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Full counting statistics of spin-flip and spin-conserving charge transitions in Pauli-spin blockade
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We investigate the full counting statistics (FCS) of spin-conserving and spin-flip charge transitions in Pauli-
spin blockade regime of a GaAs double quantum dot. Experimentally, we executed real-time observation of
charge transitions and constructed the FCS. A theoretical model is proposed to evaluate all spin-conserving
and spin-flip tunnel rates. We enumerate advantages in FCS comparing to waiting time distribution for the
evaluation with demonstration of the universal relation between FCS and waiting time distribution We report
peculiar statistical features in the FCS, which appear in the system holding spin degeneracy and coexistence of
slow and fast transitions. Our experimental results supported by the numerical calculation provide how the spin
correlation plays on the full counting statistics. This study is potentially useful for elucidating the spin-related
and other complex transition dynamics in classical and quantum systems.
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I. INTRODUCTION

The recent advances in charge sensing technologies using
single electron transistors or quantum dots (QDs) have fa-
cilitated the tracking of charge dynamics, including charge
tunneling, electron-phonon coupling, and generation of pho-
toelectrons with the resolution of single charge [1–8]. Such
charge dynamics can be used to reveal the microscopic mech-
anism of statistical or thermodynamical phenomena, such as
the fluctuation theorem [9–11] and Maxwell demon engine
[12,13]. QDs have been extensively utilized as a tunable
platform for investigating and controlling these phenomena.
Full counting statistics (FCS) is one of the most effective
tools to analyze the charge dynamics, which yields the prob-
ability density p(n, t ) of n transitions in a time window t .
FCS encodes all the cumulants, which include not only the
mean but also the fluctuations and higher-order correlations
[14,15]. Consequently, it has been used for investigating
the cumulant asymmetry [16], super-Poissonian properties
and the spin relaxation [17], and universal oscillation of the
higher-order cumulants [18] in a single QD, bidirectional
counting and antibunching correlation in a double QD (DQD)
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[19], avalanche of the Andreev reflection events [20], and
optically detected single-electron tunneling [21]. However,
experimental demonstration of FCS has been limited to QDs
with just a few internal degrees of freedom. In order to
establish FCS for more complicated statistical phenomena, it
is necessary to investigate QDs with more internal degrees of
freedom, e.g., spin-related coupling between quantum states,
or coexisting fast and slow transitions.

Such complicated phenomena in mesoscopic devices on
which the spin effect plays significant roles have been in-
tensively studied in several research fields. Since the late
2000s, the development of spintronics in mesoscopic devices
is remarkable. For example, generation of spin current due
to spin-orbit interaction has been detected in semiconductor
devices [22,23]. Studies on the charge and spin statistics of
such phenomena will reveal the microscopic dynamics of
the charge-spin conversion and improve the conversion rate.
Additionally, the statistics in spintronic devices is strongly
related to the thermodynamical properties so that the statistics
will also contribute to establishing the spin caloritronics [24].
Furthermore, quantum natures of spins in electrical devices
are now controllable as represented by qubit operations in
semiconductor QDs. Technology development will enable to
emulate the Fermi-Hubbard model in integrated QD devices
[25] in which ferromagnetism [26–29] and high-temperature
superconductivity [30,31] would emerge. Therefore, revealing
universal statistical properties and establishment of evaluation
methods of the spin-correlated phenomena in a few coupled
QDs will pave the way to elucidate the charge and spin
dynamics such as thermal or quantum fluctuation of spins in
the important phenomena in condensed matter physics.

In this work, we choose the Pauli-spin blockade (PSB)
effect in a DQD [32] to investigate the charge and spin
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dynamics because PSB is the simplest but most significant
spin-correlated phenomenon that affects the electron dynam-
ics in a DQD. Real-time charge sensing of a DQD holding
two electrons in PSB has been reported in earlier studies,
which showed that the charge transitions can be classified
into spin-flip and spin-conserving transitions [33–35]. The
spin-conserving transitions only occur when the two spins
are antiparallel, while the spin-flip transitions change the spin
configuration. Consequently, the spin configuration can be
different even if the charge state is the same. This additional
degree of freedom complicates the charge dynamics.

Here we provide the efficacy of FCS method and peculiar
statistical features in the representative spin-correlated phe-
nomenon, PSB. We construct the FCS experimentally and
validate it theoretically using our model, which is used to
derive all the necessary tunnel rates. Then we demonstrated
the relation between FCS and the waiting time distribution
(WTD), which allows us to construct WTD even with less
amount of measurement data than that necessary to construct
the WTD without the relation. This means that all of the
information derived from WTD is compiled as a part of FCS
so that the use of FCS is more seminal. The observed features
in FCS of asymmetric tailing and parity effect, are then dis-
cussed in a convincing manner. These findings are potentially
useful for understanding more complicated transition dynam-
ics realized in multiple spin-correlated QDs. Furthermore, we
suppose that our results on the charge and spin dynamics
will be beneficial not only for QDs but also for any other
systems in which charge and spin degrees of freedom are well
defined. Indeed FCS of spin-flip and spin-conserving tunnels
has recently been studied in the research field of cold atoms
[36].

II. EXPERIMENTAL CONSTRUCTION OF FULL
COUNTING STATISTICS IN PAULI-SPIN BLOCKADE

REGIME

For constructing the FCS, we experimentally obtained the
real-time traces of charge transitions in the DQD in PSB.
The DQD was made in a GaAs quantum well. A scanning
electron microscope (SEM) image of this DQD is shown in
Fig. 1(b). Here, the target DQD is represented by yellow
circles. We applied negative voltages on the gate electrodes
indicated as L, C, R, TL, T, and TR, and tuned the DQD
in resonance with the transition between (1,1) and (0,2) (see
Appendix A). Here (0,2) indicates no electrons in the left QD
and two electrons in the right QD. Subsequently, we formed
another QD (blue circle) as a charge sensor connected to
the high-frequency resonance circuit. We measured real-time
traces of the charge sensor response Vrf to probe the charge
state. A typical real-time trace is shown in Fig. 1(c). Vrf

exhibits almost binary values of −0.10 and −0.12, indicating
the charge state of (0,2) and (1,1), respectively. Therefore,
the transitions between these two values indicate the interdot
charge transitions.

The FCS of interdot charge transitions can be constructed
from the acquired time traces. First, the raw traces are divided
into many shorter time traces (time domains) with a span of t .
Subsequently, the number of interdot transitions are counted
in each time domain. For example, five time domains of

B

FIG. 1. (a) Schematic diagram for tunneling events of a DQD in
PSB. The possible spin configurations of (1,1) charge state are spin
antiparallel (AP) and spin parallel (P). The (0,2) charge state is spin-
singlet (S). All the three possible states are connected by transitions
with rates �1, �2, �3, and �4. (b) Scanning electron microscopy
(SEM) image of our DQD. The DQD and charge sensor QD are
represented as yellow and blue circles, respectively. (c) Typical time
trace of Vrf . The jumps in Vrf imply the interdot charge transitions
between (1,1) and (0,2).

t = 10 ms duration can be created in Fig. 1(c). There are 10
transitions between 50 and 60 ms. Finally, we estimate the
probability density p(n, t ) from the number of time domains
with n transitions. On the other hand, WTD is acquired by
count of the residence events with the same residence time on
a certain charge states.

These constructed FCSs with t = 10 and 50 ms and B =
100 mT are shown in Fig. 2. Here we find two remark-
able features that are not observed in Poisson distribution,
(�t )ne−�t/n!, which is represented by triangles with a single
tunnel rate � of 1.28 kHz (only for comparison). First, the
obtained FCS has a tail structure at lower n. Second, a parity
effect is evident about n; even n exhibits higher probabil-
ity than odd n. To confirm that these two peculiar features
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FIG. 2. FCS in PSB. The red and blue circles (triangles) show the
experimental (theoretical) results for t = 10 and 50 ms, respectively.
The red and blue triangles indicate the Poisson distribution with � =
1.28 kHz.
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originate from the electron dynamics and not from artifacts
such as measurement noise, it is necessary to validate the
experimental results with theoretical calculations.

III. THEORETICAL MODEL AND EVALUATION OF THE
SPIN-FLIP AND SPIN-CONSERVING TUNNEL RATES

To this end, we now introduce our theoretical model and
apply it on the interdot transitions between (0,2) and (1,1) in
PSB. The ground states on PSB at a weak magnetic field are
enumerated as S(0,2), S(1,1), T0(1, 1), T−(1, 1) =↓↓(1,1),
and T+(1, 1) =↑↑(1,1). The spin-conserving resonant tunnels
occur between S(0,2) and S(1,1). In addition, �En, difference
of the nuclear Overhauser field between two quantum dots
mixes the S(1,1) and T0(1,1) and the typical precession time
is 100 ns derived from h̄/�En [37]. We used 100 μs as the in-
tegration time of our digitizer for the real-time measurement.
This integration time is much larger than 100 ns. Therefore,
we can assume that S(1,1) and T0(1,1) are treated classically
as ↓↑ (1, 1) and ↑↓ (1, 1). Furthermore, Zeeman energy be-
tween T−(1,1) and T+(1,1) is given as Ez = gμBB = 1.2 μeV
with g factor of 0.21 and B = 100 mT. This is sufficiently
smaller than the thermal energy of kBT � 10 μeV. Therefore,
we can ignore the Zeeman splitting and identify T−(1,1)
and T+(1,1) as spin-parallel states P(1,1). Validity of these
assumptions has already been proved in the previous studies
of the real-time measurement in PSB [33–35].

Now the spin-conserving interdot charge transitions are
allowed when the two electrons have opposite spins, but they
are prohibited due to the Pauli exclusion principle when the
two spins are parallel, and only the spin-flip transitions are
allowed in this case. Consequently, we classify (1,1) into
antiparallel [AP(1,1)] and parallel [P(1,1)] states of possible
spin configurations. Now high-energy excitations are absent,
and we are only concerned with the bound state (0,2) whose
spin configuration is spin-singlet [S(0,2)]. We define four
tunnel rates as �1, �2, �3, and �4 between such possible states.
The transition diagram is schematically shown in Fig. 1(a),
where �1 and �2 are the spin-conserving tunnel rates, and �3

and �4 are the spin-flip rates.
We define pP(n, t ), pAP(n, t ), and pS (n, t ) as the

FCS of finding the final state as P(1,1), AP(1,1), and
S(0,2) after n transitions during the time span [0, t],
respectively. The momentum generation function is
P(χ, t ) = ∑∞

n=0(pS (n, t )einχ , pAP(n, t )einχ , pP(n, t )einχ )τ ,
where τ stands for transpose of a vector and χ represents the
counting field [20]. We assume that the transition follows a
Markovian dynamics. The time evolution equation of P(χ, t )
can therefore be expressed as

dP(χ, t )

dt
= MP(χ, t )

=
⎡
⎣−(�1 + �3) �2eiχ �4eiχ

�1eiχ −�2 0
�3eiχ 0 −�4

⎤
⎦P(χ, t ). (1)

It may be noted that the experimental result in Fig. 2 corre-
sponds to the case: p(n, t ) = pS (n, t ) + pAP(n, t ) + pP(n, t ).

All the tunnel rates should be estimated to theoretically
construct the FCS. The FCS with n = 0 is available to evaluate
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FIG. 3. Evaluation of tunnel rates. (a) pAP(0, t ) + pP(0, t ) is
represented by the red circles. Inset shows pS (0, t ). The numerical
fitting results are denoted by the black curves. (b) Blue circles
represent w11(�t ) as a histogram of the residence time �t , which
is evaluated from the real-time traces. The black curve indicates the
numerical result from p(0, t ) and the universal relation between FCS
and WTD. Panels (c) and (d) represent the same functions as (a) and
(b) for different tunnel rates, respectively.

the tunnel rates because the probability densities with n = 0
consist of time domains including no charge transitions and
are equivalent to the idle time distributions. We now focus on
pS (0, t ) and pAP(0, t ) + pP(0, t ) because the charge state of
either (0,2) or (1,1) can be detected. The time evolution of
probability distributions obeys Eq. (1) with eiχ replaced by 0.
Therefore, we obtain

⎡
⎣ pS (0, t )

pAP(0, t )
pP(0, t )

⎤
⎦ =

⎡
⎢⎣

�2�4
�1�4+�2�4+�2�3

e−(�1+�3 )t

�1�4
�1�4+�2�4+�2�3

e−�2t

�2�3
�1�4+�2�4+�2�3

e−�4t

⎤
⎥⎦. (2)

First, we estimate �2 and �4 as the exponents in pAP(0, t ) +
pP(0, t ). Subsequently, we can derive �1 and �3 from
the coefficient ratio of the two exponential functions,
�1�4/�2�3 in pAP(0, t ) + pP(0, t ) and the exponent, �1 + �3

in pS (0, t ). Consequently, we can estimate all the tunnel rates
including �3.

We now evaluate pS (0, t ) and pAP(0, t ) + pP(0, t ) from the
time traces shown in Fig. 3(a). Here the solid lines represent
the fitting results obtained by Eq. (2), which are in excel-
lent agreement with the experimental results. Consequently,
all the tunnel rates can be determined as (�1, �2, �3, �4) =
(1.873 kHz, 0.976 kHz, 5.10 Hz, 3.51 Hz). We note that the
previous studies did not evaluate �3 because they focused
on the exponents and not on the coefficients. �1/�2 = 2 due
to the spin degeneracy [↑↓(1,1) and ↓↑(1,1)] of AP(1,1) as
previously reported [33,38].

Unlike the spin-conserving rates, we can obtain �3/�4 =
1.45 for the spin-flip rates. This ratio implies that there is an
unintentional energy offset from the resonance condition. This
is because when these two tunnel rates are equal, the detailed
balance condition implies �3/�4 = 2 cosh(�Ez/kBT ) � 2,
where �Ez, kB, and T are the Zeeman energy, Boltzmann
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FIG. 4. �4 as a function of �2. For varying �2 and �4, we
changed the interdot coupling by controlling the gate voltage (not
by the phonon irradiation). �4 is proportional to �2, indicating that
the spin-flip is dominantly caused by the spin-orbit interactions and
not by the hyperfine interactions.

constant, and temperature, respectively (see Appendix A). We
note that the experimental results indicate a clear double expo-
nential function, which guarantees validity of our assumption
that we identify T−(1,1) and T+(1,1) as spin-parallel states
P(1,1). If the two spin-parallel states have the different tunnel
rates to S(0,2), then p(0, t ) for the (1,1) charge state should be
a triple exponential function.

IV. DOMINANT SPIN-ORBIT INTERACTION FOR THE
SPIN-FLIP TRANSITIONS

It is important to understand the dominant mechanism for
the spin-flip tunnels because the spin-flip originated from the
spin-orbit interaction occurs in the interdot process, while that
from the hyperfine interaction occurs in the intradot process
[33–35]. To this end, we have plotted �4 vs. �2 at different
interdot couplings in Fig. 4. It is evident that �4 is proportional
to �2, which implies that the spin-flip tunnel is originated
from the spin-orbit interaction because the theory predicts that
�4 = d2/2l2

SO�2. d and lSO represent the distance between the
two QDs and the spin-orbit length, respectively [35,39]. On
the other hand, �4 is expected to be constant as a function of
�2 in the hyperfine interaction case. When we assume that the
hyperfine interaction is responsible for the spin-flip process,
FCS analysis gives �P(1,1)→AP(1,1)/�AP(1,1)→P(1,1) ≈ 3 (see
Appendix B). However, this result conflicts with theoretical
prediction that �P(1,1)→AP(1,1)/�AP(1,1)→P(1,1) ≈ 1. Therefore,
we ignore the intradot spin-flip processes caused by the hy-
perfine interaction and adopt the transition diagram shown in
Fig. 1(a).

V. RELATION BETWEEN FULL COUNTING STATISTICS
AND WAITING TIME DISTRIBUTION

We focus on WTD for (1,1) charge state, w11(�t ). We in-
troduce the relation described as w11(�t ) ∝ d2[pAP(0,�t ) +
pP(0,�t )]/d (�t )2. This relation, in which WTD is pro-
portional to the second derivative of FCS with n = 0, is
universally established between FCS with n = 0 and WTD
[40–42] (see Appendix C). From this relation, we can derive
w11(�t ) ∝ �1�2e−�2�t + �3�4e−�4�t . The histogram of �t
[proportional to w11(�t )] is shown as blue circles in Fig. 3(b).

The histogram exhibits unity or zero values for �t > 10 ms,
namely the number of the residence events with �t > 10
ms is 1 or 0. This indicates that the number of the events
is not sufficient to correctly construct WTD in �t > 10 ms.
The black line in Fig. 3(b) shows the calculated w11(�t )
from the FCS result shown in Fig. 3(a) and the universal
relation between FCS with n = 0 and WTD. It is confirmed
that the experimental WTD does not follow the black line in
�t > 10 ms.

The results mean that a long data acquisition time is needed
for the accurate estimation of �3 and �4 with WTD because
the residence time in the blocked state P(1,1) is very long.
However when difference between �2 and �4 is large, the
measurement setup has difficulty in storing sufficiently long
time traces including the long staying events at P(1,1) between
the transitions of (0,2) → (1,1) and (1,1) → (0,2) while
tracking the fast spin-conserving transitions. In our case, a
length of the time traces is 1 s. A ratio of residence on S(0,2)
is 1/5 derived from four states degenerating in (1,1) and no
degeneracy in (0,2). The spin-flip transitions result in the
blockade state P(1,1) with �3 = 5.1 Hz. Then we roughly
expect only a single blockade event in a single time trace.
The ratio of coefficients for the two exponential functions
in w11(�t ), i.e., �3�4/�1�2 << 1 is much smaller than the
ratio �1�4/�2�3 ≈ 2 in pAP(0, t ) + pP(0, t ). Therefore, the
required measurement time to guarantee the evaluation accu-
racy is longer for WTD than for FCS with n = 0. From the
above reason, analysis with FCS of n = 0 has an advantage in
evaluation of the fast and slow transition rates.

We obtained the values of pAP(0, t ) + pP(0, t ), pS (0, t ),
and w11(�t ) at different tunnel rates (�1, �2, �3, �4) =
(1.58 kHz, 0.955 kHz, 236 Hz, 87.7 Hz), which are shown
in Figs. 3(c) and 3(d). The WTD derived from the FCS with
n = 0 using the universal relation, which is shown as the
black line in Fig. 3(d), is in complete agreement with the
experimentally obtained histogram. This means that both FCS
and WTD are available when the spin-flip rates �3 and �4

are large enough. In addition, the nice agreement in Fig. 3(d)
demonstrates the universal relation between FCS with n = 0
and WTD. This demonstration implies that FCS with n = 0
and the relation allow to reproduce the WTD without a long
measurement time for storing the traces.

VI. NUMERICAL RESULTS OF FULL COUNTING
STATISTICS AND AN ORIGIN OF THE TAIL STRUCTURE

Finally, we calculate the FCS including n( 	= 0) with the es-
timated tunnel rates based on Eq. (1), which yields P(χ, t ) =
eMt P0. P0 is probability with the stationary condition, which
is calculated from Eq. (1) with dP(χ, t )/dt = 0 and χ = 0.
This results in Eq. (2) with t = 0. The open squares in Fig. 2
are the calculation results using the estimated rates in Fig. 3(a)
(see Appendix D and E). It is evident that the numerical
simulations reproduce the experiments perfectly, including the
lower n tail structure and the parity effect. This agreement
validates that our model based on FCS explains the transition
dynamics of spin-flip and spin-conserving transitions in PSB.
It further indicates that the tail structure and the parity effect
in Fig. 2 are originated from the electron dynamics. Therefore,
we have to establish these physical origins.
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FIG. 5. FCS with the large spin-flip transition rates. The lower n
tail has more population than that observed in Fig. 2.

VII. THE LOWER n TAIL ORIGINATED FROM THE
COEXISTENCE OF FAST AND SLOW TRANSITIONS

First, the lower n tail is derived from the slow spin-flip
rates. As indicated by Eq. (2), pS (0, t ) and pAP(0, t ) rapidly
decay with t as compared to pP(0, t ). This implies that many
spin-conserving transitions occur even in the small span t ,
while the spin-flip transitions occur rarely. Here the time do-
mains that contain the spin-conserving transitions contribute
to the peak at large n, and those containing the finite spin-
flip transitions in addition to the spin-conserving transitions
contribute to the long slope at smaller n.

This is also supported by the FCS result at fast spin-flip
rate. Figure 5 shows the FCS with the similar spin-conserving
rates but larger spin-flip rates than the rates used for Fig. 2:
(�1, �2, �3, �4) = (1.58 kHz, 0.955 kHz, 236 Hz, 87.7 Hz).
It is clear that the population at lower n is larger than that in
Fig. 2.

Besides, we constructed the FCS at B = 0 mT to eliminate
the difference of the spin-conserving and spin-flip transition
rates. The constructed FCS is shown as circles in Fig. 6.
Compared to Fig. 2 and Fig. 5, the parity effect is retained,
but the tail at lower n vanishes. These FCS results support our
conclusion that the slow spin-flip tunnels are responsible for
the observed tail structure at lower n.
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FIG. 6. FCS obtained at B = 0 T with several time windows t .
The parity effect is retained, but the tail at lower n vanishes.
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FIG. 7. (a) FCS with and without the selection of the initial
state. The gray circles indicate FCS without selection, while the
blue and red circles indicate FCS with (0,2) and (1,1) as the initial
state, respectively. The parity effect reverses for the different initial
states. (b) The red and blue lines represent the ratio of the odd n
probability to the even n probability for the (0,2) and (1,1) initial
states, respectively. The black lines show the calculated results based
on our theoretical model.

VIII. THE PARITY EFFECT ORIGINATED FROM THE
DEGENERACY

We reconstructed the FCS of the time domains with the
same initial states to elucidate the origin of the parity effect.
The red and blue circles in Fig. 7(a) indicate the FCS con-
structed using the time domains with the initial state as (0,2)
and (1,1) with t = 50 ms, respectively. The gray circles are
equivalent to the blue circles in Fig. 2. It is evident here that
the parity effect on the red circles is opposite to that on the
blue ones. This can be understood in terms of the equilibration
of the initial states. The selected initial state, i.e., (0,2) or (1,1)
is equilibrated into the (0,2) and (1,1) states after a long time
with probabilities �2�4

�1�4+�2�4+�2�3
≈ 1/5 and �1�4+�2�3

�1�4+�2�4+�2�3
≈

4/5, respectively. Then, the charge state tends to be (1,1)
rather than (0,2) due to the higher spin degeneracy in (1,1).
Herein, the probability of odd n becomes larger for the initial
state (0,2) because the (0,2) state evolves to (1,1) after the
odd n transitions. On the contrary, the probability of even
n becomes larger when the initial state is (1,1), resulting in
an opposite parity effect to the case with (0,2) as the initial
state. The parity effect in FCS with no initial state selection
is dominated by (1,1) initial state because the corresponding
probability is larger than that for the (0,2) case, as seen in
Fig. 3(a).

We note that the FCS at B = 0 mT in Fig. 6 also shows the
parity effect because the spin degeneracy in (1,1) remains at
B = 0 mT.
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The time evolution of the parity effect can be explained in
terms of r02 and r11, defined as∑∞

m=0 pi
S (2m + 1, t )∑∞

m=0 pi
S (2m, t )

and

∑∞
m=0[pi

AP(2m + 1, t ) + pi
P(2m + 1, t )]∑∞

m=0[pi
AP(2m, t ) + pi

P(2m, t )]
,

which are plotted as blue and red lines in Fig. 7(b), respec-
tively. Here we define pi

j (n, t ) as the FCS with the selected
initial state j ( j = S, AP, or P). The numerical calculations
(black lines) are in excellent agreement with the experiments.
r02 approaches �1/�2 around t = 1 ms ≈1/�2, and then it
becomes (�1�4 + �2�3)/�2�4 around t ≈ 1/�4. This is be-
cause the spin-conserving tunnels between (0,2) and AP(1,1)
occur initially due to the larger rate. Then the spin-flip tunnels
generate the transitions between (0,2) and P(1,1) with the
smaller rates. r11 evolves as �2�4/(�1�4 + �2�3). Such time
evolution reflects the equilibration of the initial state, which
finally saturates at the ratio corresponding to the equilibrium
condition.

IX. CONCLUSION

In conclusion, we study the FCS of spin-conserving and
spin-flip charge transitions in PSB. We indicate the advantages
of FCS comparing to WTD when we analyze the tunnel
rates. We demonstrate the universal relation between FCS
and WTD, which means that WTD can be reproduced from
FCS with n = 0 even if a measurement time is short. We
constructed the FCS and found two peculiar features: the
tail structure and parity effect, which are derived from the
slow spin-flip tunnel rates and higher spin degeneracy, re-
spectively. Our results provide a powerful tool and insights
for understanding the complex transition dynamics of such as
spin-correlated phenomena in the Hubbard model emulated in
the integrated QDs. Herein, our finding and the FCS method
presented here will be a key ingredient for evaluation of
charge and spin dynamics in spintronics devices and thermal
and quantum fluctuation of charges and spins in the Hubbard
model emulated in the integrated QDs.
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FIG. 8. Stability diagram of DQD around the boundary of (0,2)
and (1,1) states. The red line represents the resonance line, which
corresponds to the measurement location.

APPENDIX A: MEASUREMENT CONDITION OF A DQD

Figure 8 shows the stability diagram of our DQD as a func-
tion of gate voltage. The resonance condition is satisfied at
the red line, which appears between the (1,1) and (0,2) states.
This measurement was performed for the case in which the
spin-conserving tunnel rates were maximum. Therefore, we
assumed that the energies of S(0,2), ↓↑ (1, 1), and ↑↓ (1, 1)
states are equal. Now the exchange coupling which separates
↓↑ (1, 1) and ↑↓ (1, 1) is much weaker than the measurement
temperature and Zeeman energy so that we ignore it.

Unlike the spin-conserving rates, �3/�4 = 1.45 	= 2 is ob-
tained for the spin-flip rates. This ratio implies that there is
an unintentional energy offset δ from the resonance condi-
tion in addition to the Zeeman energy �Ez, kB and thermal
energy kBT (kB and T are the Boltzmann constant, and
temperature, respectively). We introduce the probabilities,
ci (i = S(0, 2),↑↑ (1, 1),↓↓ (1, 1)) in the equilibrium con-
dition that the state is found in the charge state represented
by i. Then thermal equilibrium condition derives cS/c↑↑ =
exp[−(Ez + δ)/kBT ] from the Boltzmann distribution. With
the same manner, c↓↓/cS = exp[−(Ez − δ)/kBT ] is satisfied.
Therefore, ratio in P(1,1) to that in S(0,2) is given as

c↑↑ + c↓↓
cS

= exp[(Ez + δ)/kBT ] + exp[−(Ez − δ)/kBT ]

= 2eδ/kBT cosh(Ez/kBT ).

The detailed balance demands �3cS = �4(c↑↑ + c↓↓), result-
ing in �3/�4 = 2eδ/kBT cosh(Ez/kBT ). Then we acquire δ =
−1.2 μeV with T = 100 mK and Ez = gμBB/2 = 0.61 μeV
with g factor of 0.21 and B = 100 mT.

APPENDIX B: FCS IN VARIOUS CONDITIONS

1. FCS with phonon irradiation

In Figs. 3(c) and 3(d) in the main manuscript, we
use the real-time traces in the case of (�1, �2, �3, �4) =
(1.58 kHz, 0.955 kHz, 236 Hz, 87.7 Hz), where the spin-flip
rates comparing to those in Figs. 3(a) and 3(b) are remarkably
enhanced while the spin-conserving rates less change. For
only increasing the spin-flip rates, we irradiate nonequilibrium
phonons on our DQD.
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FIG. 9. Transition diagram for the case in which the hyperfine
interactions primarily cause the spin-flip transition. In contrast to
Fig. 1(a), no spin-flip interdot transition occurs between the P(1,1)
and S(0,2) states, and spin-flip intradot transition occurs between the
P(1,1) and AP(1,1) states instead.

We formed an additional QD as a phonon source near
the DQD in Fig. 1(b). A bias voltage was applied on this
phonon source, which caused the inelastic process emitting
nonequilibrium phonons. This phonon irradiation resulted in
the increase of �3 and �4 with minor change in �1 and �2.
This implies that the phonon irradiation selectively accelerates
the spin-flip tunnel rates. The details of this method and the
underlying mechanism are discussed in another paper.

2. FCS of the spin-flip tunnels from hyperfine interactions

It is important to examine the FCS for the case in which the
spin-flip tunnel occurs due to hyperfine interactions. In this
case, the charge transition diagram in Fig. 1(a) is converted to
that in Fig. 9 because the spin-flip transition is now an intradot
process. The probability distributions follow

dP(χ, t )

dt
=

⎡
⎣ −�1 �2eiχ 0

�1eiχ −(�2 + �5) �6

0 �5 −�6

⎤
⎦P(χ, t ).

Using this model, the probability with n = 0 can be obtained
as

pS (0, t ) ∝ e−�1t

pAP(0, t ) + pP(0, t ) ∝ β2�5eαt + (α + �2)2�6eβt (B1)

and here we use α and β as

2α = −(�2 + �5 + �6) +
√

(�2 + �5 + �6)2 − 4�2�6

2β = −(�2 + �5 + �6) −
√

(�2 + �5 + �6)2 − 4�2�6.

For �5, �6 << �1, �2, Eq. (B1) can be simplified as follows:

pAP(0, t ) + pP(0, t ) ∝ �5e−�6t + �6e−�2t .

If this model is chosen for the analysis, then we obtain
�6/�5 ≈ 3. However, this result is debatable because the
AP(1,1) and P(1,1) states consist of two spin states and there-
fore �6/�5 ≈ 1 is expected. This supports that the spin-flip
in our device at 100 mT is originated from the spin-orbit
interactions, and it occurs during the interdot transition.

APPENDIX C: THE UNIVERSAL RELATION BETWEEN
FCS AND WTD

For establishing the relation between FCS and WTD, we
utilize a more general scheme with time dependent couting
fields λ(0,2)→(1,1) and λ(1,1)→(0,2) which count transitions, at
time t , from (0,2) to (1,1) and from (1,1) to (0,2), respectively.
We consider P({λi}, t ) that satisfies

d

dt
P({λi}, t ) =

⎡
⎣ −(�1 + �3) �2λ(1,1)→(0,2) �4λ(1,1)→(0,2)

�1λ(0,2)→(1,1) −�2 0
�3λ(0,2)→(1,1) 0 −�4

⎤
⎦P({λi}, t )

≡
⎡
⎣M0 +

∑
i=(0,2)→(1,1),(1,1)→(0,2)

λiMi

⎤
⎦P({λi}, t ).

Here we introduce M0, M(0,2)→(1,1), and M(1,1)→(0,2). We note that M0 is a diagonal matrix.
As the initial states at t = ti, we use ci (i = S, AP, P), which is obtained from Eq. (2) and

pS (0, t ) = cSe−(�1+�3 )t

pAP(0, t ) = cAPe−�2t

pP(0, t ) = cPe−�4t .

These ci gives the probabilities in the steady state. Then, we define Pst as Pst ≡ (cS, cAP, cP )τ . Here τ stands for transposition of
a vector. This means that the system is in the steady state at t = ti. In this section, we consider the time evolution of this system
up to the final time t = t f .
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We evaluate the joint probability of a transition from (0,2) to (1,1) in the interval [ti, ti + δti], no transition in [ti + δti, t f − δt f ]
and a transition from (1,1) to (0,2) in the interval [t f − δt f , t f ]. In the limit δti, δt f → 0, the probability is given as

(1, 1, 1)M(1,1)→(0,2)δt f exp[−M0(t f − ti )]M(0,2)→(1,1)δtiPst

= (1, 1, 1)

⎛
⎝0 0 0

0 Γ2 0
0 0 Γ4

⎞
⎠ exp[−M0(t f − ti )]

⎛
⎝0 0 0

0 �2 0
0 0 �4

⎞
⎠Pstδtiδt f

= (1, 1, 1)

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠M0 exp[−M0(t f − ti )]M0

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Pstδtiδt f

= d2

d (t f − ti )2
(1, 1, 1) exp[−M0(t f − ti )]

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Pstδtiδt f

= d2

d (t f − ti )2
[pAP(0, t f − ti ) + pP(0, t f − ti )]δtiδt f .

From the first line to the second line, we have used

(�1,−�2, 0)Pst = 0,

(�3, 0,−�4)Pst = 0,

which can be shown from the definition of the steady state
[M0 + M(0,2)→(1,1) + M(1,1)→(0,2)]Pst = 0.

On the other hand, from the definition of the waiting time
distribution w11(t f − ti ), the above joint probability is also
expressed as

w11(t f − ti )(cAPΓ2 + cPΓ4)δtiδt f ,

since the probability of a transition from (0,2) to (1,1) in
the interval [ti, ti + δti] is (cAPΓ2 + cPΓ4)δti. By comparing
the above two expressions, we prove the following relation
between WTD and FCS with n = 0:

d2

d (�t )2 [pAP(0,�t ) + pP(0,�t )]

= (cAPΓ2 + cPΓ4)w11(�t ).

Here we represent the resident time t f − ti by �t . We can also
express the above formula in a slightly different way [40–42]

〈τ 〉 d2

d (�t )2 �11(�t ) = w11(�t ).

Here the idle time distribution is defined as �11(�t ) =
[pAP(0,�t ) + pP(0,�t )]/(cAP + cP ) and the mean waiting
time 〈τ 〉 is defined as 〈τ 〉 ≡ (cAP + cP )/(cAPΓ2 + cPΓ4).

Using this relation between FCS with n = 0 and WTD, we
obtain

w11(�t ) ∝ �1�2e−�2�t + �3�4e−�4�t .

APPENDIX D: CORRECTION IN THE EVALUATION OF
THE TUNNEL RATES

For the evaluation of �1 and �3, we first fitted pS (0, t ). to
obtain the exponent �∗

02 of the single exponential function of
pS (0, t ) as

�∗
02 = �1 + �3. (D1)

However, a second equation is required to evaluate �1 and �3

independently. Using the FCS method, we can derive the fol-
lowing relation between the tunnel rates and the coefficients
of the exponential functions obtained from the fitting:

�3/�4 = (cP/cAP )(�1/�2). (D2)

However, when the rates are derived using Eqs. (D1)
and (D2), the calculated ci gives cS + cAP + cP > 1. This is
because when the transitions in a certain time domain occur
in either 0 < t < τ/2 or T − τ/2 < t < T , they cannot be
detected and the time domains are counted for calculation
of ci.

For this compensation, we introduce the survival proba-
bility Ps

i (�t ) (i = S, AP, P) that the charge state remains in
S(0,2), AP(1,1), or P(1,1) after �t . This survival probability
obeys

dPs
S (�t )/d�t = −(�1 + �3)Ps

S (�t ), (D3)

dPs
AP(�t )/d�t = −�2Ps

AP(�t ), (D4)

dPs
P(�t )/d�t = −�4Ps

P(�t ). (D5)

We consider the probability that a single transition occurs
from AP(1,1) to S(0,2) in 0 < t < τ/2, and the charge state
stays at S(0,2) in τ/2 < t < T . This probability is calculated
as the product of the probability that the initial state is found
in AP(1,1), the probability that the transition occurs in 0 <

t < τ/2, and the survival probability in the S(0,2) for τ/2 <

t < T [see Fig. 10(a)],

∣∣∣∣
∫ τ/2

0
cAP

dPs
AP(�t )

d�t
Ps

S (T − �t )d�t

∣∣∣∣.
It may be noted that cAP provides the volume ratio in the
equilibrium condition for AP(1,1). Similarly, the probability
for P(1,1) can be obtained as

∣∣∣∣
∫ τ/2

0
cP

dPs
P(�t )

d�t
Ps

S (T − �t )d�t

∣∣∣∣,
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0

T- T

(a)

(b)

FIG. 10. (a) Interdot transitions from (1,1) to (0,2) states occur-
ring in the first period of τ/2. The first and second cases with the
interdot tunnel occurring in the gray region (τ/2 < t < τ ) can be
observed in the measured data. On the other hand, the third case, i.e.,
where the interdot transition occurs in the red region (0 < t < τ/2),
cannot be detected. (b) Similarly to (a), an interdot tunnel starting in
the red region (T − τ/2 < t < T ) cannot be detected.

and the probability that the transition occurs in T − τ/2 <

t < T [see Fig. 10(b)] can be obtained as
∣∣∣∣
∫ τ/2

0
cS[�1Ps

S (T −�t )Ps
AP(�t )

+ �3Ps
S (T − �t )Ps

P(�t )]d�t

∣∣∣∣.
These probabilities are added to the probability that no transi-
tion occurs, which is expressed as cSPs

S (T ).
Now we obtain �1, �3, cS, cAP, and cP from the experi-

mental results including the above compensation. cS can be
expressed as the sum of p∗

S (0, t ) = c∗
Se−(�1+�3 )t , p∗

AP(0, t ) =
c∗

APe−�2t , and p∗
P(0, t ) = c∗

Pe−�4t so that the following condi-
tion is satisfied:

c∗
Se−(�1+�3 )T

= cSe−(�1+�3 )T

+ cAP
�2

�1 + �3 − �2
e−(�1+�3 )T [e(�1+�3−�2 )τ/2 − 1]

FIG. 11. A flowchart for the numerical calculation of FCS.

+ cP
�4

�1 + �3 − �4
e−(�1+�3 )T [e(�1+�3−�4 )τ/2 − 1]

+ cS
�1

�1 + �3 − �2
e−(�1+�3 )T [e(�1+�3−�2 )τ/2 − 1]

+ cS
�3

�1 + �3 − �4
e−(�1+�3 )T [e(�1+�3−�4 )τ/2 − 1].

The above equation can be simplified as

c∗
S = cS + cAP�2 + cS�1

�1 + �3 − �2
[e(�1+�3−�2 )τ/2 − 1]

+ cP�4 + cS�3

�1 + �3 − �4
[e(�1+�3−�4 )τ/2 − 1].

The equations for the other coefficients can be similarly
obtained as

c∗
AP = cAP + cS�1 + cAP�2

�1 + �3 − �2
[1 − e−(�1+�3−�2 )τ/2]

c∗
P = cP + cS�3 + cP�4

�1 + �3 − �4
[1 − e−(�1+�3−�4 )τ/2].

Consequently, we can numerically solve these simultane-
ous equations with respect to �1 and �3. The evaluated tunnel
rates provide the corrected coefficients cS , cAP, and cP, and
their sum is nearly equal to 1 with the small deviation of 0.02.
Therefore, it is confirmed that the above treatment can be used
to obtain the accurate values of the coefficients and the tunnel
rates.

APPENDIX E: NUMERICAL CALCULATION OF
FCS IN PSB

For the numerical calculation of FCS, we follow the flow
chart described in Fig. 11.

1. Compensation of tunnel rates for FCS

To reproduce the FCS numerically, we need to consider the
compensation of the tunnel rates from the evaluated rates in
Appendix D. In order to reconstruct the FCS shown in Fig. 2,
it is necessary to consider the integration time of the digitizer
and compensate the interdot tunnel rates. This integration time
τ decides the resolution of the digitizer because the signal of
the charge sensor measured from t to t + τ is averaged into
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t+t t+

FIG. 12. Schematic of a typical signal at the (1,1) state for τ/2
temporal width. The first two traces, which correspond to the interdot
transition from (0,2) to (1,1) states in the red region, can be detected.
In contrast, the interdot transition in the gray region cannot be
detected.

one data point. As the integration time is not sufficiently short,
some of the fast interdot transitions are not detected. First, we
consider the sequential transition of the charge state: (0,2)⇒
(1, 1) ⇒(0,2) [or (1,1)⇒ (0, 2) ⇒(1,1)], and assume that the
transition is always counted when the waiting time �t in the
same state is longer than τ . Therefore, the expected value of
count probability can be expressed as

∫ ∞
τ

e−�i�t d�t∫ ∞
0 e−�i�t d�t

.

On the contrary, the sequential transition occurring within
τ/2 is not observed. However, if the waiting time (�t) is
τ/2 or longer, the transitions can be partially detected with
the probability �t/τ because a threshold level of the charge
sensor is set at the middle of the (0,2) and (1,1) charge states.
Then, the expected value is given as

∫ τ

τ/2
�t
τ

e−�i�t d�t∫ ∞
0 e−�i�t d�t

The examples of sequential transitions that stay at the (1,1)
state for �t = τ/2 are shown in Fig. 12. The first transition,
which is the interdot transition from the upper to lower state
in the red region, can be observed. However, the lowest trace,

i.e., the transition occurring in the gray region cannot be
detected.

Therefore, the compensation can be expressed as

�∗
i = �i

( ∫ ∞
τ

e−�i�t d�t + ∫ τ

τ/2
�t
τ

e−�i�t d�t
)

∫ ∞
0 e−�i�t d�t

= �i

[(
1

2
+ 1

�iτ
e−�iτ/2

)
− 1

�iτ
e−�iτ

]
.

We chose τ =100 μs for the measurement, and �∗
i (i =

1, 2, 3, 4) is used for the numerical calculation of FCS in
Fig. 2.

2. The detail of the numerical calculation

The numerical calculations are based on Eq. (1) in the main
text. It can be easily shown that

P(χ, t ) = exp (Mt )P(0, 0),

where P(0, 0) = (PS (0, 0), PAP(0, 0), PP(0, 0))τ . It is conve-
nient to introduce λ ≡ eiχ . Therefore,

M =
⎡
⎣−(Γ1 + �3) �2λ �4λ

Γ1λ −�2 0
�3λ 0 �4

⎤
⎦.

exp (Mt ) can be numerically evaluated to obtain FCS.
An approach for this evaluation includes the calculation of

K(t,�t ) = (1 + M�t )t/�t (E1)

for a sufficiently small time step �t . K(t,�t ) is a matrix
whose components are polynomials of λ. In numerical eval-
uation, we truncated them up to the 100th order of λ, because
the probability that n interdot transitions occur in t = 50 ms
almost vanishes for n � 100. We used �t = 5 × 10−7s and
verified that K(t,�t ) converges to exp (Mt ) with a precision
much higher than that limited by the statistical error of the
experimental data.

To reduce the numerical multiplications of matrices, we
performed the calculations as follows: K(t1,�t ) was eval-
uated for t1 = 10−4 s using Eq. (E1); K(t2,�t ) was then
obtained for t2 = 10−3 s using

K(t2,�t ) = K(t1,�t )t2/t1 .

This procedure was repeated for t3 = 10−2 s, t4 = 10−1 s, t5 =
1 s, t6 = 10 s, and t7 = 50 s using

K(tn,�t ) = K(tn−1,�t )tn/tn−1 .
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