 1. Rows denote different values of A: [(a)–(d)] 1, [(e)–(h)]
0.75, [(i)–(l)] 0.5, and [(m)–(p)] 0.25.

FIG. 6. Estimation of parameters A and p as a function of P,
where G = 1000, D = 50, and d = 0.006. Solid lines indicate orig-
inal parameters and dashed lines with dots are estimates. Different
columns stand for subsequent values of p: [(a), (e), (i), and (m)] 0.25,
[(b), (f), (j), and (n)] 0.5, [(c), (g), (k), and (o)] 0.75, and [(d), (h), (l),
and (p)] 1. Rows denote different values of A: [(a)–(d)] 1, [(e)–(h)]
0.75, [(i)–(l)] 0.5, and [(m)–(p)] 0.25.

and

D̃∗ = R̃D D̃, (24)

H̃∗ = R̃H (G − D̃). (25)

In this way, all the hidden parameters can finally be estimated
from the data. Having these values also the quality Q can
be evaluated. See Figs. S5–S8 in Ref. [51] for more details
regarding above estimation.

V. DISCUSSION

The challenge of systems medicine is to employ modeling
and data analysis tools from systems biology for the inter-
pretation of medical data. Statistical physics has routinely
contributed data analysis techniques for gene expression data
(see, e.g., Refs. [40,42,44])

In contrast to the many successful applications of mathe-
matical and computational methods in Systems Biology, data
sets in systems medicine are often very small and highly
heterogeneous with few well documented cases of evidence
converging towards universal principles. We can think of
the “signal strength” in such data as the maximal amount
of information an ideal analysis method would be capable
of extracting from a given data set (e.g., discriminating the
disease state from healthy controls). In typical medical data
sets, we can expect this signal strength to be rather small. At
the same time, we see a tremendous diversity in computational
methods, often to the point where data analysis tools are
tailor-made for a specific data set and only applied to this data
set alone [52]. In particular, there are few comparative studies,
which could allow a medical researcher an informed choice in
this diversity of computational methods. Notable exceptions
are [53,54].

We employ well established tools, like a random walks and
networks, to formulate a simple yet flexible model of gene
expression profiles for clinical cohorts typically encountered
in medical research. This abstract, generative model can be
used to create test instances of data to try out and calibrate
existing analysis tools. This model can also facilitate the
design of new data analysis methods. With the filtering-based
connectivity assessment described here, we give an example
of such a new method. Here we ask, what the cohort-level,
collective analysis (in contrast to the sequential analysis of
individual patients within a disease cohort) can offer. We
exploit here that the disease subgroup can be expected to
be more uniform than the controls, because they share a
phenotypic feature. Qualitatively, in our generative model,
this leads to an enrichment of disease-associated genes in the
filtered set.

Here we show that, surprisingly, key parameters of the
data, like the number of disease-associated genes, can be
reconstructed from the data, by using a comparatively small
number of quantitative parameters: (1) the “recall” of disease-
associated genes in the expression data (i.e., the offset in
likelihood of being differentially expressed in the disease
state, (2) the amount of clustering of differentially expressed
genes in the given biological network. We can furthermore
clearly delineate the region of signal strength, where the
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network facilitates the analysis, e.g., the identification of the
disease-associated genes.

The filtering-based data analysis method presented here
can be seen in competition with a multitude of related methods
from the corresponding literature in bioinformatics, systems
biology, and systems medicine [55]. An example is the “key
pathway miner” method [56–58], which shares similarities
with the filtering approach described above.

The data generation part of our study can be used to
test and compare the performance of these different analysis
methods in a quantitative fashion under variation of the main
parameters (like cohort size, network clustering, size of the
disease gene set, etc.).

The generative model is flexible enough to simulate many
different types of diseases and to draw statistical conclusions
and, as a consequence, some insight into the disease. Fur-
thermore, analytical solutions for the main quantities of the
model are also provided, which facilitates our understanding
of the parameter interdependencies. The most surprising fact
is that results are mostly independent of the network structure,
but rather depends solely on the network density. This is true
especially for relatively sparse networks, which is the case of
most biological networks.

In practice, the model can be used to create cohort data and
explore the various parameter dependencies via a web-based
PYTHON application, see Ref. [59]. The method of analysis of
the simulated data presented here works remarkably well and
reveals estimates of the disease gene set with high accuracy
even for small cohorts and weak signals. We believe that
the method is capable of contributing to new discoveries in
biology and medicine.

An important resource of disease-associated genes cur-
rently are genome-wide association studies (GWAS), as dis-
cussed in [60,61]. Ultimately, disease associations of genes
derived from such approaches based on population genetics
need to converge with the more functional associations ob-
tained from transcriptome profiles of patients (which is the
type of data set discussed here). Biological networks can be
expected to play an important role in uniting these two cat-
egories of disease associations of genes [11]. Our generative
model is intended as a computational resource along this way.
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APPENDIX A: AVERAGE CONNECTIVITY
IN ERDÖS-RÉNYI GRAPHS

1. Connectivity c

Connectivity c plays central role in our data analysis proce-
dure. The definition of connectivity we employ here is simply
the fraction of nonisolated nodes in the given graph �(V, E ):

c = 1

N

∑
v∈V

{1|k(v) > 0}, (A1)

where N is the number of vertices and k(v) is the degree of the
vertex v. In our analysis, the connectivity of random graphs
is used to quantify a deviation of the network signal from
randomness.

2. 1D chain of events

The “teleportation random walk” (TRW) algorithm is well
conceptualised by a linear chain of events, with only two
possibilities for each step in this chain; step A: with P(A) = p
move to the neighboring vertex and color it, and step B: with
P(B) = 1 − p jump (teleport) to the randomly selected vertex
and color it. Hence a chain of events may look like:

AAABABBAABB

having graphical representation:

• − • − • − • · · · • − • · · · • · · · • − • − • · · · • · · · •,
where the link to the neighbor − is A, and random jump (lack
of the link) · · · is B and a • is a vertex. Probability of such a
chain of events is

p p p (1 − p) p (1 − p) (1 − p) p p (1 − p) (1 − p)

= p6(1 − p)5.

Calculation of c in a 1D connected chain is straightforward. It
is dependent only on the probability of jump p, hence,

c1(p) = 1 − (1 − p)2, (A2)

where (1 − p)2 is the probability for a given colored vertex to
have no colored neighbors in the 1D chain, therefore 1 − (1 −
p)2 is a probability of having at least one neighbor, which is
sufficient to regard this vertex as connected.

3. Assumptions

The above chain of events is precise on a 1D chain of ver-
tices and is approximately valid for relatively sparse networks
with low clustering coefficients. In such a case, the colored
cluster is very well approximated by a 1D chain of colored
vertices, forming pathlike structure, embedded in the structure
of the network.

The connectivity c created by the TRW depends on the
density of the links d in the network, but is rather independent
of other aspects of the network structure. This is due to the
fact that the TRW algorithm follows the structure of the
network itself, effectively canceling structural influence on
connectivity c, which quantifies the number of breaks in the
path.

A second assumption is related to network size. For p 	=
1, teleportation B causes the formation of multiple clusters.
In small networks it is very likely that some of them may
overlap. This overlap is difficult to incorporate in analytical
calculations. In order to reduce effects of clusters overlapping,
network size should be much larger than the number of
colored nodes N � n.

4. Background contribution

In case of the real graph, c1 is a contribution to the c
from the 1D chainlike arrangement of colored vertices. In
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the graph different from the 1D chain, some colored vertices
could be connected via additional edges lying outside of 1D
arrangement. It creates possibility for vertex isolated in 1D
chain to be connected with some other vertex via the “network
background. This affects the connectivity outcome c, and is
described by

c2(d, n) = 1 − (1 − d )n−3, (A3)

where n is a number of colored vertices, d is density of edges,
and 3 is there because two potential edges were already used
by 1D cluster-chain. The final expression, obtained from the
combination of factors c1 and c2, has the form of

c ≡ cc(p, d, n) = 1 − (1 − c1(p))(1 − c2(p))

= 1 − (1 − p)2(1 − d )n−3. (A4)

It describes average cc which is also depicted on Fig. 7, where
three different colorings are plotted. The network and the
number of colored nodes are the same, but the values of p
are different. For p = 0, colored nodes are spread completely
randomly, p = 0.5 displays moderate clustering of the colored
nodes, while for p = 1.0, there is just one connected cluster of
colored nodes. Furthermore, the connectivity c as a function
of p is shown.

5. Subgraphs

Previously, cc was defined as the ratio of colored vertices
having at least one colored neighbor and the number of all
colored vertices in the graph. Via the concept of subgraphs,
we can look at the connectivity from another perspective.
In the subgraph consisting of all colored vertices extracted
from the bigger original graph �c(Vc, Ec) ⊆ �(V, E ), the con-
nectivity cc is the percentage of nonisolated vertices. Con-
nectivity of the random sample taken from the original graph
�∗(V ∗, E∗) ⊆ �(V, E ) is given by

c ≡ c∗(d, n) = 1 − (1 − d )n−1, (A5)

where n is a number of vertices in the subgraph, d is density
of edges, and ∗ denotes random sampling over a given set.
We can now look at the connectivity obtained from ran-
domly selected vertices of the colored subgraph �∗

c (V ∗
c , E∗

c ) ⊆
�c(Vc, Ec) and another subgraph consisting of nodes ran-
domly selected from the noncolored ones �′∗

c (V ′∗
c , E ′∗

c ) ⊆
�′

c(V ′
c , E ′

c). Where �′
c(V ′

c , E ′
c) = �(V, E ) \ �c(Vc, Ec). This

unified subgraph is

�u(Vu, Eu) = �(V ′∗
c ∪ V ∗

c , E (V ′∗
c ∪ V ∗

c )). (A6)

Regarding the subset of randomly selected vertices V ′∗
c :

c′∗
c (d, n) = 1 − (1 − d )n′∗

c +n∗
c −1, (A7)

where n∗
c is a number of randomly selected colored vertices

and n′∗
c is a number of vertices randomly selected from the

uncolored rest of the graph. Hence n∗
c + n′∗

c is a total number
of vertices in the graph �u. For randomly selected subset of

colored vertices V ∗
c , one has

c∗
c (p, d, n) = 1 − (1 − p R)2(1 − d )n∗

c +n′∗
c −3 R,

c∗
c (p, d, n) = 1 −

(
1 − p

n∗
c

nc

)2

(1 − d )n∗
c +n′∗

c −3 n∗
c

nc , (A8)

where nc is a number of all colored vertices and n∗
c is a number

of randomly selected colored vertices, n′∗
c is the number of

vertices randomly selected from the uncolored subset and R =
n∗

c
nc

is probability of a colored node to be randomly selected.
Final expression for cu comes from the weighted average of
c∗

c and c′∗
c :

c ≡ cu = n∗
c c∗

c + n′∗
c c′∗

c

n∗
c + n′∗

c

. (A9)

The above expression is an approximation for the average c
over the ensemble of graphs and subgraphs. This approxima-
tion works very well for the most of the graphs used in the
systems biology, as they tend to be sparse and to have low
clustering coefficients. The value of c is an observable coming
directly from the data analysis. It has been shown here that it
can be also easily calculated for the TRW model presented in
the main part of our investigation.

APPENDIX B: FILTERING AND MAXIMIZATION

This section depicts details of the data analysis procedure.
It refers to two crucial parts of it. Expression filtering and
connectivity computation is illustrated in Fig. 8. Tuning of
analysis parameters to maximize �c in order to extract the set

FIG. 7. Example of the clustering (and connectivity) of selected
(“colored”) nodes for different values of the TRW parameter p: (a) 0,
(b) 0.5, and (c) 1.0. (d) depicts the connectivity c(p) as a function
of p.
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+ +

combined network

c=0/3 c=8/12 c=0/2 c=4/8

f=-1 f=-2f=0f=1f=2

c = = 5
9

FIG. 8. Illustration of the filtering procedure. First, dichotomized individual transcriptome profiles (obtained by evaluating threshold ρG)
are summed up to form combined multiset on the network (combined network). Then several filtered subnetworks are created based on the
number of occurrences of nodes in the multiset (employing the filtering threshold f ). Next, for each subnetwork, the fraction of nonisolated
nodes (connectivity c f ) is calculated. This ensemble of connectivity values is subject of further analysis depicted in Fig. 9. For positive values
of f , all vertices appearing more than f times are taken, while for negative values all vertices appearing equal or less times than f are selected.
f = 0 is treated as a positive number as all the vertices appearing more than 0 times survive filtering, which is equivalent to no filtering at all.

of genes with highest match to the disease-gene set is depicted
in Fig. 9.

APPENDIX C: QUALITY ASSESSMENT

1. Quality measures

As discussed above, maximizing �c is a good strategy for
finding the optimal values of the parameters ρG and f . These
optimal values, ρ̄G and f̄ , allow us to extract the set of genes
possibly closest to the disease gene set VD. In this Appendix,
the assessment of the reconstruction quality of the disease
gene set is discussed. The aim of our data analysis method
is the extraction of a candidate set of disease genes, V ∗ f

P ,
possibly closest to the true disease gene set VD. Ideally, V ∗ f

G =
VD. In reality it is rarely achieved. What can be achieved is a
maximization of D∗

G∗ ratio, which is by definition D∗
G∗ = D∗

H∗+D∗ .

Hence, for D∗
H∗+D∗ = 1, only true disease genes have been

extracted such that V ∗ f
G ⊂ VD.

Filtering has the goal of retaining only highly reliable
candidate genes. It can happen that most of the set will be
filtered out and as a result only a small part of VD will remain.
This contradicts the aim to retrieve the largest possible number

of disease genes. Therefore also D∗
D should be as high as

possible.
Summarizing the task is to find a reasonable compromise

between two contradictory factors: maximization of the preci-
sion PPV = D∗

G∗ (positive predictive value) and maximization
of sensitivity TPR = D∗

D (true positive rate).
The method described in the main text provides a heuristic,

how to obtain a good solution. Using the quantities introduced
above, we can now evaluate the quality of the candidate set of
disease genes and its proximity to the optimal set. In order to
deal with this task, it is convenient to define single parameter
measuring quality. One of the most natural choices is the
product of sensitivity and precision:

Q = PPV × TPR = D∗

G∗
D∗

D
= D∗2

D G∗ . (C1)

A property of PPV is that PPV ∈ 〈0, 1〉. For PPV = 0,

there are no disease genes retrieved, V ∗ f
P ∩ VD = ∅, while

for PPV = 1 only disease genes are retrieved, V ∗
P ⊆ VD and

V ∗
P ∩ VH = ∅.

A property of TPR is that TPR ∈ 〈0, 1〉, where for TPR =
0 also no disease genes are retrieved V ∗ f

P ∩ VD = ∅, but for
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ΔcΔcΔc

ΔcΔcΔc

best possible recall
highest Δc

ΔcΔcΔc

ρG

f

full network

perfect recall

best possible recall
highest Δc

(a) (b)

FIG. 9. Illustration of the selection of optimal data analysis parameters. The figure shows the ensemble of V ∗
P (ρG, f ) sets, together with

the respective �c values. Maximal value of �c most likely gives the best possible recall of the set of disease genes VD. The procedure is as
follows. First, screen over ρG × f space (where f � 0) and generate ensemble of filtered sets V ∗

P (ρG, f ) and V ∗
C (ρG, f ) along with associated

connectivity values c∗
P(ρG, f ) and c∗

C (ρG, f ). The screen should be relatively broad but within reasonable range, according to a rule of thumb
rather than to precise prescription. For each pair of parameters, �c(ρG, f ) = c∗

P(ρG, f ) − c∗
C (ρG, f ) is calculated. Then from all these values

�cmax = max(�c(ρG, f )) = �c(ρ ′
G, f ′) is selected along with the respective set V ∗

P (ρ ′
G, f ′), which is likely to yield the best possible recall

of the set of disease related genes VD. (a) depicts ensemble of retrieved sets spanning ρG × f space. (b) is a cheat sheet of the important
sets.

TPR = 1 all of them are found, V ∗ f
P ∩ VD = VD (although

other genes may have been found in addition, thus V ∗ f
P ⊇ VD).

The product of these two: Q = PPV TPR has this prop-
erty that Q ∈ 〈0, 1〉. For Q = 0, there are no disease genes
extracted, V ∗ f

P ∩ VD = ∅, while for Q = 1, the whole set of
disease genes and only these genes are retrieved, V ∗ f

P = VD.
Therefore Q = 1 means the best possible quality has been
achieved.

The quantity Q has another crucial property. It correlates
reasonably well with �c (see Figs. 10–12). This is an im-
portant observation, as it shows that maximization of �c
is the right strategy for obtaining highest possible quality.
It is worth to mention that Q or PPV and TPR cannot be
measured from the data directly, but can only be evaluated via
approximation of the model parameters described in the main
text. See Ref. [51] for more figures depicting relationships
between Q and �c (Figs. S9–S14) and also calculated and
estimated parameters (Figs. S5–S8).

2. Quality of the test

The binary classifier employed here, together with the
quantities introduced above, allows us to visualize the quality
of the disease gene set prediction in terms of a ROC (receiver
operating characteristic) curve (see Fig. 13). In general the
ROC curve shows the true positive ratio against the false posi-
tive ratio. The larger the area under the curve (AUC), the better
is the prediction. Figure 13 proves the high performance of the
presented prediction scheme for low to moderate numbers of
the disease related genes. This curve is independent on p as
it does not have any kind of relation to the network, but is a
test of classifying power of the statistical part of the presented
method.

For low A and high D, the performance of the test is
much worse (as it should be), but in some cases can still be
assumed to be acceptable. It should be stressed, however, that
the situation where D = 200 out of 1000 is very unlikely in a
real situation, because it would mean that 1/5 of all the genes
present in the network are related to the disease.
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FIG. 10. Quality Q as a function of ρG and f . Colored circles
indicate position of maximums of Q (green), �c (yellow), and ana-
lytically calculated from the model parameters (12) (red). Different
columns stand for subsequent values of D: [(a), (d), and (g)] 10, [(b),
(e), and (h)] 50, and [(c), (f), and (i)] 200. Rows denote different
values of A: [(a)–(c)] 1, [(d)–(f)] 0.5, and [(g)–(i)] 0.25.

FIG. 11. Figure �c(Q) shows high correlation of both variables,
see values of r. Different branches visible in the figure originate from
different filtering levels f . On this figure p = 1.0. Different columns
stand for subsequent values of D: [(a), (d), and (g)] 10, [(b), (e),
and (h)] 50 and [(c), (f), (i)] 200. Rows denote different values of A:
[(a)–(c)] 1, [(d)–(f)] 0.5, and [(g)–(i)] 0.25.

FIG. 12. Figure �c(Q) shows high correlation of both variables,
see values of r. Different branches visible in the figure originate
from different filtering levels f . On this figure p = 0.25. Different
columns stand for subsequent values of D: [(a), (d), and (g)] 10,
[(b), (e), and (h)] 50 and [(c), (f), and (i)] 200. Rows denote different
values of A: [(a)–(c)] 1, [(d)–(f)] 0.5, and [(g)–(i)] 0.25.

FIG. 13. Receiving operator characteristic curve for presented
statistical test. Each branch of the plot is a function obtained by
sweeping along ρG, while different branches are for different values
of f . Different columns stand for subsequent values of D: [(a), (d),
and (g)] 10, [(b), (e), and (h)] 50, and [(c), (f), and (i)] 200. Rows
denote different values of A: [(a)–(c)] 1, [(d)–(f)] 0.5, and [(g)–(i)]
0.25.
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One may assume that the best value of parameters ρG and
f can be extracted solely based on the ROC curve (Fig. 13).
This is false, because the optimal values of the parameters

change with other parameters of the model about which prior
knowledge is inaccessible. Therefore the network is essential
in identifying the optimal prediction.
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