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Subdiffusion in strongly tilted lattice systems
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The quantum dynamics away from equilibrium is of fundamental interest for interacting lattice systems. In
this work, we study strongly tilted lattice systems using the effective Hamiltonian derived from the microscopic
description. We first give general arguments for the density relaxation rate satisfying 1/τ ∝ k4 for a large
class of systems, including the tilted Fermi Hubbard model that has been realized in the recent experiment,
E. Guardado-Sanchez et al. [Phys. Rev. X 10, 011042 (2020)]. Here k is the wave vector of the density wave.
The main ingredients are the emergence of the reflection symmetry and dipole moment conservation to the
leading nontrivial order of the large tilted strength. To support our analysis, we then construct a solvable model
with large local Hilbert space dimension by coupling sites discribed by the Sachdev-Ye-Kitaev models, where
the density response can be computed explicitly. The the tilt strength and the temperature dependence of the
subdiffusion constant are also discussed.
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I. INTRODUCTION

In recent years, much understanding of strongly interacting
systems has been gained thanks to the quantum simulation
with cold atom systems. By using the quantum gas micro-
scope for fermions [1–6], the antiferromagnetic correlation
[7–10] has been observed in the Fermi Hubbard model,
which is suspected to be related to the understanding of the
high-temperature superconductivity. Besides observables in
thermal ensembles, nonequilibrium quantum dynamics can
also be used as a probe of underlying physics. As an example,
the spin [11] and charge [12] diffusion have been studied
experimentally, which shows the bad-metal behavior. Except
for these standard transport experiments, the precise control of
the Fermi Hubbard model in optical lattice also paves a new
way to study physics in some extreme conditions. In a recent
work [13], by applying an additional laser beam, authors
realize a linear potential, or tilt, in the two-dimensional (2D)
Fermi Hubbard model. This is an analogy of applying a
electric field in solid-state systems. A crossover between a
traditional diffusion in the weak tilt limit [14] and a new
subdiffusion behavior at larger tilt strength has been observed.

In this work, we find the subdiffusion behavior exists
for a large class of strongly tilted systems. Using the large
tilt strength expansion, we obtain the low-energy effective
Hamiltonian which governs the dynamics of the strongly tilted
system. The subdiffusion behavior is then found to be a direct
consequence of the emergent reflection symmetry and the
dipole moment conservation. We also analyze the scaling of
the subdiffusion constant with respect to the tilt strength. The
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analysis is under the assumption of hydrodynamical behavior,
which is motivated by the experiments. Note that this is
different from the low-dimensional models [15–18] which
show transitions between ergodic and nonergodic phases.
Very recently, subdiffusion behavior is also observed in a spe-
cific circuit model that conserves the dipole momentum [19],
where both symmetries are imposed from the beginning [20]
and in more sophisticated fracton models [21,22]. To further
support our analysis, we construct a solvable model by adding
strong tilted potential to the quadratically coupled Sachdev-
Ye-Kitaev model (SYK) [23–26]. Without the tilted potential,
the model is a strongly interacting non-Fermi liquid with
diffusive charge transport at finite temperature [26], which
provides an ideal platform for our study. We explicitly com-
pute the density response in the leading order of large tilted
potential which shows the expected subdiffusion behavior.

II. GENERAL ANALYSIS

In this section, we give arguments for the existence of the
subdiffusion for a large class of strongly tilted lattice systems.
We assume that (1) the system can be described by a lattice
Hamiltonian, which would be specified below; (2) the system
is ergodic as observed in the experiment [13]; and (3) the
strength of the tilt potential is large enough such that the
system is in the prethermal regime.

We consider interacting lattice systems with additional
tilted potential. To be concrete, we focus on the two-
dimensional square lattice with nearest-neighbor hopping and
on-site interactions, as illustrated in Fig. 1. The Hamiltonian
reads

H = −
∑
j,a

(Jxc†
j+x̂,acj,a + Jyc†

j+ŷ,acj,a + H.c.)

+
∑

j

H int(c†
j,a, cj,a) −

∑
j

F jxnj. (1)
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FIG. 1. A schematic of the tilted models on a two-dimensional
square lattice. F is the slope of the linear potential applied in the
x direction. Balls with different colors indicate atoms with different
internal states. We focus on the relaxation of the initial density wave
ρ( jx, t ) = ρ0 + A(t ) cos(k jx ).

Here cj,a (c†
j,a) is the annihilation (creation) operator on site

j = ( jx, jy) with additional internal-state index a. We have set
the lattice constant aLattice = 1 and assumed the interactions
preserve the local particle number nj ≡ ∑

a nj,a = ∑
a c†

j,acj,a.
For the Fermi-Hubbard case [13], we have a ∈ {↑,↓} and
H int(c†

j,a, cj,a) = Unj,↑nj,↓. The last term in (1) presents a
tilted potential in the x direction. Note that although in this
letter we only give explicit examples in term of fermions, the
general argument presented below also applies for interacting
bosons or boson-fermion mixtures.

We are interested in charge diffusion dynamics ρ(j, t ) =
〈ψ |nj(t )|ψ〉 with some initial state |ψ〉. For initial configu-
rations with density waves ρ( jx, t ) = ρ0 + A(t ) cos(k jx ), we
expect its amplitude decays exponentially as A(t ) ∝ e−t/τ for
general interacting systems [27]. We would like to understand
the relation between τ and the wave vector k of the density
wave. To analyze this problem, we first consider applying
a gauge transformation U = exp(i

∑
j F jxnjt ). The Hamilto-

nian becomes

H̃ (t ) = −
∑
j,a

(Jxe−iFt c†
j+x̂,acj,a + Jyc†

j+ŷ,acj,a + H.c.)

+
∑

j

H int(c†
j,a, cj,a). (2)

H̃ (t ) is time periodic with frequency F . For F
much larger than any other energy scales, one can
make a high-frequency expansion to obtain a Floquet
effective Hamiltonian, which governs the dynamics
of the system at integer times of the driven period
T = 2π/F [28]. The Floquet effective Hamiltonian

Heff is defined as

U (T ) = T exp

[
−i

∫ T

0
H̃ (t )dt

]
= exp (−iHeffT ). (3)

Here T is the real-time ordering operator. Defining H̃ (t ) =∑
m=0,±1 HmeimFt with

H0 = −Jy

∑
j,a

(c†
j+ŷ,acj,a + H.c.) +

∑
j

H int(c†
j,a, cj,a),

H1 = −Jx

∑
j,a

c†
j,acj+x̂,a = H†

−1, (4)

the effective Hamiltonian reads [29]:

Heff ≡ H0 + �H = H0 + [H−1, [H0, H1]]

F 2
. (5)

Here we keep terms to the order of (|H |/F )2, with |H |
being the typical energy scale of hopping or interaction terms.
Importantly, the term proportional to 1/F vanishes since
[H1, H−1] = 0 and the leading order nontrivial correlation
between sites with different x comes from the 1/F 2 term. It
is also straightforward to show that only the interaction term
in H0 contributes to �H . However, for the present discussion,
the specific form of this term is not significant.

For strongly interacting systems, it is plausible to as-
sume the evolution of (coarse-grained) density ρ(x, t ) can
be described by the hydrodynamical equation ∂tρ(x, t ) +
∇ · J(x, t ) = 0 in the long-time limit. The existence of the
subdiffusion behavior (in x direction) in systems with large
tilted potential comes from two observations:

First, the system has the translation symmetry and an
emergent reflection symmetry P, which generates x → −x.
This can be understood by realizing that the microscopic
Hamiltonian (1) satisfies

PH (F )P = H (−F ). (6)

Consequently, we have an emergent reflection symmetry
PHeffP = Heff since the effective Hamiltonian only depends
on F 2. This implies that if take a gradient expansion of Jx

in terms of ρ, it should only contain an odd number of
derivatives,

Jx(x, t ) = −D(1)∂xρ(x, t ) + D(3)∂3
x ρ(x, t ) + . . . . (7)

Here D(1) is the usual charge diffusion constant, while D(3) is
the subdiffusion constant.

Second, the effective Hamiltonian conserves the dipole
momentD = ∑

j jxnj:

[D, Heff] = 0, (8)

since [D, H0] = 0 and [D, H±1] = ∓H±1. This emergence of
dipole moment conservation can also be directly understood
as taking the large F limit of (1). As a result, we expect local
conservation of dipole moment

∂t d = x∂xJx = ∂x
[
xJx − D(1)ρ + D(3)∂2

x ρ
] ≡ ∂xJd

x . (9)

Here we consider only variations in the x direction. d (x, t ) =
xρ(x, t ) is the local dipole moment with current

Jd
x = xJx − D(1)ρ + D(3)∂2

x ρ.
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Since the Hamiltonian is translation invariant, we expect
Jd

x = 0 for a homogeneous charge filling. As a result,
we should have D(1) = 0 and the hydrodynamical equation
writes

∂tρ(x, t ) + D(3)∂4
x ρ = 0, (10)

which leads to the relaxation rate 1/τ ∝ k4. Similar sub-
diffusion equation has also been found recently in fracton
models [22] and specific circuit model with dipole moment
conservation [19]. Our analysis here can be directly applied
to analyze the strongly tilt limit of the tilted Fermi Hubbard
model realized in Ref. [13]. Since the analysis is based on
the symmetry of the system and does not depend on the
details of the local interaction term, the existence of subd-
iffusion behavior should be general: It is straightforward to
generalize the result into a higher dimension, different lattices
with reflection symmetry and different interaction terms that
commute with the gauge transformation U. We could also
consider microscopic Hamiltonians that explicitly break the
reflection symmetry when F = 0. In this case, it is possible
that the charge relaxation behavior is modified since generally
additional terms ∼∂2

x ρ may appear in (7).
Moreover, we could determine the scaling of D(3) with

respect to the tilt strength 1/F . The correlation in x direction
is from �H ∼ UJ2

x /F 2, where U is the typical interaction
strength [30]. If we consider a transition driven by this term
between two different charge configurations, then the transi-
tion rate R is then proportional to 1/F 4. For small interaction
strength, one further expects R ∝ U 2/F 4. It is reasonable to
assume D(3) show the same scaling as R.

III. SOLVABLE MODEL

Although our argument applies for general interacting
quantum systems, a determination of the subdiffusion con-
stant is usually hard and involves additional approximations.
Here, to support our argument, we instead consider specific
local interaction terms with which the model can be solved
explicitly with nontrivial interactions.

The SYK model [23,24], which describes N random in-
teracting fermion modes in 0 + 1D, is known as a solvable
model in the large-N limit where the dynamical mean-field
theory [31] becomes exact. The model describes a strongly
correlated non-Fermi liquid with maximal many-body chaos.
Generalizations with spatial dimension can then be systemati-
cally constructed by coupling different SYK sites [25,32–36].
For generalizations with U (1) symmetry [36,37], the charge
transport shows the standard diffusive behavior. As a result, it
provides an ideal platform to study the effect of a large tilted
potential.

To construct a coupled SYK system with additional tilt,
we consider a fermionic system with large number of internal
states a ∈ {1, 2, . . . , N}. We further specify the on-site inter-
action H int in (1) as

H int(c†
j,a, cj,a) = 1

4

∑
abcd

U j
ab;cd c†

j,ac†
j,bcj,ccj,d . (11)

Here U j
ab;cd with different indices are independent random

Gaussian variables with expectation and variance

U j
ab;cd = 0,

(
U j

ab;cd

)2 = 2U 2

N3
, (12)

under the symmetry U j
ab;cd = −U j

ba;cd = −U j
ab;dc. The system

is translational invariant after the disorder average. We assume
the system is self-averaged and take the disorder replica diag-
onal assumption [24]. For F = Jx = Jy = 0, the Hamiltonian
(1) describes decoupled SYK models. Near this SYK fixed
point, the hopping term is relevant which leads to a crossover
to Fermi liquid behavior at T ∼ max{J2

x /U, J2
y /U } [26,33].

We now consider the effect of a strong tilted potential by
evaluating the effective action (5) explicitly. We find

�H = J2
x

4F 2

∑
abcd,j

U j
ab;cdCj

ab;cd ,

Cj
ab;cd = −4c†

j,ac†
j,bcj,ccj,d − 2c†

j+x̂,ac†
j−x̂,bcj,ccj,d

− 2c†
j,ac†

j,bcj−x̂,ccj+x̂,d + 4c†
j+x̂,ac†

j,bcj,ccj+x̂,d

+ 4c†
j−x̂,ac†

j,bcj,ccj−x̂,d . (13)

The first term gives a renormalization of the local interaction
U j

ab;cd . Other terms describe interactions between nearest sites
and collective hopping that conserves the dipole momentum.

We first consider the two-point function Gj(τ ) =
〈Tτ ci,a(τ )c†

0,a(0)〉, where Tτ is the imaginary-time ordering
operator. Using melon diagrams, it is straightforward to show
that a self-consistent solution can be derived by assuming the
Green’s function vanishes unless jx = 0, similarly to the case
in Ref. [35]. This leads to the self-consistent equation:

�(τ ) = = U 2

(
1 − 8J2

x

F 2

)
G3

0(τ ),

Gk(ω) = [−iωn − 2Jy cos(ky) − �(ω)]−1. (14)

Here the dashed line represents the disorder average. We have
introduced the Gj(τ ) = 1

β

∑
n

∫
dk
2π

Gk(ω)eik·j−iωnt with Mat-
subara frequency ωn = (n + 1/2)π/β. We have kept terms
up to the J2

x /F 2 order. For J2
y /UT � 1 and βU 
 1, the

system has emergent conformal symmetry where the scaling
dimension of c is 1/4, as in the original SYK model. This
leads to the Green’s function of fermions

Gj(τ ) = sgn(τ )

(4πŨ 2)1/4

[
π

β sin(πτ/β )

]1/2

δj0. (15)

Here Ũ = U (1 − 4J2
x

F 2 ). At J2
y /UT ∼ 1, the system exhibits a

crossover to a stack of Fermi liquid chains. Note that for Jy �
Jx, this crossover temperature can be much smaller than the
F = 0 case.

We now study the charge fluctuation in x direction. We
follow the idea in Refs. [25,26] by using the Keldysh ap-
proach and introducing considering the phase fluctuation in
x direction. The Keldysh contour [38] contains a forward and
a backward evolution, with fermion field cj,a,±(t ). The path
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integral is written as

Z =
∫
Dcj,a,mDc†

j,a,m exp(iSK ),

SK =
∑

m

∫ ∞

−∞
dt m

⎡
⎣∑

ja

c†
j,a,m(i∂t )cj,a,m−Heff(c

†
j,a,m, cj,a,m )

⎤
⎦,

(16)

with additional boundary terms at t = ±∞ imposing the
fluctuation-dissipation theorem. Here we have defined m =
±. The real-time Green’s function on the Keldysh contour
can be directly related to the imaginary-time Green’s function
Gj(τ ) by the analytical continuations.

The phase fluctuation can be introduced as

cj,a,±(t ) → e−iφ±(x,t )cj,a(t ).

Here φ±(x) is a slow-varying phase factor. The nontrivial
coupling terms between φ and fermions read

Sc
K =

∑
m

∫
dt m

⎡
⎣∑

j,a

c†
j,a,m(∂tφm)cj,a,m +

∑
j,abcd

J2
x U j

ab;cd

2F 2

× (c†
j+x̂,a,mc†

j−x̂,b,mcj,c,mcj,d,mei∂2
x φm + H.c.)

]
. (17)

Since we focus on the density response 
R(t, j) =
−iθ (t )[nj(t ), n0]. We further introduce source term:

Ss
K =

∑
m

∫
dt m

⎡
⎣∑

j

nj,mJj,m

⎤
⎦, (18)

which leads to 
R = − i
2

∂2 log Z
∂Jcl∂Jq

with Ocl/q ≡ (O+ ± O−)/2.
To calculate 
R to the leading order of 1/N , we keep the
action of φ to the quadratic order [25,26]. The action takes
the form:

(19)
Here the wavy line represents the phase fluctuation φ or
source J . Focusing on the retarded part, we only maintain
terms contain both the classical and the quantum components.
The first term describes the response of a homogeneous source
field. As a result in the low-energy limit �1(ω → 0) → 2iK
with KN being the compressibility [37]. The other coefficient
writes:

�2(t ) = − J4
x

2F 4
[GR(t )�K (−t ) + GA(−t )�K (−t )

+�R(t )GK (−t ) + �A(−t )GK (−t )]. (20)

Here we have defined the retarded Green’s function
GR/A(t ) = −iθ (±t ){c†

j,a(t ), cj,a(0)} with �R/A(t ) being
corresponding self-energy. The Keldysh component reads

GK (ω) = [GR(ω) − GA(ω)][1 − 2nF (ω)] ≡ −2π iAG(ω)[1 −
2nF (ω)] and similarly for �K . For small ω, we expand
�2(ω) − �2(0) ≈ −2ωKD(3) with

KD(3) = −πJ4
x

F 4

∫
dq0AG(q0)A� (q0)∂q0 nF (q0) ≈ J4

x

2F 4
.

(21)

We have used the conformal Green’s function (15). Using the
effective action (19), the density response can be computed
as:


R(ω, kx ) = KND(3)k4
x

−iω + D(3)k4
x

. (22)

The pole −iω = −D(3)k4
x leads to the correct hydrodynamical

behavior as in (10). We see the subdiffusion constant D(3)

has a scaling of 1/F 4 consistent with our previous analysis.
Interestingly, the factor of U in KD(3) cancels out, which is
distinct from the expectation for weakly interacting systems.

We finally comment on the different temperature depen-
dence of the (sub)diffusion constant compared to the result
with F = 0, as computed in Ref. [26]. Without the tilted po-
tential, the diffusion constant is proportional to 1/T , leading
to a linear resistivity as in strange metals. This is because
the correlation between different sites is from a quadratic
term, which is relevant at the low energy limit with a scaling
dimension 1/2. However, here the correlation is from a term
that is marginal, leading to a constant subdiffusion constant.
More generally, we could consider generalizing the local
interaction term to be the SYKq model. While scaling of
the diffusion constant with F = 0 changes, the subdiffusion
constant for the strongly tilted potential remains a constant.
In this sense, we expect a weaker temperature dependence for
D(3) in strongly correlated systems.

IV. OUTLOOK

In this work we have analyzed lattice systems in strongly
tilted potential. We find the charge transport show subdiffu-
sion behavior due to the emergent reflection symmetry and
dipole momentum conservation. We further determine the
subdiffusion constant in a solvable coupled SYK model as an
explicit example.

Several interesting questions can be asked along this direc-
tion. First, we could consider generalizing the tilted potential
to impose dynamical conservation of high-order moments.
However, this would break the translation symmetry and make
the analysis harder. Second, here we have considered the case
where F is the largest energy scale of the system. We could
ask what happens if we instead consider the near-resonant
case [39–43] with F ≈ U in tilted the Hubbard model. It is
also interesting to study the possible interplay between thee
spin diffusion and the charge diffusion in the strongly tilted
systems. We postpone all these questions for future studies.
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