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Practical trapped-ion protocols for universal qudit-based quantum computing
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The notion of universal quantum computation can be generalized to multilevel qudits, which offer advantages
in resource usage and algorithmic efficiencies. Trapped ions, which are pristine and well-controlled quantum
systems, offer an ideal platform to develop qudit-based quantum information processing. Previous work has

not fully explored the practicality of implementing trapped-ion qudits accounting for known experimental error
sources. Here, we describe a universal set of protocols for state preparation, single-qudit gates, a generalization
of the Mglmer-Sgrensen gate for two-qudit gates, and a measurement scheme which utilizes shelving to a
metastable state. We numerically simulate known sources of error from previous trapped-ion experiments, and
show that there are no fundamental limitations to achieving fidelities above 99% for three-level qudits encoded
in '¥"Ba* ions. Our methods are extensible to higher-dimensional qudits, and our measurement and single-qudit
gate protocols can achieve 99% fidelities for five-level qudits. We identify avenues to further decrease errors
in future work. Our results suggest that three-level trapped-ion qudits will be a useful technology for quantum

information processing.
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I. INTRODUCTION

In current approaches to developing quantum computing
hardware, each constituent building block, such as a trapped
ion, superconducting resonator, etc., is typically used to en-
code a two-level qubit. However, in contrast to classical
computing hardware using binary transistors, it is less obvi-
ously an optimal choice to encode only two states within a
unit of quantum information. Trapped ions, superconducting
transmons, and many other quantum technologies typically
feature many possible physical states, and must be artificially
restricted to the two states used as a qubit. A natural question
is whether we are optimizing the resources extracted from our
quantum building blocks by choosing to use only two of these
levels [1-8]. Experimentalists have developed sufficient con-
trol to envision that a quantum processor could benefit from
using more of the physical states afforded by the quantum
system. Making use of multilevel quantum building blocks,
or qudits, presents clear challenges. More controls will be
needed to fully exploit the new degrees of freedom, while at
the same time, more opportunities arise for errors during a
computation. However, there could be substantial benefits if
these challenges are overcome.
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In this paper, we propose methods to perform quantum
information processing with multilevel qudits, using trapped
atomic ions as the hardware. Trapped ions are one of the
leading qubit technologies owing to their superb coherence
and controllability [9—12], and as such are an attractive hard-
ware choice for developing a qudit-based technology. Within
some sections in this paper, we deviate from a generalized
discussion to specific implementations using our chosen ion
species 'Ba™.

To determine whether qudit-based quantum processors
could be more scalable than qubit-based processors, several
lines of inquiry are needed. One, it must be determined
whether idealized qudits offer advantages over idealized
qubits; two, it must be shown that the necessary qudit oper-
ations can be practically achieved in experiments; and three,
it must be investigated whether the advantages offered by
idealized qudits are outweighed by tradeoffs with increased
experimental complexity and more potential sources of error.
The remainder of this introduction addresses the first question.
The main work of this paper seeks to answer the second
inquiry, on whether qudit-based quantum computation can be
practically realized. The third inquiry is left for future works.

Previous efforts have synthesized the motivations for pur-
suing qudit-based computation and described possible exper-
imental toolkits [8,13—15], while other efforts have imple-
mented limited amounts of control over three-level trapped-
ion qudits (i.e., qutrits) [16—18]. Platforms other than trapped
ions have also been considered as qudits [19-27]. In trapped
ions, most proposals for two-qudit gates have utilized the
Cirac-Zoller [28] entangling scheme, which has been found
to be less practical than the Mglmer-Sgrensen (MS) scheme
[29]. The uniqueness of our work is the development of a
more practical qudit entangling gate which is a generalization
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of the MS gate, and the demonstration that high-fidelity qudit
operations could be performed with existing technologies,
even when accounting for realistic error sources. Scaling the
number of ions in trapped-ion systems represents a significant
challenge to useful quantum computation, and using qudits
could help by increasing the information capacity of each
ion. The straightforward methods we describe are directly
generalized from current ion trap qubit techniques, and so are
intuitive to implement for experimentalists already working
with ion qubits.

Current understanding of practical quantum computing
rests on several early theoretical discoveries, including the
notion of a universal gate set. Namely, there exists a fi-
nite set of operations that suffices to implement any “algo-
rithm” (i.e., any unitary operation) with arbitrary precision,
if these operations can be performed on any single-qubit or
two-qubit pair within a large enough collection of qubits
[30,31]. Furthermore, error mechanisms in physical hardware
are pervasive enough to require fault-tolerant error-correction
protocols, in which logical qubits are encoded using multiple
physical qubits. If physical error rates can be made sufficiently
small, the structure of the error-correcting code guarantees
that errors can be detected and corrected. Both of these no-
tions are extensible to qudits [32-35]. Therefore, by encoding
qudits rather than qubits, a larger Hilbert space is accessible
with the same physical information carriers, and there is no
sacrifice of universality or of the potential for fault-tolerant
implementations.

It is not a priori clear that the larger Hilbert space ac-
cessed by using qudits instead of qubits should translate to
a computational advantage. However, some algorithms can be
shown to require fewer qudits of higher dimension to achieve
comparable results to a qubit-based algorithm, suggesting that
there will be computational advantages [36]. In particular,
the quantum phase estimation algorithm, which forms the
basis of Shor’s factoring algorithm [37] and of many quantum
chemistry calculations [38], is known to benefit from an
increase in the dimension of the qudits used. For example, as
seen in Table 1 from Ref. [39], making use of five-level qudits
roughly halves the number of atoms required to perform
quantum phase estimation with the same precision as com-
pared to qubits. There are also indications that simulations
of higher-dimensional quantum systems, such as spins with
S > %, will be more efficient when performed on qudit-based
processors [40]. This suggests that qudits could be useful for
understanding questions from fundamental particle physics
(where higher dimensions are necessary to simulate color
charge) to exotic quantum material properties [41].

Qudits may also offer advantages for quantum error cor-
rection [42—-46], which is a more important long-term concern
compared to algorithmic advantages. Current estimates for the
number of qubits required to perform practical calculations,
such as simulating reaction mechanisms for nitrogen fixation,
or factoring numbers of the size used in RSA encryption, are
in the range of 500-1000 logical qubits [47,48]. However,
millions to billions of physical qubits will be required to
perform these calculations. Qudits can ameliorate the diffi-
culty of resource overheads for quantum error correction in
several contexts. In existing qubit codes, a frequently used
construction called the Toffoli gate requires half as many

physical operations when introducing a third level to the
qubits [42,43]. Qudit error-correcting codes offer more favor-
able error thresholds than equivalent qubit codes [44], as well
as improved efficiency in magic-state distillation [45], which
in many cases is the most resource-intensive aspect of error
correction [48]. Work by Andrist er al. [46] and Campbell
et al. [44,45] indicates that the error thresholds to successfully
implement error correction increase with the number of qudit
levels, implying that fault-tolerant quantum computing for
qudits may be able to sustain a higher error rate. For surface
code quantum computing, this could mean that the fidelity
needed for fault tolerance is lower than the 99.25% threshold
[49] given for qubits.

There is one main class of qudits that we are interested
in: small prime-dimensional qudits (d = 3, 5, 7). These are
interesting because a set of single-qudit Pauli group gates
and the generalized 7 /8 gate, along with a two-qudit gate,
form a universal gate set [32,50] for the prime-dimensional
Hilbert space. Furthermore, many qudit error-correction codes
are based on prime dimensions [32,44,45,51]. In this paper, up
to seven-level qudits are studied for measurement, and up to
five-level qudits are studied for single- and two-qudit gates.
In our analysis, error sources pertaining to hardware control
imperfections are excluded as they can arguably be improved
as technology advances, thus not posing a fundamental limit
to the fidelities of qudit operations. Environmental noises are,
however, considered difficult to be removed, and are thus
included in our assessment.

II. QUDIT REQUIREMENTS AND ENCODING

There are many requirements to perform quantum compu-
tation with qudits. In this section, we first describe these re-
quirements. Then, we describe our rationale for using '*’Ba™
for our numeric calculations. Finally, we discuss the coher-
ence limitations for the different available encoding schemes
within this platform, and describe our specific chosen encod-
ing scheme.

A. Qudit requirements

The requirements to consider for qudit-based information
processing are as follows:

(1) ability to encode multiple basis states;

(2) stability of basis states against decoherence processes;

(3) ability to prepare a fiducial initial state;

(4) a method to reliably measure in the physical basis;

(5) ability to perform arbitrary single-qudit gates;

(6) ability to apply an entangling operation between qudit
pairs.

Each of these desiderata may be accomplished in an ion
trap context, using straightforward generalizations of existing
techniques. For specificity, we focus on the case of encoding
qudit states in hyperfine sublevels of a ground S, electronic
manifold of a hydrogenic atomic ion. A weak magnetic field
is used to lift the degeneracy, and standard optical pumping
techniques are used to prepare a fiducial initial state [52].

B. Ions

Table I compares many possible ion species options for
encoding qudits. Atomic structure data for the selected ion
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TABLEI A list of different qudit candidates and their relevant properties. In Yb*, the octupole transition to the F; , state would be required
because the lifetime of the Ds), state is only 7 ms, which would substantially limit the attainable readout fidelity. Next, we list the relevant
transitions in each ion species: the primary transition is used for Doppler cooling, optical pumping, and fluorescence measurement, and the
metastable transition allows us to measure qudits using the shelving technique described in Sec. III. The last two columns are the dephasing
and coherence times for a three- and five-level qudit with 2.7 pT magnetic field fluctuations, calculated from Eq. (4); we assume a zigzag

encoding centered at my = 0.

Ion Nuclear States Metastable Primary Metastable Three-level Five-level

species spin, / in2s, 2 lifetime [53,54] transition transition T T
D5, metastable state

BCat 7/2 16 s 397 nm 729 nm 84 s 42s

8781t 9/2 20 0.345s 422 nm 674 nm 10.5s 53s

133Ba* 1/2 4 35s 493 nm 1762 nm 2.1s n/a

137Ba* 3/2 8 35s 493 nm 1762 nm 42's 2.1s
F;/, metastable state

Typt 1/2 4 54y 369.5 nm 467 nm 2.1s I.ls

Byb+ 5/2 12 ~10d 369.5 nm 467 nm 6.3s 32s

species are presented, while the final columns show the coher-
ence decay time in three- and five-level qudits from magnetic
field fluctuations. Having a metastable state is an important
requirement in order to implement the shelving scheme de-
scribed in Sec. III. The longer the lifetime of this metastable
state, the more fiducious the shelving procedure becomes. We
chose *’Ba* to encode our qudits because it features the
longest Ds ) lifetime, and does not require an octupole transi-
tion for the shelving operation (an octupole transition requires
more laser power than a quadrupole transition to a D5, state).
With this species, there are enough hyperfine ground states to
implement up to eight-level qudits. For the calculations in this
paper, a quantization field of 470 uT is selected. Furthermore,
as can be seen in Fig. 6 of the Appendix A, most of the
lasers required are in the visible range, simplifying the optical
technology required to build an experiment [52,55].

C. Encoding and coherence

Depending on the qudit dimension and the hyperfine struc-
ture of the candidate ion, there may be multiple ways to
encode a qudit. We consider only encodings where the basis

states form the nodes of a connected graph whose edges
represent frequency-resolved transitions allowed under mag-
netic dipole selection rules (see Fig. 1). The encodings which
satisfy these requirements are the zigzag and the bunched
encodings in Fig. 1.

Qudits will experience first-order sensitivity to magnetic
field noise, which is the most common source of dephasing
in ion trap experiments. Two-level qubit states can be chosen
to share the same magnetic field sensitivity, but that solution
does not generalize to more than two states. Technological
solutions have been found to stabilize magnetic fields to the
order of 1 pT by utilizing magnetic shielding and applying
quantization fields with permanent magnet arrays, resulting
in coherence times of order one second for magnetic-field-
sensitive qubits [56,57].

The error from magnetic field noise of a qudit in the
arbitrary initial state

o) = > _all)
!

can be obtained following a similar derivation as outlined in
[58]. We assume that the deviation of the magnetic field from

ey

|4)
12 W B —
0y —— e 0)
F=1 )y — 0) Y v 1)
3) 2) Ta) 3)
Zig-Zag Bunched Disconnected
(@) (b) (c)

FIG. 1. Examples of qudit encodings. (a) We prefer a zigzag configuration because it simplifies laser manipulations. (b) A bunched
configuration minimizes decoherence due to magnetic field fluctuations but requires more polarization control of lasers. (c¢) Disconnected
configurations are not preferred due to the experimental complexity of transferring population among all possible states.
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the ideal field AB(¢) is a stationary Gaussian process; for the
case t < 1/y, the fidelity as a function of time is

FOy =) la*+) >

1 1>l

X 2|a1|2|a1/|2e’%(é’F’"’Flfgn’sz’)2<A32>’2, 2)

where 7, = 1/y is the magnetic field noise correlation decay

time, @; is the wave-function amplitude in the state |}, gr;

and gpp are the two levels’ respective hyperfine g factors,

mp; are the magnetic quantum numbers of the hyperfine

sublevels, 7 = h/2m is the reduced Planck constant, and

up ~ h x 14GHz/T is the Bohr magneton. When making

use of magnetic sublevels in the ground state, the g factor is

gFr = :I:m for F =1+ % The result is a series of terms

with different dephasing times
h

Ty = , 3

" \grimp1 — grvmpr | sy (AB2) ¥

where we have defined dephasing time as the time taken

for an off-diagonal element in the density matrix of a state

to decay by a factor of e~!/2. To obtain a single parameter

characterizing the qudit decoherence, we choose the pair of

qudit states with the smallest value of 7, which corresponds to
the shortest dephasing time in the series of terms:

i

T= . 4
i ISBOR) @
For example, for the zigzag encoding in Fig. 1, the es-
timate for the coherence time is the relative dephasing
of the |0) = |F =2,mp =—-2) and [4) = |F =2, mp =2)
levels. In this expression, if the two most sensitive lev-
els of the qudit are |Fj,mp;) and |F,, mp;), we obtain
= up(grimr1 — gramps). Using the estimate of an achiev-
able magnetic field noise from [56], where /{AB(1)?) ~
2.7 pT, we may thus calculate a lower bound dephasing rate

for any qudit encoding.

Coherence times will be maximized when the relative
sensitivity of the entire set of states is minimized, as in the
bunched configuration shown in Fig. 1. Using this encoding
scheme, the largest relative sensitivity for two states within a
d-level qudit is u = max(%)lf—l”/z, where max(x) denotes
the largest integer smaller than or equal to x.

In practice, encoding a qudit in the least sensitive levels is
difficult to implement because of the great deal of polarization
control necessary. We choose instead to use the zigzag encod-
ing exemplified in Fig. 1(a), where each consecutive pair of
states obey AF =1, Amp = 1, for the d = 3 and 5 qudits.
This encoding can be manipulated with Raman transitions
that have straightforward laser polarization requirements, as
described in Sec. IV. In this case, the largest relative sen-
sitivity for two states within the qudit is pu = IiLl’;z. For
comparison, the relative sensitivity of a Zeeman qubit used
in [56], which uses the two states of a single-electron spin, is
2 up. This means that for any of the ions listed in Table I,
the coherence time t we estimate is greater than or equal
to that in Ref. [56], depending on how many levels we are
using; if we use all states, the lifetimes are equal. As pointed
out in Ref. [59], this coherence time is already long enough

to envision implementing error-correcting codes with existing
techniques.

III. QUDIT MEASUREMENTS

The typical method for measuring qubits must be modified
for qudits in order to account for the higher number of states
encoded. This section describes a protocol for measuring all of
these encoded states. An analytical description for the error of
this measurement is developed and realistic error estimations
are presented using this model.

State measurement for trapped-ion qubits is accomplished
by exposing the ion to laser radiation, configured so that only
one of the qubit states fluoresces, and the fluorescence is
collected on a detector such as a charge-coupled device or
photomultiplier tube. In generalizing the fluorescence tech-
nique to multiple levels, one must produce a signal that
differs for each physical basis state. A straightforward way to
accomplish this goal is to sequentially check each basis state
separately:

(1) Engineer a situation where only one of the basis states
(e.g., |0)) produces fluorescence when exposed to laser radia-
tion.

(2) If no fluorescence is detected, engineer a situation
where another state (e.g., |1)) fluoresces.

(3) Etc.

Repeat this process until the presence of fluorescence has
indicated which of the basis states is occupied. The criterion
that only a single basis state respond to the detection lasers
at any given step is crucial. If two or more states are induced
to fluoresce simultaneously, then the information about which
state was occupied will be lost.

Many ions used for quantum information processing (QIP)
feature metastable states, which can be exploited for state
readout. The metastable state chosen should not be part of
the closed-cycle transition used for Doppler cooling. The
“shelving approach” to measuring a qudit encoded in such
an ion is illustrated in Fig. 2 for three levels. It consists of
shelving all but one state in the metastable state, measuring
the remaining state, then repeatedly deshelving and measuring
states until the overall state of the qudit is known. This
approach assumes that the transitions between each qudit state
and its corresponding metastable shelf state are resolved in
frequency, so that each state can be checked independently
during the fluorescence step.

Here, we estimate fundamental limitations on the measure-
ment speed and fidelity for our chosen ion, *’Ba™. The finite
lifetime of the metastable state D5, imposes a limitation on
the measurement fidelity as a function of the measurement du-
ration. In this paper, we assess the feasibility of implementing
rapid adiabatic passage with rectangular driving pulses for qu-
dit measurements. There are more advanced schemes for rapid
adiabatic passage that reduce error by careful pulse shaping
of the driving field [60], but a simpler scheme is sufficient for
evaluating the practicality of our qudit measurement protocol.
A similar scheme was used in Ref. [61] for ¥Ba* shelving,
and in Ref. [62] for readout of 1*3*Ba™ ions.

For a two-level system, if one couples a field detuned from
the transition by A(?) = w(t) — wy [where w(t) is the laser
frequency and wy is the transition frequency] and uses the
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FIG. 2. The shelving procedure for a three-level qudit measure-
ment. (1) Map states |1), |2) to the metastable state. (2) Fluoresce on
the cycling transition S;,, <> Pi,,. (3) If no fluorescence is detected,
return one state from the metastable state to the ground state. (4)
Measure it with fluorescence.

rotating wave approximation (RWA), the Hamiltonian in the
rotating frame of the laser frequency is found to be

To on
H_[Q/Z —A(t):|’ ©)

where 2 is the resulting Rabi frequency of the transition. The
eigenstates of the system are called the adiabatic or dressed
states. The important result is that if one sweeps the frequency
of the field adiabatically from some detuning A, across
resonance, stopping at —A, then the system will remain in
the adiabatic state it was initialized in. While the adiabatic
state does not change, the composition of this adiabatic state
in terms of the diabatic (undressed) states changes so that one
has near perfect fidelity population transfer between the two
levels.

There are several sources for error during population trans-
fer using adiabatic passage. First, there are errors inherent in
the way the adiabatic transfer is performed:

gprep(Qa Np) = Sin2 6o, (6)
E12(Q, A) = e /A, @)
where tan 26, = A% and o = A is the linear sweep rate of

the laser frequency. Eprep is the error from imperfect adiabatic
state preparation: ideally, for rectangular pulses, one would
start and end the sweep at detuning | Ay| = oo for the adiabatic
states to correspond exactly to a diabatic state. This is not
reasonable to do, so one must instead start at some finite
detuning, resulting in this preparation error. & 7 is the Landau-
Zener probability [63,64], accounting for how adiabatic the
transfer is.

Considering the atomic energy structure of the shelving
transition '*’Ba™, there are the additional error sources of
off-resonant coupling to other transitions, and decay from the

finite lifetime of the shelving state:

QZ
Eor(Q2, A1, C)) = szﬁ’ ®)
gdec(t) =1- e_t/tdecs (9)

where i is an unwanted transition outside of the laser fre-
quency sweep, A; = min|A(?) — Ajpl| is the minimum detun-
ing of this unwanted transition from the laser frequency, A
is the detuning of the unwanted transition from the desired

transition, Q) = ./ A? + Q2 is the effective Rabi frequency of
the laser coupling to this unwanted transition, and C; is the
overall strength of the ith transition compared to the desired
transition. In the decay error &g, fgec i decay time of the
shelving state (fgec ~ 30 s for Ba™); this is an overestimation
of the error as it assumes that the qudit was in the first state
we shelved and that we leave it shelved the longest.

Another consideration is the dephasing error from the finite
linewidth of the shelving laser [65]. This error comes in as an
exponential of the form o2 AVQ/ %, where Av = I'"/2x is the
FWHM laser linewidth. Putting all of these errors together, we
have the fidelity of a single adiabatic transfer given by

Fruans(2, AQ), (i}, @, 1)
=[1 — Epep(Q, Ap)T
X (1/2 + € 728 ,(Q, ) — 1/2])Eqec(t)

x [ 01 = Eor(R2, Ay, G, (10)
{1}

Here, we square the preparation factor since this error occurs
at the beginning and at the end of a transfer. The off-resonant
error is a product over the set {i} of all off-resonant transitions.

Another error source comes from additional motional side-
bands offset from all of the carrier frequencies by the secular
trap frequency. In a standard “blade” style trap, one would
expect this frequency to be ~2 MHz. In this case, for some
shelving transitions, some motional sidebands are within the
laser sweep range of a transition we wish to drive. This re-
sults in coherent adiabatic passage on these transitions. How-
ever, because the Lamb-Dicke parameter for this transition
is n = 0.0243, these couplings are weakened: their strength
scales as r;N compared to the carrier, where N is the order
of the motional sideband. The probability of driving such a
motional transition is given by

fmot(Qv A(t)a o, A_]'O’ N])
= Fuans(C; 20N, max|A(t) — Ajol, {}, o, 1), (11)

where C; is the relative strength of this transition compared
with the desired transition, and Ajy is the detuning of the
unwanted motional sideband transition from the desired tran-
sition. Here, we do not consider off-resonant coupling and
leave the set {i} empty. The overall fidelity to successfully
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FIG. 3. (a) The fidelity of population transfer [Eq. (12)] plotted for various applied Rabi frequencies and passage times ¢t = %A. The gray
curve follows the optimal parameters. (b) The measurement time and fidelity [Eq. (13)] for different prime-dimensional qudits. We use the
optimal Rabi frequency for each measurement time. Fluorescence time is included in the measurement duration, and we assume that the
amount of adiabatic passages needed is 2d — 3 (the maximum amount of transfers needed for an arbitrary measurement).

shelve a state is now given by
]:shelve(Qa A(t)9 {1}7 a’ t’ ,])
= -/__.trans(Qv A(t)v {l}v o, t)

< [T = Foat(@, AG), @, 1, Ajo, N,
(U}

12

where {j} is the set of all motional sidebands driven through
during this transfer. Note that for most transfers, {j} = {}.

With laser stabilization, one can achieve a laser linewidth
of less than 2Hz [66]; we assume a linewidth of exactly
2 Hz for the following calculations. We choose a quantization
magnetic field of 470 uT. In 137Bat, the F = 3, 4 levels are
separated by less than 1 MHz, so we choose to ignore them
and shelve into the F = 1, 2 levels, which are separated by
~70 MHz. For simplicity, we choose the shelving transitions
to drive |S2; F, mp) states to |Ds »; F' = F, m = mp) states
in the shelving manifold. By orienting the 1762nm laser
wave vector and polarization in a useful geometry [67,68],
q = %1 transitions [¢ = —(mp — m})] are completely sup-
pressed, and the strengths of ¢ = %2 transitions are reduced.

With these properties, we calculate the fidelity
of population transfer for different Rabi frequencies
and overall passage times for the three-level qudit
|F =2,mp =0) < |F'=2,mj =0) shelving transition
using Eq. (12) [see Fig. 3(a)]. We assume that the initial
detuning Ay = 1.3MHz, which is 500kHz detuned from
the carrier’s nearest motional frequency: the tilt mode at
1.8 MHz. If we pick optimal parameters (along the gray line
in Fig. 3), we can get better than 99.8% fidelity for individual
transfers.

For the overall shelving procedure, there are impor-
tant errors to avoid, and we have several tricks that

allow us to do so. The desired ¢ =0 transitions are,
in the smallest case, ~3.5 MHz apart in frequency.
However, there are some ¢ = £2 transitions we wish
to avoid driving; the F =2, mp =2« F' =2, mp =0
transition is just ~800 kHz detuned from the desired
F =2,mp = -2 < F' =2, m}, = —2 transition. This tran-
sition also happens to have the highest motional sideband
coupling. In the shelving procedure, we have the freedom to
not shelve one of the encoded states; if we encode using this
F =2, mp = —2 level, we make sure to measure it first, to
avoid the need to shelve it and incur these errors. A useful
trick to avoid coherent transfers of unwanted transitions is to
hide an encoded state; if shelving one state drives a motional
sideband which transfers population from another encoded
state, we can move this other encoded state to a different
hyperfine manifold, hiding it from the motional sideband tran-
sition. The error from this transfer is negligible (see Sec. IV)
in comparison to the other errors in the overall measurement.
Finally, we also have the choice to not deshelve one of the
shelved states since we only need to fluoresce all but one of
the encoded states. Using these principles, we can perform
the three- and five-level measurements without driving any
motional sideband transitions coherently; for the seven-level
measurement, we must coherently drive four (second-order)
motional sidebands. If we are not careful about constructing
the sequence, undesired carrier transitions could reduce our
measurement fidelity to under 10%, and first-order motional
transitions could reduce it to below 95%. More details about
the measurement sequences can be found in Appendix B.
Next, we have to consider each fluorescence measurement.
We assume that the imaging system has NA = 0.5 and a
quantum efficiency of 80%. Assuming oversaturation for all
fluorescing lasers, a good estimate for our fluorescence rate is
(Ry/2) ~ 1/tp,, X 1/3 X Bp,,—s,, =~ 30 MHz, where tp,, =
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TABLE II. Error budget for the measurement sequences. Details
for the five- and seven-level sequences can be found in Appendix
B. Coherent sideband driving error is where a motional sideband
transition frequency lies within an adiabatic frequency sweep, given
in Eq. (11).

Error source Three level Five level Seven level
Preparation (Eprep) 93 x107* 22x 1073 34x107°
Off-resonant coupling (Eog) 1.6 x 107* 3.7 x 107* 5.9 x 107*
Adiabaticity (£12) 20x107% 47x107% 74x10~*
Dephasing (linewidth) 1.8x 1073 42x107% 6.5x 1073
State decay (Egec) 24x107* 5.7x107* 89x10~*
Motional sideband driving 1.2 x 1073
Fluorescence (Eppor) 58x107* 12x1073 1.7x1073

7.92 ns is the lifetime of the Py, state, Bp, ,—s,,, = 0.756 is the
branching ratio from the Py, state to the Sy, state. Assuming
around 10 bright-state photons are needed to discriminate
between a bright or dark reading, each fluorescence step takes
tauwor ~ 6 wus. Each fluorescence measurement also introduces
a decay error of Egec(fauor ), and an error stemming from dark
and background counts in the photon detector. In Ref. [69],
this error is estimated to be oy ~ 2.8 x 10~*; their setup has
higher background counts and a lower collection efficiency
than our assumption, so we use this number as an overestima-
tion.

Figure 3(b) considers the entire shelving measurement
process for different qudits up to seven levels. During a typical
measurement, the procedure is complete once fluorescence
has been seen, so in most cases, not all of the transfers in the
shelving procedure need to be performed. Here, we assume
the worst case where we have to do all of the transfers (for
d levels, this is 2d — 3 transfers). Again, we assume that
the initial detuning for each transfer is 1.3 MHz. The overall
fidelity is calculated by

]:meas Z([l - gdec(tﬂuor)](l - gphot))aL] 1_[]:shelvea (13)
{k}

where {k} is the set of all of the shelving and deshelving
transitions for the measurement. Details about the sequences
we chose can be found in Appendix B. We plot the best fidelity
for different sweep rates in Fig. 3; as shown, it is possible
to get better than 98% overall measurement fidelity for up to
seven-level qudits. Both the three- and five-level qudits can be
measured with better than 99% fidelity. Table II summarizes
all of the error contributions for the different qudits. The
biggest contributors are the imperfect state preparation (from
finite detuning), and the dephasing from the laser linewidth.
Note that utilizing chirped pulses would eliminate the prepa-
ration error entirely. Only the seven-level qudit measurement
involves coherently driving motional sidebands, suffering an
appreciable amount of error. This highlights the importance of
choosing a good measurement sequence to avoid all first-order
sidebands and as many second-order sidebands as possible.
Note that overestimations were made in this analysis, so the
experimental fidelity is likely to be better than what is pre-
sented here. With the ability to measure qudit states with high
fidelity, combined with universal single-qudit gates, quantum

state tomography can be carried out in a straightforward
manner [2]. A protocol to implement single-qudit gates for
trapped ions is introduced in Sec. IV.

There are multiple avenues by which the error rates for
our shelving measurement could be improved beyond the
analysis in this paper. As mentioned earlier in this section,
shaped pulses could be used rather than rectangular pulses.
This would drastically reduce one of the major error sources:
adiabatic state preparation. Alternatives to adiabatic passage
could also be considered, such as composite pulses and opti-
mal control theory. Additionally, when performing statistical
measurements, one could use an adaptive algorithm to do state
fluorescence on the state that the qudit is most likely in, based
on the previous measurements. Such an adaptive measurement
would make the number of adiabatic passages necessary ap-
proach d — 1, dramatically decreasing the measurement error.

IV. SINGLE-QUDIT GATES

Single-qudit gates can be performed using well-studied
decompositions like those in [6,70,71]. Here, we describe the
essential features of such schemes, and present simulations on
the resulting error rates when implemented with microwave
fields of uncontrolled polarization or with stimulated Raman
transitions.

To enable universal quantum computation, in terms of
single-qubit operations, the Pauli gate set along with a non-
Clifford gate is sufficient. Similarly, for qudits, generalized
versions of the Pauli gates and a non-Clifford gate fulfill the
requirement for universal quantum computing in terms of
single-qudit operations [50]. A convenient non-Clifford gate
is typically chosen to be the 7 /8 gate. We refer the reader to
Appendix C2 for the definitions of these gates.

To physically realize these gates, one way is to decom-
pose them into a sequence of simpler physical operations.
It is known that single-qudit gates can be decomposed into
sequences of two-level operations as outlined in [6,70]. Phys-
ically, these operations are implemented using sequences of
microwave or laser pulses, each implementing an evolution
operator of the form

V(j, k; 0, ) = exp [i0(e”]j)k| + e k) j)].

Here, |j) and |k) are two of the qudit basis states, 6 repre-
sents a pulse angle (which physically depends on the Rabi
frequency for the transition |j) <> |k) and the pulse duration),
and ¢ is a phase that can be controlled by manipulating the
phase of the microwave or optical radiation. These constituent
operations \7( J, k; 0, ¢) are referred to as Givens rotations, in
keeping with prior nomenclature.

Single-qudit gate decompositions can be made provided
that the allowed transitions form a connected graph. For a
qudit of dimension d, at most d(d — 1)/2 Givens rotations
are required to synthesize an arbitrary single-qudit unitary, up
to a set of phase factors on the qudit basis states. Essentially,
the desired gate can be written as a sequence of population
transfers between two levels from the qudit space:

U=VkVk_1...V10,

(14)

s)

where V; are unitaries generated by individual pulses ap-
plied to a transition between states and ® is a set of phase
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factors in a diagonal matrix. If necessary, these phase factors
can further be eliminated by at most 2(d — 1) additional
rotations. Further details of this decomposition are given in
Appendix Cl. There are other possible gate decomposition
schemes that can be more efficient, such as the Householder
reflection decomposition [71]. However, this decomposition
requires an ancillary state which has direct transitions to
all encoded states. This limits the generalizability to higher-
dimensional qudits for trapped ions. In comparison, the re-
quirement for Givens rotation decomposition is more lenient,
and can be easily generalized.

We use this decomposition method with Givens rotation
to construct the aforementioned generalized Pauli gates and
the 7 /8 gate. In addition, we also decompose the quantum
Fourier transform of a single qudit, which is equivalent to
generalization of the Hadamard gate to higher dimensions and
we denote it with A,. These decompositions are written out
explicitly in Appendix C2. To drive a single-qudit gate, we
consider two possible methods. The first method uses direct
transitions with a microwave source while the other is via
Raman transitions with laser beams in the visible range. For
microwaves, an unpolarized source is assumed for simplicity.

In order to assess the practicality of a trapped-ion qudit
system, the expected errors for the constructed gate set should
be evaluated. From previous qubit experiments, sources of
error for a trapped-ion system are well understood [72]. As
discussed in the Introduction, we focus on known errors that
are fundamental to our trapped-ion system and errors due to
environmental factors. Errors due to experimental controls
are excluded from our analysis. For single-qudit gates, the
first error we consider is magnetic field noise. Fluctuations in
the overall magnetic field result in magnetic sublevel energy
fluctuations, decohering the qudits while transitions are being
driven. Another source of error will be off-resonant coupling.
This error is relevant for an unpolarized driving source as it
is unable to make use of selection rules for state transitions
to mitigate off-resonant coupling. Finally, when using Raman
transitions to drive gates, off-resonant coupling to the P states
induces photon scattering, which can lead to state decoher-
ence.

To estimate the errors of single-qudit gates in ion traps
using microwaves, we simulate the full Hamiltonian with
a fluctuating magnetic field and off-resonant coupling. We
perform these simulations for all the aforementioned gates:
generalized Pauli gates, the A, generalized Hadamard gate,
and a generalized 7 /8 gate [50]; additional details for how the
simulations were performed and the full results can be found
in Appendix C 3.

It is found that for higher Rabi frequencies, the gate times
decrease, and thus the magnetic field fluctuation errors are re-
duced; however, off-resonant coupling error becomes worse.
With a Rabi frequency of 100 kHz, the H, error increases
to around 1% and 10% for three- and five-level qudits, re-
spectively. Thus, for further analysis in this paper, the Rabi
frequency for microwave transitions is limited to 10 kHz.
Note that polarization control of microwaves is possible with
a specialized ion trap [73], which would allow us to reduce
this off-resonant coupling error almost entirely.

Using Raman transitions with polarized laser beams avoids
errors from off-resonant coupling, so we are able to assume

a Rabi frequency of 100 kHz. However, there is another
significant error stemming from photon scattering. To obtain
a characteristic value for this error, we pick the error from
transition that has the largest photon scattering error among all
the |I) to |l + 1) transitions. Only Raman scattering decoheres
the qudit states for single-qudit gates [74]. Thus, the state
with the largest Raman scattering rate, Rraman, 1S chosen to
characterize the error, which is obtained by computing the
difference between the total and Rayleigh scattering rates. To
compute the scattering probability during the gate time, the
calculation is done using the Kramers-Heisenberg formula
[75]. For d =3 and using the zigzag encoding shown in
Fig. 4(a), the total and Rayleigh scattering rates that result in
the largest Raman scattering rate are

RO _ ﬁg( ApAsp )

total 6 AI/Z _ A3/2

3
Wy 1 1
X | VP ,—S 3 5 5 +7 2
|: " l/2“’131/2—>51/2< Afp A3

3
5 (C!)R - C!)D3/2) 1
+ VP ,—Ds) 3 Az
Pij—D3)2 1/2

3
(C!)R - (X)D3/2) 1
+ 7)/P3/2—>D3/2 3

2
P3;y—>Dj3)» A3/2
(wr — wpsp)® 1
+ TYpy D5y —5—2 | (16)
P;p—Ds)» 3/2
3) _ V3R AippA3p
Rayleigh — 3¢ AI/Z — A3/2 YPip—Si

op (13, % s
X b
w%’l/2—>51/2 A%/2 Al/2A3/2 A%/2

where Ry is the total scattering rate, Rpayleigh 1S the
Rayleigh scattering rate, 2 is the Rabi frequency,
VP81, = 9.53 X 107s7! is the decay rate from 6P/
to the 6Sy, state of Ba®, yp,.p,, =3.10x 107 7!
is the decay rate from 6P, to the 5D3; state,
YPy—Ds;, = 60.00 x 10°s~! is the decay rate from 6P3)»
to the 5Ds), state, VPyp—Dsjy = 4.12 x 107 s7! is the decay
rate from 6P;,, to 5Ds; states [76], wg is the laser frequency,
haw;, i € {D3), D53}, corresponds to the energy level in the
ith state, with the energy of the 65;,, state set to be zero,
w;j corresponds to the transition frequency between states
j and k, Ay is the detuning of our laser frequency for
a Raman transition from the 6P/, state, and A3, is the
laser detuning from the 6P;/, state. With a laser wavelength
of 532 nm assumed, we have A, = —44.08THz and
A3 =—94.78 THz. For d =5 and the zigzag encoding
scheme as shown in Fig. 4(b), the total and Rayleigh
scattering rates that result in the largest Raman scattering rate
are

) =8< Aiplsp )
total 2 Al/2 _ A3/2

3
Wy 1 1
X |\ VP jy—S 5 +7
|: 1/2 l/zwfjl/z%s[ﬂ( A%/Q A%/Z)
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3
(CUR - wD}/z) 1
+ SyPl/zﬁDs/z 3 A
Pip—D3)pn

2
1/2

3
(C()R - a)D3/2) 1
+ 7)/P3/2—>D3/2 3

2
Pg/z—)D}/z A3/2
(wg — wp;,)° 1
+ TV Doy —5—— | (18)
P3;—Ds)> 3/2
® R ( Aiplsp
RRayleigh - E AI/Z — A3/2 YPip—Sip
or (13, 34 (19)
X .
3 2 2
@py )81 Ay Aiplhsp A3,

Further details on the calculations on the scattering rates can
be found in Appendix F. The Raman scattering probability,
Praman> Which is treated to be equivalent to the errors, is then

PRaman = RRamantg’ (20)

where 1, is the gate time. The H,; gate, which has the longest
duration, is used to obtain an upper bound for the error.
The A, gate has a gate time t, = 28.04 us for d =3 and
t, = 67.85 us for d = 5 with a Rabi frequency of 100 kHz.
For a single m-pulse population transfer, assuming a
10 kHz Rabi frequency for microwave transitions and
100 kHz for Raman transitions, the error is on the order of
10~°. For all of the gates of interest, the overall fidelities are
better than 99.8%. To isolate the contribution of each effect,
simulations are also run for each error by itself, and the aver-
age results for the A, gate with a Rabi frequency of 10 kHz
are shown in Table III. Note that the photon scattering error
is independent of the Rabi frequency, so the error figure for
this error in Table III is representative for a Rabi frequency of
100 kHz as well. With such a well-controlled magnetic field,
off-resonant coupling and photon scattering errors are more
than five orders of magnitude larger than the magnetic field
noise error. For the magnetic field noise error to be of the same
order of magnitude as the others, which we take to be 1074,
the fluctuations could be relaxed. The extents of relaxation
of the requirement on magnetic field noise for each transition
technique and d = 3 and 5 are tabulated in Table IV. Overall,
the error estimates for known error sources are sufficiently
small, and there is no limiting factor for achieving fidelities
higher than typical fault-tolerant thresholds for single-qudit
gates, whether they are driven by microwaves or Raman

TABLE III. Error budget for A, gate with a 10 kHz Rabi fre-
quency, and a magnetic field noise of 2.7 pT. Off-resonant coupling
simulations were run 500 times each and magnetic field noise simula-
tions were run 300 times each, varying the initial state randomly; the
average error from these are shown. The asterisk denotes only present
for gates driven with microwaves. The double asterisks denote only
present for gates driven with Raman transitions.

Error source Three level Five level

Magnetic field noise (254+02)x 1071 (2.5+0.2) x 10~
Off-resonant coupling* (1.12 £0.01) x 10~* (1.3540.02) x 1073
Scattering** 4.62 x 1073 1.94 x 107*

TABLE IV. Estimation of thresholds of the standard deviation of
magnetic field, \/(AB?), for error values from magnetic field noise to
be below 10~ for a I—L gate with 10 and 100 kHz Rabi frequencies
for microwave and Raman transitions, respectively.

V(AB%)/nT

Transition technique Three level Five level
Microwave 0.811 0.167
Raman transition 8.111 1.676

transitions. Further details of the calculations can be found
in Appendices C 3 and G.

V. TWO-QUDIT (ENTANGLING) GATES

In addition to the single-qudit operations described in the
previous section, to form a universal gate set for quantum
computing, an entangling gate or a two-qudit gate is required.

A two-qudit gate can be performed using generalizations
of a common technique often referred to as the Mglmer-
Sgrensen (MS) gate [29]. Lasers applying optical dipole
forces to the ion crystal can be used to implement a state-
dependent force; combined with the Coulomb repulsion be-
tween ions, this force can mediate an entangling interaction.

In this section, we present a MS-type entangling protocol
for qudits (Sec. V A). In addition, we investigate the effects of
a variety of possible error sources (Sec. V B).

A. Ideal generalized MS gate

We describe a generic approach to implementing two-qudit
gates by addressing an appropriate combination of motional
sideband transitions. We assume that the qudit levels are
chosen such that there are dipole-allowed transitions between
each pair of levels |I) <> |l 4+ 1), and that the energies are
chosen in a zigzag configuration. Our entangling gate can
be used to generate any arbitrary two-qudit unitary with the
addition of the single-qudit gates described in Sec. IV and
forms a universal gate set [77].

In the case of a qubit MS gate, we desire an interaction
Hamiltonian of the form [29]

6y,

2 ’

N
H = th(&Tei(wM—ll«)l + &e—i(wM—M)l) Z 20
n=1

where 7 is the Lamb-Dicke parameter, €2 is the resonant Rabi
frequency between the two levels, & and &' are the lowering
and raising operators of a vibrational mode in an ion chain,
respectively, wy, is the target vibrational mode frequency, u is
the detuning of laser frequencies from the resonant frequency,
t is time, and &, is the Pauli x operator. n is the index for each
ion in a chain of N ions.

In analogy to the qubit case, we generalize the MS gate to
a qudit system with the following Hamiltonian:

N
Hideat = Iy QU@ " 4 ae= v N "8 - (22)

n=1
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()

FIG. 4. Schematics of laser perturbations applied to '*’Ba* for (a) three-level qudit and (b) five-level qudit for qudit MS gate. wg, denotes
the nth laser frequency applied for the gate. (c) Illustration of physical implementation of laser beams and frequencies for the qudit MS gate.

Cyan circles represent the ions.

where
" S,+S
Sx == —5
2

s—1
Sie= > Vs D =TT+ DI +s+ 1) +sl,

'=—s

s—1
$-= " s+ D =T+ DI+ +s+1], (23)
l'=—s
nu is the Lamb-Dicke parameter of the motional normal mode
used for MS gate entanglement, 2 is the qudit MS gate Rabi
frequency, & and &' are the lowering and raising operators of
the motional normal mode used for entanglement, wy, is the
motional frequency used for entanglement, u is the frequency
detuned from resonant transitions, d = 2s + 1 is the total
qudit level. This is analogous to generalizing a spin-half
system in the qubit case to an arbitrary spin system in the qudit
case. This can be done by applying red- and blue-detuned
transition frequencies between each |/) and |/ + 1) states on
the 2 qudits to be entangled (see Fig. 4), which is known to be
straightforward [16]. Further details of the derivations can be
found in Appendix D.
The desired time-evolution unitary operator generated by
the Hamiltonian in Eq. (22) is

N 2
U(r) = exp i90<23‘x,n> , (24)

n=1

where 6 is the qudit MS gate phase.

In the phase-space picture as shown in Fig. 5(a), this
operation corresponds to displacing the system in the phase
space with a radius proportional to Sy | + Sy 2. The geometric
phase gained after closing the loop is proportional to the
area enclosed by the trajectory, which is proportional to
(Sx,l + Sx,Z)z'

B. Error estimates

In order to estimate the expected error of the qudit MS
gate, we consider sources of error that are intrinsic to the
formulation as well as errors from an imperfect environment.
The intrinsic sources of error are as follows:

(1) inaccuracy from Lamb-Dicke approximation (LDA);

(2) inaccuracy from rotating wave approximation (RWA);

(3) presence of spectator phonon modes;

(4) photon scattering.

The errors from an imperfect environment are as follows:

(5) imperfect cooling of ions;

(6) motional heating of ions;

(7) magnetic field noise.

Choosing the center-of-mass mode as the coupled mode
for qudit MS entanglement, we have ny = n¢ and wy =
wc, where the subscript C denotes center-of-mass mode.
To model a realistic ion trap, the parameters used are
ne =5.07 x 1072, we = 2 x 2MHz, wr = 27 x 1.8 MHz
(the frequency of spectator mode, subscript 7' denotes

tilt mode), u =27 x2.01MHz, and a gate time of
ty = ‘wf’iﬂ‘ = 100 ps. We set 6y = —7 as an example. This
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FIG. 5. (a) Illustration of evolution of three-level qudits in
position-momentum phase space during the qudit MS gate. The
displacement of all states returns to the original position at the end of
the gate. The phase gained by each basis state is proportional to the
area enclosed by the trajectory in phase space. (b) State probability
evolution of the three-level qudit MS gate. The gate is set to complete
a loop in the position-momentum phase space every 100 us. 6, is set
to 6y = —7%. After one loop, at t = wcz’i o= 100 us (dashed line),
multilevel entanglement is achieved.

o

value of 6, is chosen as it results in a nontrivial entanglement
result that is not replicable by a single-qubit MS gate for a
three-level qudit system. For example, 6 = —7 acting on
the state |2,2) of a three-level qudit system can be shown
to give the same output as a qubit MS gate acting on the
appropriate transition levels [see Fig. 5(b) at r = 200 us].
We kept 6y = —7 for the five-level qudit for simplicity. The
motional heating rate is assumed to be 100 quanta/s, which
is a realistic estimate [78]. The initial two-qudit state is
chosen to be |[d — 1)|d — 1). Variations of the parameters and
Hamiltonian were used to pinpoint the magnitude of error
contributed by a certain error source.

In order to obtain the output state and thus the fidelity
without making the second RWA and LDA approximations,
the time evolution of an input state is simulated by nu-
merical integration according to the differential equation in

Eq. (D16) using the Hamiltonian in Eq. (D9). For estimating
error from spectator modes, simulations are done with and
without coupling to other phonon modes, and the results are
compared.

In order to obtain the error due to imperfect cooling of ions,
the input phonon state is modeled to be in a thermal state with
phonon Fock-state population distribution of [79]

Al

_ n
@+ 1y

where 7i is the average phonon number. In order to obtain a
crude (over)estimation of the error due to motional heating of
ions during the gate, the phonon state of the motional mode
is increased by one when the phase-space displacement is
maximal, from which we compute Fi,r. The overall fidelity
is then

(25)

n

F= (1 - Pheal)]:0 + PheatFheat (26)

where Py is the probability that a phonon hop happens due
to motional heating from the environment, F; is the fidelity
when no phonon hop happens, and F, is the fidelity when a
phonon hop has happened.

Since it is more computationally intensive to implement
a time-varying magnetic field noise for the simulation of an
entangling gate, we obtain an estimate of the error introduced
by magnetic field noise by setting a constant magnetic field
offset error of 2.7 pT. This modifies the original Hamiltonian
to

d—1
H = Horig + Y AEIXI],

=0

27)

where H g is the original Hamiltonian and AE; is the energy
shift of state |/) due to magnetic field shift.

Photon scattering is another significant source of error for
the qudit MS gate. A Raman scattering event immediately
decoheres a qudit state. Although a Rayleigh scattering event
does not directly decohere the quantum states, momentum
transfer due to photon recoil still introduces some error during
MS gate [74]. Accounting for the scattering probability for
two ions, the gate fidelity with photon scattering error is

-Fscaller = (1 - PRaman - PRayleighErecoil)zv (28)

where Prayleigh 15 the probability of a Rayleigh scattering event
and é&recoil 18 the error introduced due to photon recoil when a
Rayleigh scattering event has occurred. The Rayleigh scatter-
ing photon recoil error generalized to qudits from Ref. [74] is

5(d — 1)

Erecoill = Tnéeo. (29)

Praman 1s computed using Eq. (20). Prayieigh is obtained from

PRayleigh = RRay]eightg~ (30

For the case of a three-level qudit system, the photon scatter-
ing probability is calculated with the states |0), |1), and |2) in
Fig. 4(a) being the three computational qudit states. The total
photon scattering rate (for any encoded state) in this case is
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derived to be
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For the Rayleigh scattering rate, the state with the smallest rate
is chosen to maximize Raman scattering probability to obtain
a conservative error estimate. This Rayleigh scattering rate for
three-level qudits is derived to be

= A1pAsp
RRayleigh = 5‘/69< L 4 VPip—Si
Arjp— Azp

w3 11 2 1 \?
><3R< + ) (32)
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With the five-level qudit in the zigzag encoding, the total
and Rayleigh photon scattering rates are derived to be
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RRayleigh =

With photon scattering error, the fidelity is then transformed
as

F— ]:(] - PRaman - PRayleighgrecoil)z- (35)

The details on the numerical simulations and derivations are
available in Appendices E and F.

The fidelity obtained with all the error sources taken
into consideration for d = 3 is F = 0.9932. For d = 5, oft-

TABLE V. Error estimates from error sources for the qudit
entangling gate. Each error estimate except for the error from photon
scattering is obtained by the increase in fidelity when the error source
is removed from the simulation. The error from photon scattering
listed here is computed from 1 — Fycaper, Where Fyaner 1S the fidelity
with photon scattering and is defined in Eq. (28). The error estimates
for d = 5 listed here are obtained for the case without the large error
from off-resonant frequencies (see text).

Error source Three level Five level
LDA 3x107* 3.0 x 1073
RWA 4x107* 2.6 x 1073
Spectator mode 2.7 x 1073 1.10 x 1072
Photon scattering 7 x 1074 2.4 %1073
Imperfect cooling <10~* <x 107*
Motional heating 3.3x 1073 4.6 x 1073
Magnetic field noise <1074 <107

resonant transition frequencies distort the Hamiltonian signif-
icantly from the encoding scheme in Fig. 1(c), and results
in a fidelity much smaller than 1, which is F = 0.0296.
We note that this error is present due to symmetry of the
zigzag encoding scheme that we have chosen, and may be
overcome with other encoding schemes. Neglecting this error,
an overall fidelity of F = 0.9789 is obtained for d = 5 with
these parameters. From Table V, the spectator phonon mode
and motional heating of ions are the major sources of error. To
reduce the error due to a spectator phonon mode, a direct way
is to tune the trap parameters such that the spectator mode is
detuned farther from the desired phonon mode frequency. This
would reduce the contribution to the state evolution from the
spectator modes. To eliminate the spectator mode contribution
without the need to tune the trap parameters, clever pulse
shaping could be performed which removes spin-phonon cou-
pling of spectator modes, which is shown for the qubit case
[80]. Assuming that spectator mode error can be eliminated
by clever pulse-shaping techniques, the fidelity for this three-
level qudit entangling gate can be increased to F = 0.9959.
Neglecting the error due to off-resonant frequencies again, the
fidelity for the five-level qudit entangling gate is F = 0.9899
if the error from spectator mode can be overcome.

It is also experimentally relevant to estimate the thresholds
of magnetic field noise such that the error from this source
starts to become significant. From Table V, error values from
most other error sources are in the order of at least 1074, To
be below this benchmark, the requirements on the standard
deviations of the magnetic field noise can be relaxed to
V(AB?) = 1.608 nT and /{AB?) = 0.804 nT for d = 3 and
5, respectively.

Overall, it is possible to achieve more than 99% fidelity
for three-level qudits with this generalized entangling gate.
For d > 5, this gate is not applicable for our specific en-
coding scheme using '*’Ba* due to error from off-resonant
frequencies.

VI. SUMMARY

In this paper, we have described a suitable operation set
to implement qudit-based quantum computing. We discussed
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TABLE VI. Overall error budget for qudits using '*’Ba*. By
controlling the polarization for optical pumping and using additional
microwave pulses [81], was able to achieve 99.93% fidelity state
preparation. Other numbers are from simulations described in this

paper.

Error source Three level Five level
State preparation 299.9%
Measurement 99.59% 99.07%
Single-qudit gates >99.99% >99.9%
Two-qudit gates 99.32% 2.96%

how to satisfy all of the DiVincenzo-like criteria (Sec. I1 A)
for quantum information processing with qudits. Using the
hyperfine sublevels of a trapped ion, we are able to encode the
different qudit states such that we can arbitrarily create any su-
perposition state for the system. Standard optical pumping can
be used to initialize our qudits reliably. An optical shelving
method using a metastable state was discussed in detail, which
allows us to measure the state of the qudit with high fidelity.
Finally, we presented a Mglmer-Sgrensen—type entangling
gate which, along with single-qudit gates, allows us to create
any arbitrary entangled quantum state in our qudits [77]. With
these conditions satisfied, our proposed trapped-ion system
can be considered a universal quantum computer.

As a comparison for our operations’ fidelities, we use the
99.25% fault-tolerant error threshold found for qubits [49] on
the grounds that there is significant evidence that qudit-based
codes will have more relaxed thresholds [44]. Table VI lays
out all of the error sources considered for our qudit platform.
The simulation codes for the error estimations presented in
this paper can be found in the simulations (see repository). We
acknowledge as well that this is not an exhaustive study; more
details could be included such as noise from Rabi rate fluctu-
ations. However, our main goal is to show that there are no
fundamental roadblocks toward qudit implementations, and
we have taken measures to ensure the errors considered are
upper bounds for this study. For qutrits, we find no fundamen-
tal obstacles to achieving this error threshold. For five-level
qudits, more work needs to be done to improve the entangling
gate, but if we succeed in overcoming the parasitic coupling,
these gates could be done with a fidelity of at least 97.89%.
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APPENDIX A: ENERGY STRUCTURE OF (Ba*)

Figure 6 illustrates the energy levels and transition frequen-
cies for (*7Ba™).

3
450 MHz

2
150 MH

6P,

137Ba+

30 MHz 6}
455

1.5 GHz

8 GHz

FIG. 6. '"""Ba" energy structure [82]. The 6S;/, <> 6P, optical
transition is used for optical pumping, Doppler cooling, and fluores-
cence measurement. The 65, <> 5Ds, transition is used to shelve
qudit states. The 5Dz, <> 6P, transition is used to repump dark
states back into the cooling/fluorescence cycle. The 5Ds;, <> 6P;),
transition is used to empty the 5Ds/, state. Because of its nuclear
spin of % each level is split into hyperfine levels: the frequency
differences between these levels are shown [83—-85].

APPENDIX B: MEASUREMENT

The shelving transition from S/, to Ds, is a quadrupole
transition with a wavelength of 1762 nm. As shown in [67]
(Sec. 3.4.3), we can suppress some transitions while retaining
others by choosing different directions and polarizations for
this laser. There are two useful orientations: one orientation
suppresses all Amp = %1 transitions completely, while re-
ducing the strength of Amp = £2 transitions, and retaining
the Amp = 0 transitions; we call this the XZ orientation.
Another orientation suppresses everything but Amp = £2
transitions; we call this the orthogonal orientation. While
using the orthogonal orientation cleans up the frequency
spectrum, we chose to use the XZ orientation for the simpler
mapping to the shelving state: F, mgp — F' = F, mp: = mp.

In order to successfully measure out a qudit state using
our shelving scheme described in Sec. III, we must first come
up with a way to modulate the laser frequency to drive all
of the desired transitions. The range of transition frequencies
is ~8 GHz wide, the ground-state hyperfine splitting in
137Ba*. However, we can set the laser frequency near halfway
between the frequencies and use an electro-optic modulator
with ~4 GHz modulation to create sidebands both above and
below this laser carrier frequency, allowing us to drive all of
the transitions.

Figure 7 shows all of the relevant frequencies involved
in the shelving transition for a carrier frequency of feuier =
—1130MHz. Some transitions lying near our desired tran-
sitions are unavoidable. In addition, many of the motional
sideband frequencies of these unwanted transitions lie within
our adiabatic laser sweep. In fact, some of the unwanted
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FIG. 7. Absolute frequency spectrum for shelving five-level qudits. Shaded areas show the laser sweep with 1.3 MHz detuning. We use a
—1130 MHz laser carrier frequency. Text on top of transitions is denoted as (F, mz) <> (F, mr)', where the prime denotes the shelving state.

carrier transitions themselves lie within the laser sweep. If we
drove such an adiabatic transfer on the desired transition, the
unwanted transition would also be adiabatically driven, result-
ing in additional error. For second-order motional sidebands,
which are very weak, this error is quite small. However, we
must avoid sweeping through carrier and first-order sidebands.
The carrier frequency was chosen to minimize the number of
undesired frequencies near encoded transitions and to thereby
maximize the overall fidelity of a measurement.

These transitions are only driven if our qudit actually
contains population in one of the states involved in the
transition. So, by picking a particular order of shelving, we
can reduce the number of unwanted transitions coherently
driven. In addition, we can use microwaves or Raman lasers
to transfer population around within the ground state. This
can essentially hide the population, so it cannot be driven
by unwanted transitions. The three-level qudit with zigzag
encoding has no unwanted transitions lying within the laser
sweep, but the five-level zigzag encoded qudit, as seen in
Fig. 7, has several. Using the shelving sequence described
in Table VII and shown in Fig. 8, we can avoid all of the
unwanted transitions.

For the seven-level qudit, the frequency space is even
more cluttered. Using the measurement sequence described in
Table VIII and depicted in Fig. 9, we can avoid most of these,
driving only a total of four second-order motional sidebands.

APPENDIX C: SINGLE-QUDIT GATES
1. Gate decomposition

The overall goal is to decompose an arbitrary d-
dimensional unitary like

U=VVk_i...V1® € SU), (C1)

where each operator Vi is a two-level pulse between adjacent
energy levels |k) and |k + 1) of the form

VK — e*iCK(eid’\k)(k+1|+e’i¢|k+1>\k)) (CZ)

for some phase ¢ € R, and O is a diagonal matrix of
some arbitrary phases. For an arbitrary d-dimensional unitar
U € SU(d), define the unitary U® = ¢=T/4(J. Denote Ulfj)

as the ith row and jth column entry of U©. The algo-
rithm starts by finding an operator of the form in Eq. (C2)

TABLE VII. The steps for measuring a five-level qudit. Transi-
tions are denoted by (F, my), and apostrophes denote states within
the Ds;, shelving manifold. Shelving and deshelving is done by
adiabatic passage on the 1762 nm transition, hiding is done by a
microwave or Raman transition, and fluorescence is driven on the
493 nm §;, <> Py, transition.

Desired Transition

w2

=

a
gl

Shelve (1, +1) — (1, +1Y
Shelve (1, —1) — (1, —1)
Hide (2, -2) — (1, —1)
Shelve(2, +2) — (2, +2)
Shelve (2,0) — (2,0)
Fluoresce |0) state

Deshelve (2,0) — (2,0)
Fluoresce |2) state

Deshelve (1, —1) — (1, —1)
Fluoresce |1) state

Deshelve (1, +1) — (1, +1)
Fluoresce |3) state

el e Y A S

—_— e — \O
N = O
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FIG. 8. Measurement sequence for a five-level qudit. Solid blue
and purple straight arrows are desired transitions and dashed or-
ange arrows are unwanted transitions. Black straight arrows are
microwave or Raman transitions used to hide population. Line sizes
denote the order of the transition: carrier transitions are thickest (left-
most purple arrow) and first order are thinner (orange arrow driving
from |0)). Noncarrier transitions also have white arrows. Symbols
on lines denote that a transition’s frequency is within an encoded
transition’s laser frequency sweep (with the same symbol) and it
will be driven. Large black numbers denote the step number and
the small arrows pointing up (down) denote shelving (deshelving)
and hiding. Red vector states denote the encoded states. Wiggly teal
arrows denote fluorescence measurement of an encoded state.

such that
Ul 0

IO ST
Al K7 [ e (C3)

for some number C. Defining the new operator U1 = VITU ),
we continue finding pulses V[ in this way until we end up with
the last column decomposed as

©)
Ul,d 0
vi vl o | =

) 0
Uja e

(C4)

We repeat this process for each column, resulting in the
diagonal matrix given by

Vian PR AN VO© = diag(e™, ..., %)  (C5)
or
00 = Vd(dfl)/z ce Vn e Vldiag(elpl yeees ei0,1)' (Co)

We define mappings o : Z — Z4 and t : Z — Zg4 such that
at step K, o(K) gives the row to decompose and 7(K) gives

TABLE VIII. The steps for measuring a seven-level qudit. Tran-
sitions are denoted by (F, mF), and apostrophes denote states within
the Ds), shelving manifold. Shelving and deshelving is done by
adiabatic passage on the 1762 nm transition, hiding is done by a
microwave or Raman transition, and fluorescence is driven on the
493 nm S, <> Py, transition. The third column lists any undesired
motional sideband transitions that are also driven by this transition.

Step Desired transition Other transitions

1 Shelve (1, —1) — (1, —1)

2 Shelve (1,0) — (1,0)

3 Shelve (1, +1) — (1, +1)

4 Hide (2, +1) — (1, +1)

5 Hide 2, -1) — (1, —1)

6 Shelve (2, +2) — (2, +2)

7 Return (1, +1) — (2, +1)

8 Shelve (2, +1) — (2, +1) (2,0) < (2,0)
(2, +2) & (2, +2)

9 Return (1, —1) — (2, —1)

10 Shelve (2, —1) — (2, —1) (2,0) < (2,0

11 Fluoresce |3) state

12 Deshelve (1, —1) — (1, —1)

13 Fluoresce |0) state

14 Deshelve (1,0) — (1, 0)

15 Fluoresce |2) state

16 Deshelve (1, +1) — (1, +1)

17 Fluoresce |4) state

18 Deshelve (2, +1)Y — (2, +1) 2,42) < (2,+2)

19 Fluoresce |5) state

20 Deshelve (2, +2) — (2, +42)

21 Fluoresce |6) state

the column to decompose. Forcing all pulses to be unitary with
positive Ck, we have

—iC [€K |o (K)o (K)+1]+e K |o (K)+1)|o (K))]

Vk =e , (C7)
where the pulse angles and phases are
U(n—l)
-1 o (K).t(K) (n—1)
— cot <|U(nl) )’ |UO'(K)+1,T(K)} 7& 0
K o (K)+1,7(K) (n—1)
0, |UJ(K)+1,I(K)} =0
b4
_ (n—1) (n—1)
bk = B + arg(Ua(K),r(K)) - arg(Ua(K)+l,r(K))' (C8)

To eliminate the phases ¢ in each column j, we simply
perform two pulses of the form of Eq. (C7) with pulse
angle Cx = m /2 and phases ¢y = —7/2 —0;, ¢pg =7 /2.
The overall maximum number of pulses needed to gener-
ate an arbitrary d x d unitary U with phases eliminated is
d—-1d+4)2.

Next, we show how to physically implement these pulses.
If we apply a magnetic field B, our atomic Hamiltonian in the
ground manifold becomes

(Eg - gFMBmgB)ngs mg)(ng mg|

my=—F,

Fﬂ
+ D (Ec+grusmeB)|Fo, m)F,, m|, (C9)

m,=—F,
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FIG. 9. Measurement sequence for a seven-level qudit. Red vector states denote the encoded states. (a) Solid blue and purple arrows
are desired transitions and dashed red and orange arrows are unwanted transitions. The line sizes denote the order of the transition: carrier
transitions are thickest (leftmost purple arrow) and first order are thinner (orange arrow driving from |0)). Noncarrier transitions also have
white arrows. Symbols on lines denote that a transition’s frequency is within an encoded transition’s laser frequency sweep (with the same
symbol) and it will be driven. (b), (c) Large black numbers denote the step number and small arrows pointing up and down denote moving
population, either shelving, deshelving, or hiding. (b) Black transitions are microwave or Raman transitions used to hide population. (c) Wiggly

teal arrows denote fluorescence measurement of an encoded state.

where g and e correspond to the F = 1, 2 hyperfine levels,
respectively, and E; is the energy of hyperfine level i. Driving
a transition between connected qudit states m, and m, with
a resonant microwave E(t) = Egcoswt + ¢ (0 = w, — w,),
the perturbing Hamiltonian in the static Hamiltonian interac-
tion picture looks like

1
1, ...
HI = Z E(el(PQ:;lg—mg |ng mg><Fe’ me|
q=—1
+ ¢ Qy—m, | Fer me)(Fy, myl), (C10)
where

Q, = 2(=1) et JOF, + D2, + DI

Jo J, 1 )
x {Fg Y > (Fp mglFome; 1, q). (C11)
Note that some transitions have the same frequency; we
could align our electromagnetic polarization to the mag-
netic field to select a single transition. Each decomposed
pulse V[0, p];; corresponds to the physical parameters

0 < |Qm,-fm,-|(t —1)/2,p0 < ¢ — arg(fzmﬁm,)'

2. Gate library

Here, we give a list of useful qudit gates decomposed into
these pulses. We assume that all qudits are in the zigzag
configuration, so that |/) is connected to |/ £ 1) and we only
perform pulses on these transitions.

The first set of useful gates are the generalized Pauli gates.
The simplest way to generalize the Pauli gates to d dimen-
sions is by the following prescription: X|j) = |j + 1 mod d),
Z1j) = @’|j), and Y|j) = iXZ, where w = €**/? [50]. The
matrix forms for the X, ¥;, and Z, operators for d = 3 are
given as follows:

A 0 0 1
L=|1 0o o, (C12)
01 0
. 0 0 ie ’%ﬂ)
=i o0 o |, (C13)
0 iel’s 0
1 0 0
7y = (o é3 0 ) (Cl14)
0 0 %
For d =5, they are
0 0 0 0 1
) 1 0 0 0 0
X=|0 1 0 o o, (C15)
00 1 0 0
0 0 0 1 0
0 0 0 0 Qe ¥
i 0 0 0 0
Vs=10 % 0 0 o |, (C16)
0 0 i 0 0
0 0 0 ie”S 0
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1 0 0 0 0
0 5 0 0 0
Zs=l0 0 &% 0 0 (C17)
0 0 0 eif 0
0 0 0 0 ¥
The next set of gates are the single-qudit quantum Fourier
transform, defined as H,;|j) = Ld Zf:o el | 1y In matrix
forms, they are
1 1 1
- 1 2 i
Hy=—|1 €5 e '3 |, (C18)
3 1 e i¥ éx
1 1 1 1 1
1 eiz?" gi% e i €7i2%
5 1 jar _jn i _jin
=D e e fe e[
1 e'5  ¢5  eiT eis
1 5 e &5 T

The final set of gates we present are called 7 /8 (pi-over-

eight) gates; in qubit form, they look like T = (670"g ef)%).
These gates are useful in quantum information theory as
supplements to the Pauli and Clifford gates [50]. We used the
generalized three- and five-level 7 /8 gates presented in [50].

In matrix form, for d = 3, itis

1 0 0
fi=[0 &% 0 (C20)
0 0 ei%
Ford =5, itis

1 0 0 0 0

0 % 0 0 0
=10 0 % 0 0 (C21)

0 0 0 &5 0

0 0 0 0 %

The Givens decompositions of all of these gates are listed out
for three- and five-level qudits in Tables IX and X.

3. Single-qudit gate error simulations

Magnetic field noise can be modeled by a perturbative
Hamiltonian

F.
Hoise = Z grpmAB|F,, m,XF,, m,|

m,=—F,
FK
— > grusmAB|Fy, mg)(Fy, myl,

mg=—F,

(C22)

where gp is the hyperfine g factor, up is the Bohr magneton,
and AB(?) is the random fluctuation of the magnetic field
from the set magnetic field. The subscripts g and e denote
the lower- and higher-energy states in the hyperfine splitting,
respectively. The resultant Hamiltonian is then

H= Hideal + 7'tnoise’ (C23)

TABLE IX. Unitary decomposition for various three-
dimensional unitary gates of interest.
Unitary Pulse Transition Pulse angle, C Phase, ¢
X5 1 |0) < |1) T 0
2 [1) < |2) /2 /2
3 |0) < |1) /2 /2
)2 1 |0) < |1) /2 /2
2 |0) < |1) /2 T /6
3 [1) < |2) /2 /2
4 |0) < |1) /2 /2
Z3 1 1) < |2) /2 /2
2 [1) < |2) /2 /6
H; 1 |0) < |1) /2 /2
2 |0) < |1) /2 37 /2
3 |0) < |1) /4 57/6
4 [1) < |2) /2 /2
5 [1) < [2) /2 21 /3
6 1) < [2) arctan v/2 T /6
7 |0) < |1) /4 T /6
T 1 1) < |2) /2 /2
2 [1) < |2) /2 317 /18

where Higear 1s the ideal Hamiltonian for a single-qudit gate.
The output state under this Hamiltonian is obtained by numer-
ically solving Schrédinger’s equation.

To account for off-resonant coupling, the Hamiltonian has
to be modified to

H= Hideal + Hnoise + HOR? (C24)

where Hor is the component of the Hamiltonian due to off-
resonant coupling. It has the form

Q p

@
Hor = =D+ 11+ 11+ DU+ Y Y=

k Kk

x exp [i(wr — wp)t — i sgn(wy, — wp)w;t]|k) (K|

= —Higea + )Y Qka

k Kk

x exp [i(wx — wp)t — i sgn(wy — wp)oyt]|k) (K],
(C25)

where |I) and |l 4 1) are the states where resonant transition
is desired, €2; is the Rabi frequency for the desired transition,
w; is the transition frequency between |/) and |l + 1), Qp
is the Rabi frequency for the transition between the states |k)
and |k'), hwy is the energy for the |k) state, and sgn(x) is the
sign function

-1 ifx <0,
sgn(x)={ 0 ifx=0, (C26)
1 if x > 0.

For the simulation, we find that it is too computationally
intensive to simulate both off-resonant and magnetic field
noise error simultaneously with a time-varying noise. Thus,
the deviation in magnetic field is set at a constant offset at the
standard deviation of 2.7 pT as an estimation for simulations
with both errors taken into account. We found no discernible
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TABLE X. Unitary decomposition for various five-dimensional
unitary gates of interest.

Unitary Pulse Transition Pulse angle, C Phase, ¢
X5 1 |0) < 1) T 0
2 |2) < |3) b4 0
3 13) < |4) /2 /2
4 12) < [3) /2 /2
5 1) < |2) /2 /2
6 |0) < [1) /2 /2
¥s 1 [0) <> |1) /2 /2
2 10) < |1) /2 97 /10
3 1) < [2) /2 /2
4 1) < [2) /2 T /10
5 [2) < |3) /2 /2
6 12) < [3) /2 97 /10
7 13) < |4) /2 /2
8 [2) < |3) /2 /2
9 1) < [2) /2 /2
10 |0) < [1) /2 /2
Zs 1 1) < |2) /2 /2
2 1) < [2) /2 197/10
3 12) < [3) /2 /2
4 12) < [3) /2 77 /10
5 |3) <> |4) /2 /2
6 13) < |4) /2 197/10
Hs 1 |0) < 1) /2 /2
2 10) < |1) /2 3.30265
3 |0) < |1) /4 0.63627
4 1) < [2) /2 /2
5 1) < [2) /2 6.18626
6 1) < [2) 0.95532 1.53005
7 |0) <> |1) 0.60641 4.57966
8 [2) < |3) /2 /2
9 12) < [3) /2 /2
10 12) < [3) /3 1.981884
11 1) < [2) 0.85289 3.74954
12 |0) < |1) 0.60641 3.69336
13 13) < |4) /2 /2
14 13) < |4) /2 97 /10
15 13) < |4) 1.10714 97 /10
16 12) < [3) /3 97/10
17 1) < [2) 0.95532 97 /10
18 |0) < |1) /4 97/10
Ts 1 1) < [2) /2 /2
2 1) < [2) /2 77 /10
3 |2) < |3) /2 /2
4 12) < [3) /2 37/10
5 13) < |4) /2 /2
6 13) < |4) /2 117/10

difference in the average fidelity obtained whether a magnetic
field offset is present as the error is dominated by off-resonant
coupling. For the simulations with only magnetic field noise
present, we generate random magnetic field noise using an
Ornstein-Uhlenbeck function with a mean of 0, inverse corre-
lation time y = 0.5 ms™!, and volatility o = /2y (AB2); we
assume that the magnetic field noise is Gaussian and station-
ary [58]. For simulation of an entire gate, pulses are applied
immediately after one another; we calculate the fidelity by
comparing the final state from the evolution of Eq. (C23) to

the desired state from applying the gate. The results for all of
the gates of interest are shown in Fig. 10.

APPENDIX D: GENERALIZED QUDIT MS GATE
DERIVATIONS

In order to arrive at the desired qudit MS Hamiltonian
[Eq. (22)], we start with a chain of N ion qudits. The static
Hamiltonian is

N
1
Ho = Hom + Ho,s, Hom = Z hawpy, (?J,L&m + §>,

m=1

N d-1

Hos =YY Eall){lln,

n=1 [=0

(D)

where Hp » describes the Hamiltonian of the motional state,
‘Ho s describes the Hamiltonian of the internal energy states,
the subscript m denotes the mth vibrational normal mode,
E; is the energy of state |I), and [ = I’ 4+ 5. We assume that
for each transition level between |/) and |l + 1), we apply a
laser perturbation with frequency wy ; close to the transition
energy between the two target levels and far off-resonant to
(or forbidden by selection rules for) transitions to the other
levels. The interaction Hamiltonian is then approximately

N d-1
Hine = Y > 7y cos(kty — wpit + ¢)
n=1 [=0
X (104D {In + 1D+ 1),

where €2 , is the Rabi frequency for the target transition from
|I) to |l 4+ 1) for the nth ion, % is the position of an ion along
the motion of the phonon mode being used for entanglement,
k is the wave vector of the laser perturbation along %, and ¢ is
the initial laser phase. The total Hamiltonian is then

H =Hom + Hos + Hint-

D2)

(D3)

Assigning odd-qudit levels to lower-energy levels and
even-qudit levels to higher ones in a zigzag pattern, we define

Ei — E = —(=1)'hay. (D4)

In the interaction picture with respect to Hy, the effective
Hamiltonian is then

N d-1

M=) hQu,coski, — ot + ¢r)
n=1 1=0
x (VN4 AN, + VN4 1,), - (DS)
where & = " 3 e~ A"
interaction picture.

The above description assumes one laser frequency per
transition. In analogy to the MS scheme, let us have two laser
perturbations tuned close to resonance for each |/) to |/ + 1)
transition. One set of laser fields is blue detuned while the
other is red detuned, with frequencies

is the position operator in the

wr; = w; + 1 (blue detuned),

wr; = w; — p (red detuned). (D6)
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Error (x10™)
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Error (x107®)
(b)

FIG. 10. Simulation histograms of gate errors for all Pauli gates Xy, Yy, Z2), the generalized Hadamard gate H,, and 7 /8 gates (T) 1501
for (a) three- and (b) five-level qudits. Each gate has a sample size of 500, where the initial qudit state is a randomized superposition of the
encoded states. A magnetic field offset is set at the standard deviation of \/(AB(t)?) ~ 2.7 pT and off-resonant coupling to other states is
incorporated into the simulations. The Rabi frequency is set at 10 kHz for the data sets in this figure.

For small u, we can apply a RWA to obtain the effective and adding H; and H, gives the resulting effective Hamilto-

Hamiltonians for blue- and red-detuned laser perturbations, nian of the form
respectively:
Hiotal = Hp + H,
N d- N d-1
Hy ~ Z Z P i Oy 1, =)D hcos(ut + du)
n=1 [=0 n=1 [=0

—i(=Dgl, —i(—=1)k&,
+ ei(—l)’(kﬁ?;—ut-*-%.z)|l><l_|_ 1] x [e (195 g=i(=D) ol + 1X1],

e + e VR N 1,) (DY)
— 72 . o

H, ~ Z S [ Y Gttt 1 41y, For small k%', we can apply the Lamb-Dicke approximation

n=1 1=0 2 (LDA), which gives
e A TS TR ) (D7) VR~ 1 L i(—1) k. (D10)
_ Expressing k%’ in terms of raising and lowering operators of

Defining ion chain vibrational modes,

¢M,] — ¢r,l ; ¢b,l i kA/ _ Z T, (et(l)mt f la)mtf\ ) (Dl 1)
oL, = ¢’rl + &, l (D8) where 7,, , is the Lamb-Dicke parameter for the mth motional
SLT T mode and the nth ion, w,, is the motional frequency of the mth
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motional mode. We arrive at
N d-1

Hiow = 9 Y 1S cos(ut + gy, )le™ V%01 + 1)1,

n=1 [=0

N N
+ & ])¢51|l (I + 1], ]+ZZ

m=1 n=1

d—

Nm,n Ql
=0

. . . 1 ’ T
x COS(/,Lt+¢MJ)(€'w”’tCAl; + e*lwmtam)[e*l(*l) (@s,+7)

XL+ 1)), + VOS]

Without loss of generality, we let the mode m = M, to be
close to the laser frequency detuning u & wy, and to be far
detuned from the other vibrational mode frequencies. With the
condition €; < u, another RWA can be applied, which gives
the resultant effective Hamiltonian of

~

(D12)

N d-1

Q
Hioa —ZZh"M; e O T

n=1 1=0

+ e—i(wM—M)l-Fid)M.z&M)[(e—i(—l)’(¢§,1+%)|l + 1),

+ e V@ADL 4 11,)].

For simplicity, we specialize to the case where the
near-resonant motional mode is the center-of-mass mode
ny.n=Nc and we rewrite wy = wc. To arrive at Eq. (22), we let

b5 = —(=1) (85, + 3)-
Om = Pum.1,
Q=Qss+ 1) —I'(I'+1).

For the case where the spin phase ¢s = 0, and the motional
phase ¢, = 0, with Eqgs. (D13) and (D14), we get the exact
form in Eq. (22). This dictates the phases of the blue- and
red-detuned laser perturbations'

Ovi + Gy = -, Ppi = Pry.

The time-evolution operator generated by the Hamiltonian
of Eq. (22) is obtained by solving Schrodinger’s equation
du i -
— =——-HU
dt h
We evaluate the time-evolution operator with the Magnus
expansion

(D13)

(D14)

(D15)

(D16)

U(t) = eXim M), (D17)

where My (t) is the kth term in the Magnus expansion. For the
Hamiltonian at hand, the generated Magnus expansions are

M) = —%/ H(ey) d
0
N

—a*(0al ) Sen

= [a(t)a

'For the case where the even-numbered states are lower in energies
while the odd-numbered states energies are higher, i.e., £, — E; =
(—1)' hawy, the spin phase is transformed to ¢g = (—l)’(¢§, + 7).

My (t) = ——2/ dt1f [H(t1), H(t2)] dtp
21" Jo 0

2
_ e ( B Sln[(wc—u)t) -
~loc—u\ we — | 2::

(Z S, n>2,

My (t) =0 for k > 2,

CL)C —
(D18)

where a(t) = w"c‘%[l — ¢/n=1 Here, we have neglected
terms in M;(¢) which are bounded with ¢. To minimize cou-
pling to the phonon states [which is equivalent to minimizing
M;(¢) and closing the loop in the phase-space picture in
Fig. 5(a)] and obtain the desired entangling gate, we require
2

loc — |’
where K is a positive integer. The resultant unitary of the qudit
entangling gate is then

2
. 2in2Q2 N
U = exp e @ K(ZSM . (D20)

t=K (D19)

(we — w)lowe — ul

n=1

The ion qudits in eigenstates of S after the gate in Eq. (D20)

gain phases of
N 2
0 =6 (Z in) :
n=1

2Kr)%§227r
(we — Wloc — |’

0o = (D21)

where A, is the eigenvalue of the nth ion with respect to S,.
For a two-qudit gate, N = 2, and the output is an entangled
two-qudit state in general.

APPENDIX E: QUDIT ENTANGLING
GATE SIMULATIONS
1. General approach

For numerical simulations of the qudit MS gate, we have
the capability to simulate the time evolution without making
the Lamb-Dicke approximation (LDA). This gives us a more
realistic fidelity that we expect to get when we carry out the
experiment.

First, we choose some convenient motional and spin phases

NPT A T
b= —(=1'(¢},+3) =0.
¢m = ¢m,l =0. (El)

Then, the Hamiltonian is
N d-1

H=> Y hQys(s+1)—=I'(I'+ 1)cos(ut)

n=1 [=0

x [i(—1) e VAR5 L1y,

— (=D)AL Y (1 4 1),] (E2)
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Due to computational limitations, we can only simulate
two phonon modes (center-of-mass and tilt modes). Thus, the
position operator for each ion is

AKS), = nc(e'af + e ac)
— (=D)"pr(e®al + e “'ar),  (E3)

where the subscripts C and T denote center-of-mass mode and
tilt mode, respectively. The Hamiltonian is then

53

n=1

Y

-1

BQ/s(s+ 1) — I'(I' + 1) cos(ut)

—
Il
=}

. a1\ ioct 5T —ioCt Y (— 1V (9T 55 —iopty
w [i(— 1)l D M@ e alte o ac)—(=1 Yy (€T e 1 a )

x |1+ 1),
— (= 1)l D el ai e ae)—(= 1) ny (T ap e T ap )]
X I+ 1] (E4)

Since the phonon operators for different modes commute,

2 d-1

H=> " hQs(s+1)—I'(l'+ 1)cos(ut)

n=1 [=0

x [l'(_1)lefi(f1)’nc(e"“’f‘a}w*"%’ac)

i(—1Y (—1)" iort AT 4 —ioTt
X e’( D=1 nr (T ap +e™T aT)|l + 1><l|n
—i(—1 )lei(—l)’rzc(e’“f’&2+e*"f”6'ac)

x e IV D@ T a ke A 1y 4 )] (ES)

In the presence of a magnetic field mismatch, the Hamilto-
nian is modified to
d—1
H—H+ Y AEX. (E6)
1=0

With Egs. (ES) and (E6), the time-evolution operator can be
solved numerically using Schrodinger’s equation.

We are only concerned about the output spin state and not
the phonon states at the output. Thus, |¥igea) 1S an ideal spin
state and fidelity is computed after tracing out the phonon
states of the output density operator. The fidelity at the end
of the gate is

F = (Videall Ttphonon (U () poU "t )| Wideat),  (ET)

where py is the initial density operator before applying MS
gate.

2. Simulating mixed initial state

We are taking into account error due to having an initial
state that is not absolutely in the ground state, which is a
realistic assumption. The initial motional state is assumed to
be in a mixed state with the density operator

po =D Pe(m)Pr(m)lyh, m, n)(Yo, m,nl,  (E8)

where P is the phonon Fock-state population. The C and T
subscripts again refer to the center-of-mass and tilt modes,
respectively, and |¥) is the initial qudit state. For a thermal

state, we have [79]

143

- @+ D+’
where 7 is the average phonon number.

The best strategy for a faster simulation is to evaluate the
time-evolution operator, then apply it to the initial density
operator to get the output and compute the fidelity. However,
this can be too memory intensive, which is the case for us.

As an alternative approach, we compute the evolution of
pure phonon Fock states, |, m, n), then weigh each fidelity
by the phonon populations Pc(m)Pr(n):

]:m,n :PC(m)PT(n)
X Y Wideal (m', ' [U (1) 450, m, m)

P(n) (E9)

x (o, m, n|UT(6)m', n')|Widea)- (E10)
The total fidelity is then
Fiow =Y > Pe(m)Pr(n)
XY (Wideall (', ' [U )0, m, n)
X (Yo, m, n|U (@) m', n') [Yrigear) (E11)

which is equivalent to Eq. (E7). Since we are numerically
solving the problem, the summation over the Fock-state popu-
lation ) |, P(n) cannot be an infinite series. Thus, the number
of allowed Fock states for the center-of-mass mp.x and tilt
modes np,, have to be chosen such that they are large enough
for accurate results. For our simulations, where 7ic = 0.1 and
nr = 0, we have determined that m,,x = 20 and ny,,x = 2 are
accurate enough such that further increment of allowed Fock
states does not increase the accuracy of the fidelity at the
fourth decimal place. To further speed up the process, phonon
states where Po(m)Pr(n) < 107 are ignored.

3. Optimum Rabi frequency

The Rabi frequency geometric phase relation in Eq. (D21)
in the main text is derived with LDA and RWA. Without
the RWA applied to Eq. (D12) to arrive at Eq. (D13), the
Hamiltonian we arrive at is

N
M =2 cos(ut)(@'e™" +ae™") Y "8, (E12)
n=1
and 6, is modified to
4arc Q22
0y = @il e (E13)

(0 = 1?)loc — ul’
Without LDA, the geometric phase from the entangling gate
for a certain phonon Fock state is [29]

4wC92n%n
Oy =11 -G, n)l— 5 , (E14)
(03 — u?)|oc — pl
where
G(n,n) = [agi (A — 1, 1), a" g1 (7, )], (E15)
e~ /2 L
g1, ) = P lLﬁ(n )s (E16)
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where Ly (x) are the generalized Laguerre polynomials

n

Sy«
(n—m)!(m+ a)! m!

m=0

Li(x) = (E17)

Thus, to obtain the desired geometric phase with optimal
fidelity for input qudits in phonon Fock state n, the laser am-
plitude should be tuned to the corresponding Rabi frequency
of

o — ul

Qn =
4a)c ncn

V1 —G(n n) \/
1

where €21 pa is the optimal Rabi frequency with LDA.

For input states with a superposition of or mixed phonon
states, the fidelity with errors only from the shifted geometric
phase from the LDA case can be written as

(E18)

00
o N & oy
F = an“w(ﬂel(@n Bidea) (D=1 Sx.n) |w0>|2

n=0
We define

(E19)

F(AB) = [(Yrole T S |y 2, (E20)

where A6, = 60, — Oigeq- For small A6,, f(A6H,) can be ap-
proximated with Taylor series expansion

=\ d'f(0) AG!
fao) =3 dnel I
0 n

(E21)

af )

Since f(0) =1 is a maximum point, dAG,

1argest nonzero term,

= 0. Keeping the

d>f(0) AG2

AB,) ~ 1 E22
f(A6,) + X 7 2 (E22)
To maximize the fidelity,
dF K df (A6,
AF _ 5 p, 480
a2 = dQ
da’f dA6,
N P,AG,—— =0, E23
Z "an 62 ©23)
which implies
oo
Y B[ = Gn, IR — Qp )1 — G(n, IR =
n=0
(E24)

The solution where 2 =0 does not satisfy the condition
A6, ~ 0. Thus, the optimum value of the Rabi frequency is
approximately

Yomeo PaG(n, M1 = G(n, )]
Yo Pall = Gln. )P
Since the objective is to obtain the error due to experimental

imperfections and not inaccurate parameters, the Rabi fre-
quency in Eq. (E25) is used for the simulations.

Q= Qipa, 1+

(E25)

P39
Py o
T W F=2
—
0
10) S
_Y
1)y — F=1

Y
3)

FIG. 11. Schematic for laser frequencies applied to implement a
five-level qudit entangling gate for *’Ba*. Black arrows indicate the
desired frequencies to be applied to the energy levels. Red arrows are
the (unwanted) off-resonant frequencies.

4. Pinpointing error sources

To pinpoint the contribution from each error source, modi-
fications to the simulations are done accordingly.

(1) LDA: To simulate the entangling gate with LDA, the
matrix exponential in Eq. (E4) is replaced by

oD Ine (@ ag+emC ac)—(=1)"nr (7" ag+e™T" ar )]
— 1+i(=1)[nc(e“a). +
— (=1)"nr (' al + e ar)].

—lwct ~ )

(E26)

(2) RWA: To minimize error from RWA, the frequency
values w7, wc, and p are increased from 2w x 1.8 MHz,
2nr x 2MHz, and 27 x2.01MHz to 27 x 49.8 MHz,
2w x 50 MHz, and 27 x 50.01 MHz, respectively, for the
simulations. The frequency values are then further increased
to 2w x 59.8 MHz, 27 x 60 MHz, and 27 x 60.01 MHz to
verify that the fidelity obtained up to the fourth significant
figure remains unchanged. These fidelity values are then taken
to be the fidelity without RWA, up to the fourth significant
figure.

(3) Spectator phonon mode: To eliminate tilt mode in
the simulation, the Hamiltonian is simulated according to
Eq. (E5) with ny = 0.

(4) Imperfect cooling: To obtain the fidelity with perfect
ion cooling, the average phonon number in the mixed state 7
is set to zero.

(5) Magnetic field noise: To obtain the fidelity without
magnetic field noise, AE; is set to zero.

5. Off-resonant error for five-level qudit entangling gate

With the encoding scheme as shown in Fig. 11 for the five-
level qudits, we apply laser perturbations with frequencies
as shown in the figure to implement the entangling gate.
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However, there are some (unwanted) frequencies in each resonant frequencies are introduced to each of the transitions,

transition that are allowed by selection rules. For example, whereas two additional red-detuned off-resonant frequen-
the required right and left circularly polarized light acting cies are introduced to each of the transitions |2) — |3) and
on state |3) for the entangling gate acts on state |1) too, [3) — |4).

but at unwanted frequencies for |1) state. For the transitions From Eq. (D5), the off-resonant frequencies modify the

|0) — |1) and |1) — |2), two additional blue-detuned off- ideal Hamiltonian in Eq. (22) to
J

H = Hideas + Hor,

N 2
h<2
Hor = = ZZ(ZQ VLD 4 1] + VDI 41,

n=1 j=lI
3
+ ) Cle YRR 1)), D E D g 1|n]), (E27)
=2
where ;] =4A;, —u, ur =4A, + 1, Co=C3=6,C, =C, = {, and the quantity A, is the energy of the Zeeman splitting

in frequency. We further simplify the problem by letting Ak — 0 in the off-resonant component of the Hamiltonian. The
fidelity of 0.0296 in the main text is obtained from simulations with the Hamiltonian in Eq. (E27), which only has the error from
off-resonant frequencies to verify that this error alone causes failure for the five-level entangling gate. We employ the Magnus
expansion again to evaluate the time-evolution operator generated by this Hamiltonian.

The first term in the Magnus expansion is

-
M (1) = —%/ Hideat (1) + Hor (1) dty
0

N
= [a)a" —a*(®)al Y Sen
n=1
1

+

o M2 c

1 (=) s =D s

TZZ<ZEW DIt — DI+ D+ (7= DI+ 1]
=0 77

3
+ 30 S = e Tty 1) + (1= SRl 1) (E28)
M

By changing the laser frequencies or Zeeman splitting, such that (1 — e¥D'#i") = 0 when 1 = K lw;’i 7> it s still possible
to minimize the contribution of the off resonance in the first Magnus expansion. The second-order Magnus expansion is

1 t 1
Ms(t) = _ﬁ/ dt / [Higea(t1) + Hor(t1), Higeal(t2) + Hor(12)] dt>
0 0

1 t n
= _ﬁ/ dt / [Hideal (1), Hideal (t2)] + [Hidear (1), Hor (22)] + [Hor (11), Hideal(t2)] + [Hor (1), Hor(12)] dt.
0 0
(E29)

The first term in the integral is the desired term, which is found in Eq. (D18). The rest of the terms can be approximated to be

1 1 hn
~ 57 dh/ [Hidear (t1), Hor(22)] + [Hor(t1), Hideal(12)] + [Hor (t1), Hor(t2)] dta
0 0
i? LG [(Le?
“—TfZZ(Z M—([—(—l)’|l><l|n+<—1>’|l+1><l+1|n]
n=1 j=1 \1=0 "/
G,C

+Z Z[( DI — (— 1)l|l+1><l+1|]— (|0><2|n+|2><0| )+ <|2><4|n+|4><2|n>), (E30)

= M Hj Wi

which consists of error terms due to Stark shifts and internal transitions of each qudit between |0) and |2) states and between |2)
and |4) states. This term is comparable in magnitude to the desired term in the second Magnus expansion in Eq. (D18) and thus
introduces a significant error.
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APPENDIX F: PHOTON SCATTERING PROBABILITY

From Kramers-Heisenberg formula, the scattering rate to
some final state | f) is [75]

ZZ (f164 - d|P (pl6 - d|g)

WR — Wp

(wg — wy)® &2
3reohic3 AR

Ry =———

(F1)

where wg, is the laser frequency, fiwy is the energy of the final
state, with the energy of the initial state as zero, fiw, is the
energy of some intermediate state |p) that is coupled to during
scattering, € is the vacuum dielectric constant, c is the speed
of light, £ is the electric field amplitude, &, is the polarization
of the scattered photon, the subscript ¢ denotes one of the
spherical polarizations (sigma and pi polarization), & is the
polarization of the incident laser beam, d is the electric dipole
operator, and |g) is the initial or ground state.

In our case, the initial/ground state is the 6S state, |g) =
|6S,J = 1/2, F, mp), where J is the angular momentum num-
ber of the orbital angular momentum and electron spin, F' is

J

(0 — ) &5 | (6P, J = 1/2||d||6S or 5D, J) (6P, J = 1/2||d||6S,J = 1/2)

the angular momentum number of the hyperfine state, and mpg
is its z projection. The intermediate states are in the 6P level,
|p) = |68, J, F, mg). The final state can either be in the 6S or
5D state, |[f) = |6S,J = 1/2, F,mg) or |f) = |5D,J, F, mp).

To simplify the scattering rate equation, the transition
matrix elements are reduced to the following forms with the
Wigner-Eckart theorem:

(pl6g - d|g) = Cyp 0 (6P, J11d|[6S,J = 1/2), (F2)

> (f164 - dlIp)

q

= Cy, (6P, J||d||6S or 6D, J), (F3)

where the subscript Q denotes the polarization of the incident
laser beam in the spherical basis, Cg, o and Cy, are the
coefficients that result from reduction of the transition matrix
elements. Assuming that the laser polarization is purely in
one direction in the spherical basis, the scattering rate can be
written as

Ry o = 3 2 Z (CrpCep0)
3meghc® 4h Ay pel=1/2
2
(6P J =3/2||d||6S or 5D, J)(6P,J = 3/2||d||6S,J = 1/2)
/ / S €0 - (F4)
A
3/2 pei=3/2
The spontaneous decay rate from some state |i) to state |j) is given by [75]
2

L ladiPer )
el 3meghc?

where w;_, ; is the transition frequency between the two states. Using Eqgs. (F4) and (F5), the total scattering rate for 37Ba* can
be derived to be

R (6P, J = 1/2]|d||6S,J = 1/2)|*£5 y w3 ap,.0 n Brip.0 +y (wr — wp,,)* @Dy,
total,Q — ) Pip—>S12" 3 B ) Pij»—D3)» 3 )
4n P S Al A3 @i ,—Dspo Atp
(wr — ®py,) [ Bpsp,0 (0 — wps,)* [ Bsp,
+VP3/2—>D3/2 3 — A32/2 + YP3;,—Ds), 3 = Asz/ P (F6)
®p, ), D)y 32 ®p,,—Ds)» 32

where a0 = 3o (O c/m1/2 CrpCap.0)) and Bio = Y i (3 pessya (CrpCap))’s With i € (812, D32, Dspo).
The Rayleigh scattering rate is derived to be

(6P, ] = 1/2]|d||6S,J = 1/2)P€5 (wr — )? [ 2 pes=12(CerCap.0)
4r2 o3

Pip—S12

Rg,Q = VYPip—Sip

2
4 Z peJ=3/2 (Cgpcgpﬁ Q0 ) (F7)
A1y ARY) .

The Rabi frequencies for each of the Raman transitions in Fig. 4(a) are derived to be [86]

Q (br+br)< + >6P,J=12£6S,J:122,,
0= 2\/_2 or+ N2, T mn I /211d]] /21768
1
Q= —F=> (br_+br)< )6PJ_12d6$J_12 €, (F8)
1= S T T\ R T Ay I( /211d]| /28,8

where €2; is the Rabi frequency for the transition from |/) to |/ + 1), r; and b; are components of the red and blue electric fields
of the Raman beams polarized in the i direction, respectively, i.e.,

gr = E,(r+€+ + r()é() + l"_é_),
E, = &y(byey + boéo + b_&_). (F9)
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Similarly, the Rabi frequency for each of the Raman transi-
tions in Fig. 4(b) can be derived to be

1 1 1 1
Q= — ——(rob_ + ribo)( ——— + —
0= 53 \/6(0 + o)( A A3/2>
x [(6P,J = 1/2||d||6S, J = 1/2)[*&,&,
1 1 1
Q) = ——(bgr— + b_r —
1 2)‘126( 0 + 0)<A1/2 A3/2>

x [(6P, ] = 1/2||d||6S,J = 1/2)*&,&,
Q= %l(mb_ + r+bo)<—L + L)

2K* 6 Aip o Azp

x [(6P, ] = 1/2||d|6S,J = 1/2)°&,&,,
Q=L L L)

21 /6 Ay Asp

x [(6P,J = 1/2||d||6S,J = 1/2)|2§‘,§h.

(bor_ +b+ro)<

(F10)

For single-qudit gates, two laser frequencies are needed
for each two-level transition. For the zigzag configuration as
shown in Fig. 4, one laser has to be pi polarized and the other
is sigma polarized. Assuming that the electric field amplitudes
for the two laser frequencies are equal, the total and Rayleigh
scattering rates that give the largest Raman scattering rate for
three-level qudits is the state |0) with one sigma-plus and
one pi-polarized laser frequencies. Using Egs. (F6)—(F8), the
expressions for the total and Rayleigh scattering rates given in
Egs. (16) and (17) in the main paper can be derived. For a five-
level qudits, with the same assumption that the electric field
amplitudes for both frequencies are equal, the state with the
largest Raman scattering rate is state |1) with a sigma-minus
and a pi-polarized laser frequencies. Using Egs. (F6), (F7),
and (F10), the derived expressions for the total and Rayleigh
scattering rates are given in Eqgs. (18) and (19) in the main
paper.

For the qudit MS gate, 2d — 1 laser frequencies are re-
quired for the zigzag encoding scheme that we used. For the
case of three-level qudit, we assume that &, = &, for all tran-
sitions. We also assume pure polarization of Raman beams,
i.e., |[r4| = 1 for Raman beams 1 and 2, |r_| = 1 for Raman
beams 3 and 4, |by] = 1 for Raman beam 0 as indexed in
Fig. 4(a). With Egs. (F6)—(F8), we arrive at Egs. (31) and (32)
in the main paper. For the case of a five-level qudit, we assume
that &, = &, for the transitions |1) <> |2) and |2) <> |3). The
electric amplitudes for the transitions |0) <> |1) and |3) < |4)
are fully constrained with Eq. (D14) and the aforementioned
assumption. We also assume pure Raman beam polarizations.
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FIG. 12. Estimations of error values from magnetic field noise
for single- and two-qudit gates as a function of magnetic field
standard deviation. Legend: 1QG3D(M), abbreviation for one-qudit
gate three-dimensional (microwave transition); 1QGS5D(R), one-
qudit gate five-dimensional (Raman transition). The rest of the
abbreviations of the legends can be extrapolated from the information
presented. Black dashed line marks the error value of 107*.

1

Equations (F6), (F7), (F10) give Egs. (33) and (34).

APPENDIX G: MAGNETIC FIELD NOISE THRESHOLD
ESTIMATION

In Secs. IV and V, the extent of relaxation of the magnetic
field noise requirement such that this error remains below
10~* for qudit gates was presented. The thresholds are esti-
mated by extending the formula for state decoherence in a
static Hamiltonian as shown in Eq. (2) to ions encoding a qudit
evolving under qudit gates. To be conservative, the fidelities
are computed for a state in equal superposition of encoded
states, where their difference in angular momenta, |m; — my|,
is the largest. Equation (2) then simplifies to

Foy = Ly L thgmomempare )
22
For d=3, max(lm—m|*)=2. For d=35,

max(jm; —my|*) = 4. Time ¢ is set to the gate times for
the respective gates. The error for single-qudit gates is
obtained by € = 1 — F(¢) and the error for two-qudit gates,
accounting for two ions, is ¢ = 1 — F2(¢). The results of the
calculations are presented in Fig. 12.
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