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Neural network solutions to differential equations in nonconvex domains:
Solving the electric field in the slit-well microfluidic device
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The neural network method of solving differential equations is used to approximate the electric potential and
corresponding electric field in the slit-well microfluidic device. The device’s geometry is nonconvex, making
this a challenging problem to solve using the neural network method. To validate the method, the neural network
solutions are compared to a reference solution obtained using the finite-element method. Additional metrics are
presented that measure how well the neural networks recover important physical invariants that are not explicitly
enforced during training: spatial symmetries and conservation of electric flux. Finally, as an application-specific
test of validity, neural network electric fields are incorporated into particle simulations. Conveniently, the same
loss functional used to train the neural networks also seems to provide a reliable estimator of the networks’ true
errors, as measured by any of the metrics considered here. In all metrics, deep neural networks significantly
outperform shallow neural networks, even when normalized by computational cost. Altogether, the results
suggest that the neural network method can reliably produce solutions of acceptable accuracy for use in
subsequent physical computations, such as particle simulations.
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I. INTRODUCTION

Many important phenomena can be modeled effectively
by partial differential equations (PDEs) with appropriate
boundary conditions (BCs). When PDE problems are posed
in domains with complicated geometries, they are often too
difficult to be solved analytically, and must instead be ap-
proximated numerically. The standard tools for numerically
solving PDE problems in complex geometries are mesh-based
approaches, such as the finite-element method (FEM) [1]. In
these methods, the problem domain is decomposed into a
mesh of smaller subdomains, and the solution is approximated
by a linear combination of simple, local functions.

In this work, we will explore a less common numerical
solution method for PDE problems, which we will refer to
as the neural network method (NNM) [2]. In the NNM, the
solution is directly approximated by a neural network (e.g.,
Fig. 1), rather than by a linear combination of local basis
functions. In a process called training, the network parameters
are varied until it approximately satisfies the PDE and BCs.

The purpose of this study is to investigate the effectiveness
of the NNM on a problem exhibiting a complicated geometry.
Specifically, the NNM is used to solve a model of the electric
field in the slit-well microfluidic device, which is an applica-
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tion of active research interest [3–6]. The problem domain is
nonconvex, and the electric field is discontinuous in the limit
of sharp corners. Despite the growing popularity of the NNM,
relatively few authors have validated it on problems with such
ill-behaved solutions. The rest of this Introduction provides
an overview of the NNM, including its previous use to study
systems similar to the slit-well, as well as a review of the
slit-well device itself.

A. Neural network method

The neural network method of solving differential equa-
tions was first published by Dissanayake and Phan-Thien [2],
and belongs to the broader family of techniques known as
methods of weighted residuals [2,7]. Around the same time,
Meade Jr. and Fernandez [8] separately demonstrated a variant
of the NNM that did not use iterative training, and instead
solved a system of linear equations for the network weights;
it was, however, designed for solving only ordinary differen-
tial equations. Later, van Milligen et al. [9] independently
proposed a method quite similar to the original approach
by Dissanayake and Phan-Thien [2], to solve second-order
elliptic PDEs describing plasmas in tokamaks. The NNM was
proposed independently again by Lagaris et al. [10]. Their
modified methodology embedded the neural network within
an ansatz that was manually constructed to exactly satisfy
the boundary conditions; however, this form is challenging to
construct when the boundary conditions or the domain geom-
etry are complicated. Many authors have since contributed to
the development of the NNM, and Yadav et al. [11] published
a book reviewing much of the early work on the NNM.

2643-1564/2020/2(3)/033110(14) 033110-1 Published by the American Physical Society

https://orcid.org/0000-0003-4208-2211
https://orcid.org/0000-0002-7993-3625
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033110&domain=pdf&date_stamp=2020-07-21
https://doi.org/10.1103/PhysRevResearch.2.033110
https://creativecommons.org/licenses/by/4.0/


MAGILL, NAGEL, AND DE HAAN PHYSICAL REVIEW RESEARCH 2, 033110 (2020)

FIG. 1. Schematic of a fully connected feed-forward neural net-
work of depth d and width w mapping coordinates (x, y) to an output
ũ(x, y). Each node computes a weighted sum of its incoming arrows,
and the result (plus a bias) is passed to an activation function. In the
NNM, the parameters are optimized to make ũ(x, y) approximately
satisfy a target PDE and its BCs.

The NNM has various potential appeals over more com-
mon methods like FEM. For instance, the NNM is mesh
free, and generally produces uniformly accurate solutions
throughout the PDE domain [11,12]. Whereas earlier imple-
mentations used shallow neural networks (i.e., those having
only one hidden layer), many authors have recently noted
the significant benefits of using deep architectures [13–26].
In particular, it appears that the NNM with deep neural net-
works performs remarkably well in high-dimensional prob-
lems [13–15,17–19,21–27]. Such high-dimensional PDEs are
typically intractable using FEM and most traditional meth-
ods. These suffer from the so-called curse of dimensionality,
in which computational cost grows exponentially with the
number of dimensions. In addition to the above empirical
demonstrations of the NNM, several theorems have been
published stating that the computational cost of the NNM
grows at most polynomially in the number of dimensions for
various classes of PDEs [28–30].

Nonetheless, the theoretical grounding of the NNM is less
thoroughly developed than those of other techniques. There
are as of yet few guarantees regarding, e.g., under what
conditions the NNM will converge to the true solution of
a given PDE, at what rate, and to what precision. As such,
confidence in the method still relies heavily on empirical
demonstrations. However, available empirical demonstrations
focus primarily on problems with relatively well-behaved
solutions [15,16,18,19,21–26,31]. Indeed, Michoski et al. [32]
noted this, and conducted an investigation of the NNM applied
to irregular problems exhibiting shocks. This work is analo-
gous in this regard, but focuses instead on the nonconvexity
of the slit-well domain as the source of irregularity.

B. Slit-well microfluidic device

Microfluidic and nanofluidic devices (MNFDs) are small,
synthetically fabricated systems with applications in molec-
ular detection and manipulation [5,6,33–35]. One important
use of MNFDs is to sort mixtures of molecules, including
free-draining molecules such as DNA that cannot normally be
separated electrophoretically in free solution [6]. For instance,

FIG. 2. A schematic of particles being electrically driven through
the slit-well device.

the slit-well device proposed by Han and Craighead [3] can
be used for sorting polymers (such as DNA [3,4,36,37]) or
nanoparticles [38,39]. The device’s periodic geometry, illus-
trated schematically in Fig. 2, consists of parallel channels
(called wells) separated by shallower regions (called slits). An
electric field is applied to drive molecules through the device.

MNFDs such as the slit-well exploit the complexity of
physical phenomena at the single-molecular scale (often be-
low the optical resolution limit) to produce useful and some-
times surprising behaviors. This, however, makes them chal-
lenging to design and optimize, and renders theoretical and
computational investigations important to the development of
MNFD technologies. For example, the sorting mechanism in
the slit-well device depends nonlinearly on the magnitude of
the applied electric field as well as the size and shape of the
wells, the slits, and the molecules themselves [6,36–40]. For
some choices of these parameters, the slit-well sorts molecular
mixtures into increasing order of size; for others, however,
it sorts them into decreasing order. A rich literature exists
exploring these processes, reviewed in part by Dorfman [6]
and Langecker et al. [40].

C. NNM with complicated geometries

There are relatively few demonstrations of the NNM on
problems with complicated domain geometries. Specifically,
the NNM has mostly been applied to problems posed in rect-
angular or circular domains [15,18,19,21–23,25,26]. Of note,
Wei et al. [27] used the NNM to solve PDEs in nanobiophysics
that also arise in MNFDs (i.e., Fokker-Planck for particles and
polymers). However, their work did not consider these prob-
lems in MNFD geometries. Even among the demonstrations
of the NNM in more complicated (e.g., nonconvex) domain
geometries, most problems feature boundary conditions that
produce relatively smooth, well-behaved solutions [16,24,31].
Sirignano and Spiliopoulos [17] solved a free-boundary prob-
lem based on a financial system, but it is not clear whether
that PDE exhibits the specific kinds of challenging features
considered in this work.

An exception to the above is given by E et al. [14], who
applied a variant of the NNM to a Poisson equation in a
square domain with a reentrant needlelike boundary. This
problem exhibits the same singular behavior as the slit-well
problem with sharp corners (see Sec. II A). Their Deep Ritz
training protocol was based on a variational formulation of
Poisson’s equation. However, variational formulations cannot
be obtained for all PDEs [41]. For this reason, we have

033110-2



NEURAL NETWORK SOLUTIONS TO DIFFERENTIAL … PHYSICAL REVIEW RESEARCH 2, 033110 (2020)

opted to study the more general NNM algorithm originally
presented by Dissanayake and Phan-Thien [2].

When Anitescu et al. [42] revisited this needle problem
using the original method of Dissanayake and Phan-Thien [2],
they reported poorer convergence than obtained by E et al.
[14] with the Deep Ritz method. A similar observation was
made during this work: reentrant corners significantly impair
the convergence of the standard NNM (Sec. II A). In contrast
to this work, the error analyses reported by E et al. [14] and
Anitescu et al. [42] did not consider the physical realism of
the NNM solutions (Sec. I D) nor the accuracy of the NNM
solutions’ gradients. These characteristics of the NNM are
important for use in various applications, including studies of
MNFDs, and are investigated directly in this work.

D. Physical realism of NNM solutions

Various modifications of the NNM have been proposed
to ensure solutions exactly satisfy problem-specific invari-
ants that are known a priori, such as boundary conditions
[12,16,31], non-negativity [43], Hamiltonian dynamics [44],
or special invariants of the Schrödinger equation [45]. How-
ever, manually creating formulations of the NNM that explic-
itly satisfy specific invariants can be difficult. Furthermore,
this approach cannot account for invariants which may be
unknown ahead of time. It is natural to question how well the
NNM approximates invariant quantities when these are not
explicitly enforced.

In fact, although certain numerical methods can be devised
specifically to satisfy some conservation laws [e.g., finite
volume methods conserve flux [46], symplectic ordinary dif-
ferential equation (ODE) integrators conserve energy [47]),
most numerical methods (including standard FEM formula-
tions) do not satisfy physical invariants exactly. For instance,
Zhang et al. [48] discussed what modifications of the FEM
are necessary to render it flux conserving. As part of this
work, we will investigate how well the NNM satisfies physical
invariants of the slit-well problem in the absence of any
problem-specific customization.

II. METHODOLOGY

A. Problem statement

We use the simplest electrostatic model of the electric
field E in the slit-well, namely, the two-dimensional Laplace
equation for the electric potential u. Figure 3 illustrates the
geometry of our model over one periodic subunit of the
slit-well device. Uniform Dirichlet boundary conditions were
imposed on the colored segments (specifically, u = ±1 on the
right and left, respectively) to model an applied voltage across
the system. The gray boundaries correspond to homogeneous
Neumann (i.e., insulating) boundary conditions. Throughout
the interior of the domain (i.e., the yellow area in Fig. 3), the
potential was modeled by Laplace’s equation.

In contrast with other authors, we have rounded the reen-
trant corners at the interface of the slits and wells. It can
be shown that near sharp (i.e., nondifferentiable) reentrant
corners, solutions u to Laplace’s equation are not continuously
differentiable [49–51]. That is, sharp reentrant corners cause
singularities in the electric field E. Because the magnitude of

FIG. 3. A cross-sectional view of the slit-well device illustrating
our PDE model of the electric potential in one periodic subunit of
the device. The reentrant corners follow circular arcs, and the num-
bers indicate the lengths of each dotted line. The solution satisfies
Laplace’s equation in the yellow region, Dirichlet conditions on the
red and blue boundaries, and homogeneous Neumann conditions on
the gray boundaries.

E near the corners diverges as the curvature goes to zero, the
slit-well electric field is ill conditioned, in the sense that small
changes in the curvature of the corners produce large changes
in E.

Although such ill conditioning hinders the performance
of most numerical methods, including FEM [49–51], they
present a particular challenge for the NNM. The fully con-
nected feed-forward neural networks typically used for the
NNM are infinitely differentiable functions. However, the true
solution to the slit-well problem with sharp corners exhibits
a discontinuous electric field, so that significant errors seem
likely near the corners. Furthermore, because the neural net-
work is a global approximation method, local errors near the
corners can affect performance throughout the domain.

In practice, the training methodology we present here
(Sec. II B), when applied to the problem with sharp corners,
failed to converge to even a reasonable approximation of the
true solution. Even in preliminary tests with rounded corners,
the convergence rate of the NNM was observed to deteriorate
as the curvature of the corners was reduced. Therefore, for
this work, an intermediate curvature (Fig. 3) was selected to
produce a challenging but attainable benchmark for the NNM.

B. NNM implementation

In this section, we describe our implementation of the
NNM. It is similar to those of Dissanayake and Phan-Thien
[2], van Milligen et al. [9], Berg and Nyström [16], Sirignano
and Spiliopoulos [17], Magill et al. [20], and Wei et al.
[27], among others. The true solution u(x) to the PDE was
directly approximated by a neural network ũ(x). This was
accomplished by training the neural network to minimize the
loss functional

L[ũ] =
∫

�

(∇2ũ)2dA +
∫

∂�

(B[ũ])2ds. (1)
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Here, ∇2u = 0 is the PDE required to hold in the interior of
the domain � ⊂ R2, and B is a differential operator describing
the boundary conditions Bu = 0 on the boundary ∂� of the
domain (described in Sec. II A and illustrated in Fig. 3). Thus,
L[ũ] quantifies the extent to which the neural network fails to
satisfy the PDE and its boundary conditions.

The parameters of the network were updated iteratively
using the Adam optimizer, a modified gradient descent al-
gorithm [52]. The integrals in L[ũ] were approximated via
the Monte Carlo method, as described in more detail below.
The approximate electric field Ẽ and other required deriva-
tives were obtained exactly via automatic differentiation. The
weights of the network were initialized by the Glorot method
[53]. Computations were done using TENSORFLOW 1.13, and
all hyperparameters not discussed here were set to their de-
fault values [54].

The Monte Carlo samples xi ∈ � used to estimate the first
term of L[ũ] were selected from 100 000 points uniformly
distributed in the bounding rectangle [−Lx, Lx] × [−Ly, Ly],
by rejecting those lying outside the domain. Those used to
estimate the second term were generated by directly sampling
the boundary with a linear density of 40 points per unit
length. Altogether, this yielded an expected batch size of
roughly 62 000. To reduce the overhead of sampling training
points, batches were reused for 1000 parameter updates before
resampling.

The testing loss was computed on a set of points sam-
pled once at the beginning of training, generated using the
same procedure as the training points. The testing loss was
computed and recorded every 100 parameter updates. Early
stopping was used to terminate training when the testing
loss failed to improve after 100 consecutive tests. The final
network was taken from the epoch at which the testing loss
was smallest. This training procedure was conceived to ensure
that networks converged to very stable local minima, in order
to study the behavior of the NNM in the limit of long training
time.

The neural networks considered in this study were all
fully connected feed-forward networks with tanh activation
functions (Fig. 1), consisting of d hidden layers of equal
width w. Specifically, the networks mapped an input vector
x, corresponding to a point in the problem domain, to ũ given
by

ũ(x) = fd+1 ◦ fd ◦ · · · ◦ f1(x), (2)

where

f1(x) = tanh (W1x + b1), (3)

fi(x) = tanh
[
Wi fi−1(x) + bi

]
, i = 2 . . . d (4)

fd+1(x) = Wd+1 fd (x) + bd+1. (5)

Here, W1 ∈ Rw×2, Wi ∈ Rw×w for i = 2 . . . d , and Wd+1 ∈
R1×w are the network’s weight matrices, while bi ∈ Rw for
i = 1 . . . d , and bd+1 ∈ R are its biases.

C. FEM implementation

To provide a reliable ground truth against which to com-
pare the performance of the NNM, the target PDE was also

solved via the FEM using FENICS [55]. The domain and mesh
were constructed using the MSHR package. The resolution
parameter for generate_mesh was set to 200 and the cir-
cular reentrant corners were approximated linearly with 100
segments each.

In order to obtain an accurate approximation of the electric
field, and not just of the electric potential, the FEM was
applied to a standard dual-mixed formulation of Laplace’s
equation for the electric field and electric potential simulta-
neously [55]. In this approach, ũ and Ẽ are approximated
simultaneously using separate basis functions. Solving for ũ
alone and reconstructing Ẽ by differentiation was found to
yield poor results.

Convergence tests (not shown) confirmed that the FEM
solution converged in proportion to the square of the mesh
resolution. The tests suggest that the absolute error in the
FEM solution relative to the true solution is on the order of
machine precision (i.e., 10−16). Note that the FEM solution
was computed in double precision, whereas the NNM was
computed in single precision.

III. RESULTS

At its core, the NNM is motivated by the rationale that
training networks to minimize the loss functional [Eq. (1)]
will cause those networks to approximate the correct solution.
This section contains investigations into the following related
questions:

(1) If a network exhibits a small loss, how close is it to
the true solution? Specifically, is the loss functional a reliable
estimator of actual network performance?

(2) If a network is close to the true solution, how well does
it reproduce the physical characteristics of the true solution?
Specifically,

(a) to what extent does it exhibit the same spatial
symmetries as the true solution?

(b) to what extent does it conserve electric flux?
(3) If a network is close to the true solution, and the corre-

sponding electric field is used to conduct particle simulations,
how accurate are subsequent measurements made using those
particle simulations?

(4) How does architecture affect these conclusions?
All experiments were repeated across four random initial-

izations and multiple network architectures: specifically, all
combinations of depths d = 1, 2, 3, 4, 5, 6 and widths w =
10, 25, 50, 75, 100, 150, 200, 250 were examined, as well as
networks of depth 1 and widths 500 and 1000.

Figure 4(a) shows an example of an NNM solution ob-
tained using a network of depth 5 and width 75. The ap-
proximate electric field Ẽ is superimposed in black lines over
colored contours showing the approximate electric potential
ũ. It is visually indistinguishable from the reference FEM
solution (not shown). Figure 4(b) shows (ũ − u)2, the squared
error of the NNM potential compared to the FEM potential.
Figure 4(c) shows ‖Ẽ − E‖2/‖E‖2, the pointwise relative
error of the NNM electric field. Here, ‖ · ‖2 denotes the
Euclidean norm. Note that the error in the potential cannot
be normalized pointwise, as discussed in the next section.

Both of the error distributions in Fig. 4 are particularly pro-
nounced near the reentrant corners. The electric field intensity
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FIG. 4. Example NNM solution using 5 hidden layers of width 75. (a) Approximate electric potential (colored contours) and electric field
(solid black lines). (b) Squared error of the electric potential. (c) Pointwise relative error in the electric field (note the logarithmic color scale).
The errors in plots (b) and (c) are interpolated from values evaluated on the FEM mesh points.

is also very large in these regions (see Fig. 12). In the limit of
small curvature, in fact, it is at these corners that the electric
field develops singularities (see Sec. II A). In fact, the peaks
in error and electric field intensity both occur precisely where
the boundary transitions from flat to curved, i.e., where the
second derivative of the boundary curve is discontinuous.

Additionally, Fig. 4(c) shows pronounced relative error
in the electric field near the corners at the bottom of the
well. These peaks arise because the magnitude of the true
electric field approaches zero in those corners (see Fig. 12).
Since the denominator of ‖Ẽ − E‖2/‖E‖2 is very small, even
small errors in the electric field near those corners manifest
as large relative error. The maximum relative error in the
domain � consistently occurred in these bottom-most corners
for all NNM solutions in the data set. Nonetheless, for many
applications, errors of this kind are likely to be less important
than the errors occurring near the reentrant corners, as they
are much smaller in absolute magnitude.

A. Error relative to FEM

The purpose of this section is to investigate the errors of
the NNM solutions relative to the reference FEM solution,
and to what extent the loss functional correlates with these
errors. The error in an approximate electric potential ũ will be
characterized by

δu[ũ] =
√√√√〈

(ũ − u)2
〉
�〈

u2
〉
�

. (6)

Here, 〈·〉� denotes the mean over the domain �. Whereas
Fig. 4(b) shows the distribution of the squared error in ũ
throughout the domain, δu[ũ] corresponds to the root-mean-
squared error of ũ over �, normalized by the root-mean-
squared value of the true solution u. Note that one cannot
define an unambiguous pointwise relative error for ũ since the
electric potential does not have a physically meaningful zero.
The metric δu[ũ] represents the magnitude of the error in ũ
relative to the magnitude of the true solution u, when both of
these are measured in the L2 norm for functions.

For the electric field, conversely, a meaningful pointwise
relative error can be defined as ‖Ẽ − E‖2/‖E‖2, where both
the numerator and the denominator vary throughout the

domain. The average of this pointwise relative error is denoted

δE[Ẽ] =
〈

‖Ẽ − E‖2

‖E‖2

〉
�

, (7)

and acts as a global error metric for Ẽ. This is precisely the
mean of error distributions like the one shown in Fig. 4(c).

Figure 5 shows the global error metrics δu[ũ] and δE[Ẽ]
for all networks in the data set, plotted against each net-
work’s testing loss. The integrals required to compute the
error metrics were approximated via the Monte Carlo method,
by sampling the domain interior using the same procedure

FIG. 5. Global error metrics for the NNM solutions relative to the
reference FEM solution, shown against testing loss for a variety of
network architectures. (a) The relative error of the electric potentials
δu[ũ]. (b) The relative error of the electric fields δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width.
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described in Sec. II B. Marker color corresponds to network
depth, and marker size corresponds to network width.

It is clear in Fig. 5 that lower testing losses correlate
strongly with lower values of both δu[ũ] and δE[Ẽ]. This result
confirms the basic motivation underlying the NNM, namely,
that training neural networks to minimize the loss functional
will cause them to approximate the correct solution. It also
suggests that, in the absence of theoretical guarantees on the
convergence of the NNM, the testing loss may provide a
practical proxy for estimating a solution’s true accuracy.

The data in both Figs. 5(a) and 5(b) partition conveniently
into two clusters. The upper-right clusters consist of those
networks achieving relative errors worse than 1% in both δu[ũ]
and δE[Ẽ]. This population contains all of the shallow net-
work architectures, suggesting that at least two hidden layers
are required to achieve good performance on this problem.
Furthermore, as discussed in Sec. III D, shallow networks
always underperform relative to deep networks, even when
normalized by capacity. The narrowest of the deep network
architectures also attain relative errors worse than 1%. This
implies that even with two hidden layers, networks require
some minimum capacity (i.e., memory consumption) in order
to achieve good performance on this problem.

The lower-left clusters in Figs. 5(a) and 5(b) contain the
majority of the data set, and consist of those networks attain-
ing relative errors below 1% in both δu[ũ] and δE[Ẽ]. The best
networks achieved relative errors as low as δu[ũ] ≈ 0.01%
and δE[Ẽ] ≈ 0.1%. For reference, the example solution shown
in Fig. 4 corresponds to a testing loss of L[ũ] ≈ 9 × 10−6,
and error values of δu[ũ] ≈ 0.2% and δE[Ẽ] ≈ 0.08%. A
variety of architecture choices (i.e., depths and widths) pro-
duce comparably good performance, suggesting that the NNM
can produce accurate solutions without the need for careful
architecture tuning. This is explored further in Sec. III D.

B. Physically motivated error metrics

The results in the previous section suggest that the NNM
can reliably produce accurate solutions to the slit-well prob-
lem. Furthermore, networks with smaller loss values are closer
to the true solution, i.e., they have smaller error values. Fi-
nally, the NNM does not appear overly sensitive to the choice
of architecture, given at least two hidden layers and sufficient
network width.

The purpose of this section is to investigate whether net-
works with small loss and error values also approximately
reproduce physical characteristics of the true solution. Specifi-
cally, we investigate the NNM solutions’ satisfaction of spatial
symmetries and the conservation of electric flux.

1. Deviation from symmetry

The true solution of the target PDE satisfies three spatial
symmetries. First, the true electric potential u is antisymmetric
in the horizontal direction about the center of the well, i.e.,

u(x, y) = −u(−x, y), (8)

where (x, y) are the coordinates of a point about the center of
the well. As a result, the vertical component of the true electric

field E also exhibits this antisymmetry in x, i.e.,

Ey(x, y) = −Ey(−x, y). (9)

Finally, the horizontal component of the electric field is sym-
metric about the center of the domain, i.e.,

Ex(x, y) = Ex(−x, y). (10)

The extent to which a network deviates from these symme-
tries will be quantified using relative error metrics analogous
to those used in the previous section. Specifically, the devia-
tion of an approximate electric potential ũ from symmetry will
be quantified by

Ru[ũ] =
√√√√〈

(ũ − ũ′)2
〉
�〈

u2
〉
�

, (11)

where ũ′(x, y) = −ũ(−x, y). This is the root-mean-squared
difference between ũ and its negative reflection, normalized
by the root-mean-squared value of the true potential u. In
analogy with δu[ũ], the metric Ru[ũ] measures the magnitude
of the deviation of ũ from symmetry relative to the magnitude
of the true solution u (when both are measured in the L2

norm). The deviation of an approximate electric field Ẽ from
symmetry will be quantified by

RE[Ẽ] =
〈

‖Ẽ − Ẽ′‖2

‖E‖2

〉
�

, (12)

where Ẽ′ is the transformed electric field

Ẽ ′
x(x, y) = Ẽx(−x, y), (13)

Ẽ ′
y(x, y) = −Ẽy(−x, y). (14)

In analogy with δE[Ẽ], this is the mean pointwise relative
deviation from symmetry of the electric field.

These metrics of deviation from symmetry are closely con-
nected to the relative error metrics of Sec. III A. Specifically,
the triangle inequality implies that√〈

(ũ − ũ′)2
〉
�
�

√〈
(ũ − u)2

〉
�

+
√〈

(u − ũ′)2
〉
�
. (15)

By definition, the true solution u is invariant under the trans-
formation that maps ũ to ũ′. Specifically,

ũ(x, y) − u(x, y) = −ũ′(−x, y) − ( − u(−x, y)). (16)

By the symmetry of the domain, it follows that√〈
(ũ − u)2

〉
�

=
√〈

(u − ũ′)2
〉
�
. (17)

Combining these results and dividing by
√〈u2〉�, it follows

that

Ru[ũ] � 2δu[ũ], (18)

that is, the distance from an approximate potential ũ to its
reflection ũ′ is, at most, twice the distance from ũ to the
true solution u. Very similar reasoning can be applied to an
approximate electric field Ẽ to conclude that

RE[Ẽ] � 2δE[Ẽ]. (19)
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FIG. 6. Relative deviation of symmetry for the NNM solutions
normalized by relative error, shown against testing loss. (a) Deviation
of symmetry of the NNM electric potentials Ru[ũ], divided by the
relative error δu[ũ]. (b) Deviation of symmetry of the NNM electric
fields RE[Ẽ], divided by the relative error δE[Ẽ]. Marker color
indicates the depth of the network, and marker area indicates its
width. The dotted lines show the upper bounds given by Eqs. (18)
and (19).

Thus, solutions with small error values will inevitably be
nearly symmetric, simply by virtue of being nearly equal to a
symmetric function. Furthermore, since it was established in
Sec. III A that the loss functional provides a reliable estimator
of the error, it follows that the loss also provides a reliable
estimator of the deviation from symmetry. It remains to be
seen, however, whether or not inequalities (18) and (19)
are strict in practice. That is, do neural networks learn that
symmetry is a desirable feature, or are they only symmetric
insofar as they approximate the true solution?

Figure 6 shows Ru[ũ]/δu[ũ] and RE[Ẽ]/δE[Ẽ] for all net-
works in the data set, plotted against each network’s testing
loss. As in Fig. 5, the marker sizes correspond to network
widths, and the colors indicate network depth. The dotted
lines correspond to the maximum deviation from symmetry
permitted for a given error value, according to inequalities
(18) and (19).

Most of the data in Fig. 6(a) lie nearly on the dotted line:
roughly 90% lie above 1.5, and 75% lie above 1.9. This indi-
cates that most of the electric potentials approximated via the
NNM satisfy the target symmetries only to the smallest degree
required by virtue of their proximity to the true solution. The
data in Fig. 6(b), however, lie somewhat farther from the
dotted line. Quite a few of the most symmetric electric field
approximations have RE[Ẽ]/δE[Ẽ] ratios below 1, indicating

that they are more similar to their own reflections than they
are to the true solution. It is important to note, however,
that the electric field metrics of error and symmetry are nor-
malized pointwise by the electric field intensity, whereas the
electric potential metrics are not normalized pointwise. This
distinction may account for some of the apparent differences
between Figs. 6(a) and 6(b).

Altogether, the results in this section indicate that the NNM
solutions deviate from the symmetries of the true solution by
an amount comparable to their error values. Some networks
may produce electric field solutions that are more symmetric
than required given their error values alone, but most networks
only exhibit the minimal degree of symmetry required by the
triangle inequality. As discussed in the Introduction, directly
constraining the networks to satisfy the symmetries (e.g., by
modifying the network architectures, or by adding additional
terms to the loss functional) would almost certainly improve
the symmetry of the resulting approximations. However, im-
plementing such constraints can be expensive for more com-
plicated invariants, and some problems may exhibit invariants
that are unknown a priori. These results illustrate that the
NNM can still learn to satisfy invariants approximately, even
when they are not explicitly enforced. Furthermore, the loss
functional may provide a means of empirically estimating the
extent to which such invariants are satisfied in practice.

2. Conservation of flux

Another important physical property of the true solution to
the target PDE is the conservation of electric flux. In its strong
form, conservation states that the true electric field E must be
divergence free at all points in the domain. This is equivalent
to the condition that the true electric potential u must satisfy
Laplace’s equation ∇2u = 0 since it can be rewritten as

∇ · (∇u) = ∇ · E = 0. (20)

Thus, one could quantify the deviation from conservation of
flux of an approximate field Ẽ by computing some error norm
of ∇ · Ẽ. However, since all the derivatives taken in the NNM
are exact (obtained via automatic differentiation), ∇ · Ẽ is
exactly equal to ∇2ũ. As a result, the first term of the loss
functional [Eq. (1)] is precisely a measure of how well the
NNM satisfies the strong form of the conservation of flux.

Nonetheless, the strong form of conservation is insufficient
to fully describe the extent to which the electric field con-
serves flux over extended regions of space within the domain.
This is better described using the weak form, which states
that the surface integral of the flux into any closed subset of
the domain must be zero. Motivated by this, we define the
quantity

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

∂B(x;ε)
Ẽn̂ds

]2

dA. (21)

Here, B(x; ε) is a ball of radius ε centered at a point x in
the domain, ∂B(x; ε) denotes its boundary, and Ẽn̂ denotes
the outward normal component of the electric field into its
surface. The outer integral is taken over �ε , by which we
denote the set of all points in the domain that are at least a
distance ε from the boundary. The factors |�ε | and |Bε | are the
areas of �ε and B(x; ε), respectively. In other words, E (ũ; ε) is
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FIG. 7. The flux error metric E (ũ; ε) plotted as a function of
the ball radius ε for three NNM solutions as well as the reference
FEM solution. The legend entries for the NNM solutions indicate the
architecture (d,w) for each case. The leftmost points show E (ũ; 0),
and the rightmost show E (ũ; ∂�). The dotted vertical line labeled
Lmesh indicates the mean length scale of the FEM mesh.

the mean-square norm of the flux into all balls of radius ε that
are entirely contained within �, divided by the area of those
balls. Because this definition of E (ũ; ε) is mesh agnostic, it
can also be computed directly for a FEM solution. Numerical
calculations of E (ũ; ε) and related metrics in this section are
somewhat technical, and details are relegated to Appendix B.

Figure 7 shows E (ũ; ε) computed for a sample of NNM
solutions (colored lines) as well as for the reference FEM
solution (black line). The architectures, losses, and relative
errors of the three networks shown in Fig. 7 are listed in
Table. I. The shape of E (ũ; ε) measured for the NNM so-
lutions in Fig. 7 is representative of what was measured on
several other NNM solutions (not included). In particular,
E (ũ; ε) was consistently observed to decrease monotonically
with increasing ε. In Fig. 7, the network with architecture
(d,w) = (2, 25) achieved relatively mediocre performance.
The (1,200) network performed fairly poorly overall, but was
still among the best performing shallow networks in the data
set. As expected, the best of the three networks according
to testing loss and the relative error metrics, (4,150), also
performed best in terms of conservation of flux. Similarly,
(2,25) outperformed (1,200). We emphasize that the (2,25)
network outperforms the (1,200) network in all metrics, de-
spite having slightly smaller capacity. This is reflective of the
disproportionately poor performance of shallow architectures
noted in Secs. III A and III D.

TABLE I. Summary of the NNM solutions selected for the con-
servation of flux and particle simulations tests. Columns shown the
depth, width, capacity, testing loss, and relative error of the electric
potential and electric field, for each network.

d w Capacity L[ũ] δu[ũ] δE[Ẽ]

1 200 801 3 × 10−3 16% 7.4%
2 25 751 2 × 10−4 1.7% 0.8%
4 150 68551 6 × 10−6 0.02% 0.08%

The behavior of E (ũ; ε) for the FEM solution differs from
that of the NNM solutions in some important ways. Whereas,
for all three NNM solutions, E (ũ; ε) is roughly constant
below ε ≈ 10−1, for the FEM solution E (ũ; ε) continues to
increase with decreasing ε until at least ε ≈ 10−4. As a result,
although the FEM solution achieves better E (ũ; ε) than all
NNM solutions at long length scales, the converse is true
at sufficiently small length scales. The best NNM solution
in Fig. 7, (4,150), exhibits comparable conservation of flux
to the FEM solution at length scales near the mean FEM
mesh size Lmesh = √|�|/N , where N is the number of mesh
elements. At length scales below Lmesh, the (4,150) network
conserves flux more accurately than the FEM solution. Even
the worst of the three NNM solutions shown in Fig. 7 performs
comparably to the FEM solution in conservation of flux at
length scales below ε ≈ 10−3. The relative stability of the
NNM at small length scales may be attributable to its mesh-
free nature, and is an appealing feature for subsequent use in
particle simulations. Finally, we recall (see Sec. II C) that the
FEM solution was computed in double precision, and suggest
that the single precision used for the NNM solutions may be a
limiting factor to their performance at large length scales.

For small choices of ε, E (ũ; ε) converges to a measure of
the strong form of conservation of flux. By the divergence
theorem, for a continuously differentiable field Ẽ, the flux
error metric E (ũ; ε) can be rewritten as

E (ũ; ε) = 1

|�ε |
∫

�ε

[
1

|Bε |
∫

B(x;ε)
∇ · Ẽ dA′

]2

dA (22)

= mean
�ε

[(
mean
B(x;ε)

(∇ · Ẽ)

)2
]
. (23)

In the remainder of this section, angle brackets 〈·〉S will be
used to denote means over any set S. From Eq. (22), it is easy
to deduce the limit of E (ũ; ε) as ε → 0, which will be denoted
E (ũ; 0). Since �ε → � and the mean over B(x; ε) approaches
the identity operator, it follows that

E (ũ; 0) = 〈(∇ · Ẽ)2〉� = 〈(∇2ũ)2〉�. (24)

The leftmost points in Fig. 7 illustrate E (ũ; 0) for each of
the solutions. For the NNM solutions, E (ũ; ε) converges to
E (ũ; 0) as ε → 0, as expected. This is not the case for the
FEM solution, for which E (ũ; ε) exceeds E (ũ; 0) for small ε.
However, this is not a contradiction, as Eq. (24) was derived
by assuming continuous differentiability.

Equation (24) is precisely the mean of the square de-
viation of ũ from the strong form of conservation of flux.
For NNM solutions, E (ũ; 0) is equal to the first term of the
loss functional [Eq. (1)] divided by |�|, and is therefore
bounded above by the loss. Given that E (ũ; ε) was observed
to decrease monotonically with ε, this suggests that, as for the
relative errors and symmetry errors, the loss provides a useful
estimator of the error in conservation of flux over any length
scale.

However, as ε increases, the metric E (ũ; ε) becomes in-
creasingly biased because the center of the balls B(x; ε)
cannot be placed within a distance ε of the boundaries of the
domain. At moderate values of ε, this means that errors in
flux conservation in the interior of the domain are weighted
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FIG. 8. Error in global flux conservation for all NNM solutions
as a function of each network’s testing loss. Marker color indicates
the depth of the network, and marker area indicates its width. The
dotted line indicates the corresponding error in the FEM solution.

more heavily than those near the boundaries of the domain.
Eventually, when ε > 0.6, the balls are too large to fit inside
the slits of the device, so that only errors inside the well
contribute to E (ũ; ε). For this reason, the data in Fig. 7 are
only computed for ε values sufficiently below 0.6 that this
bias is deemed acceptably small. This biased behavior of
E (ũ; ε) arises because the inner integral in Eq. (22) is based
on circle-shaped test sets. A more meaningful metric of flux
conservation over very long length scales can be obtained by
replacing B(x; ε) with ∂� in Eq. (22). This global flux error
will be denoted E (ũ; ∂�), and satisfies

E (ũ; ∂�) =
[ |∂�|

|�| 〈Ẽn̂〉∂�

]2

= [〈∇2ũ〉�]2. (25)

Thus, E (ũ; ∂�) is directly connected to 〈Ẽn̂〉∂�, the net flux
through ∂�, which is zero for the true solution. Note that
the second equality in Eq. (25) follows from the divergence
theorem, so it applies to the NNM solutions but not the FEM
solution. Together with the second equality of Eq. (24), this
means

E (ũ; 0) − E (ũ; ∂�) =
〈(∇2ũ

)2
〉
�

− [〈∇2ũ
〉
�

]2
, (26)

which is the variance of ∇2u over �. This is always non-
negative, so it follows that

E (ũ; 0) � E (ũ; ∂�), (27)

for any ũ satisfying the second inequalities in both Eqs. (24)
and (25).

The rightmost points in Fig. 7 illustrate E (ũ; ∂�) for each
of the four solutions. Figure 8 shows E (ũ; ∂�) for all NNM
solutions versus each network’s testing loss; the dotted line
indicates the value for the FEM solution. It is immediately
evident that E (ũ; ∂�) relates to testing loss in a similar way
as do the relative error metrics (Fig. 5). As was the case for
the other metrics, E (ũ; ∂�) decreases with decreasing testing
loss, suggesting that testing loss is a useful estimator of global
flux error. Indeed, this is inevitable in the limit of small loss
since E (ũ; ∂�) is bounded above by E (ũ; 0), which is in turn
bounded above by the loss. It also appears that the data in
Fig. 8 are divided into the same two clusters as the data in

Fig. 5, with the shallow architectures performing worse than
nearly all deep architectures.

Somewhat surprisingly, the best of the NNM solutions
appear to conserve flux globally to nearly the same degree
as the reference FEM solution, despite being computed in
single (rather than double) precision. Indeed, one network
with architecture (4,200) appears to slightly outperform the
FEM solution in this respect. However, it is important to note
that E (ũ; ε) for this (4,200) network (not shown) exhibits
essentially the same behavior as that of the (4,150) network
analyzed in Fig. 7. In other words, although that particular
network performs very well at global flux conservation, FEM
does a significantly better job at conserving flux over interme-
diate length scales. This suggests that, for the NNM solutions,
the error in conservation of flux is heterogeneously distributed
throughout the domain, which is consistent with the previous
observation that error in the NNM solutions is significantly
larger near the reentrant corners.

In summary, the metric E (ũ; ε) provides a mesh-agnostic
measure of how well an NNM solution conserves flux over a
length scale ε. As ε → 0, the limit satisfies Eq. (24), and is
bounded above by the loss. Empirically, E (ũ; ε) is observed
to decrease monotonically with ε, so that the loss provides
a useful estimator of the error in flux conservation over
intermediate length scales, too. Alas, when ε is large relative
to other length scales in the domain, E (ũ; ε) is a biased metric,
as it places less weight on flux lost near the boundaries of the
domain. However, a related measure of global conservation
of flux over the entire domain is given by Eq. (25), which is
not biased. This measure, too, is bounded above by the loss.
Altogether, the NNM seems capable of reliably producing
solutions that conserve flux to an acceptable level of accuracy
without the need to explicitly enforce this physical invariant
during training. In particular, some of the NNM solutions
conserve flux globally roughly as well as the FEM solution.
Furthermore, even relatively mediocre NNM solutions con-
serve flux better than the FEM solution over sufficiently small
length scales.

C. Application to particle simulations

Section III A looked directly at error between NNM and
FEM, and Sec. III B looked at error metrics motivated by
physical invariants. Both suggested that the testing loss pro-
vides a reliable estimator of the true performance of the
network solutions, and that (with appropriate network archi-
tectures) the NNM consistently finds solutions with seemingly
small error values. However, the question of what error values
are acceptable is subjective, and often depends on the intended
application of the numerical solutions. For this reason, this
section will consider the performance of the NNM solutions
when used as the driving force fields in particle simulations of
Brownian motion in the slit-well device (implemented in the
C programming language). The simulation scenario is quite
similar to those investigated by [38,39].

Simulations of N = 100 000 particles in the slit-well do-
main were initialized with all the particles located in the
middle of the same well. The particle positions xi evolved
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according to the discretized Brownian equation

�xi

�t
=

√
2D

�t
R(t ) + q

γ
Ẽ, (28)

where the time step was set to �t = 10−4, the diffusion
coefficient to D = 1, and the friction coefficient to γ = 1.
The particle charge q was varied from 1 to 10. The term
R(t ) is a random driving force, representing thermal motion
of an implicit solvent, and was sampled via the Box-Muller
transform from an independent standard Gaussian distribution
for each particle at each time step.

The driving electric field Ẽ was obtained from either the
reference FEM solution or from one of the NNM solutions.
The electric fields were discretized onto a uniform square
mesh overlain on [−Lx, Lx] × [−Ly, Ly], the smallest bound-
ing box containing � (see Sec. II B). The side lengths of the
mesh elements were set to 0.01. The field experienced by
a particle at a given position was approximated by nearest-
neighbor interpolation to the mesh. We leave more sophis-
ticated coupling between the particle simulations and the
electric fields to future work.

Particles experienced periodic boundary conditions across
the left and right sides of the periodic subunit illustrated
in Fig. 3, and the boundaries that were insulating in the
electric field problem were treated as reflective in the particle
simulations. The number of times each particle crossed the do-
main was tracked, so as to measure its absolute displacement
from the original position. After tmax = 106 time steps, the
mean horizontal displacement of the particles from the initial
position 〈x〉 was divided by tmax to obtain an estimate 〈vx〉 of
the average particle velocity. This average velocity was then
divided by particle charge to estimate the effective particle
mobility μ = 〈vx〉/q. The statistical error on this mobility
measurement was estimated as s = (σvx /q)/

√
N , where σvx is

the standard deviation of the particle velocities.
These mobility measurements are shown in Fig. 9(a) for

simulations conducted with the same four electric fields in-
vestigated in Sec. III B 2: that of the reference FEM solution,
and that of the three NNM solutions summarized in Table I.
The simulations using the FEM field were conducted twice
with different random seeds, shown as the two black lines
in Fig. 9(a). The difference between these two sets of mea-
surements provides a means of distinguishing the errors intro-
duced by the electric fields from simple statistical fluctuations
on the mobility measurements. In Fig. 9(a), the measurements
of μ made using the networks of architectures (2,25) and
(4,150) appear fairly similar to those made using the FEM
field. Conversely, the measurements using the (1,200) archi-
tecture are quite easily distinguished from the FEM data. All
simulations recovered effective mobilities that varied with
q, induced in the otherwise free-draining particles by their
interactions with the slit-well geometry.

The relative error between two mobility measurements μ1

and μ2 was quantified as

μ1 − μ2

μ2
. (29)

The colored lines in Fig. 9(b) show the relative errors of
the NNM-based mobility measurements in Fig. 9(a) versus

FIG. 9. (a) Lines show the mobility measurements μ made using
four different electric field solutions. The two black lines correspond
to separate simulations made using the same reference FEM field.
The error bars indicate the estimated statistical error of mobility s.
(b) The colored lines show the relative errors between the NNM-
based measurements and the first set of FEM-based results. The black
line shows the relative errors between the two sets of FEM-based
measurements. The error bars are obtained from the data in (a) via
standard rules for propagation of uncertainty.

the first set of FEM-based measurements. The black line
corresponds to the relative errors between the two sets of
FEM-based measurements. Error bars were estimated via
standard rules for propagation of error.

Unsurprisingly, the errors of the (1,200) architecture are
significantly larger than those of the other two architectures,
and show a clear bias toward underestimating the mobility.
Nonetheless, even this crude solution produces errors smaller
in magnitude than 5% of the actual mobility. This suggests
that the current particle simulations are relatively insensitive
to moderate inaccuracies in the driving electric field.

The relative errors of both the (2,25) and (4,150) archi-
tectures are comparable to the relative errors between the
two sets of FEM-based measurements, and lie below 1% for
all values of q. However, the relative errors for the (2,25)
architecture are negative for all q above 2, whereas the rel-
ative errors of the (4,150) architecture are roughly evenly
distributed about 0. This suggests that the (2,25) architecture
introduces a small but detectable systematic bias into the
mobility measurements. Conversely, the errors of the better
(4,150) architecture are comparable to statistical fluctuations,
despite the relatively large number of simulated particles,
N = 100 000. These results confirm that the best of the NNM
solutions presented in this work are sufficiently accurate for
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FIG. 10. Testing loss versus network capacity, colored by net-
work depths. The error bars show maxima and minima over four
random seeds, and the lines indicate mean performance. The dotted
lines at capacities of 5 × 103 and 5 × 104 roughly delineate the three
regimes discussed in the text.

use in particle simulation applications. Moreover, the relative
performance of the three architectures is consistent with their
values of L[ũ], δu[ũ], and δE[Ẽ] (Table I).

In Fig. 9, the network with architecture (2,25) significantly
outperforms that with architecture (1,200), despite having
slightly smaller capacity, reemphasizing the advantages of
deep architectures over shallow ones. Conversely, the much
larger (4,150) architecture only achieves moderate improve-
ments over the (2,25) architecture, reflecting the diminishing
returns associated with increasing network capacity. These
subtle impacts of architecture are investigated more closely
in Sec. III D.

D. Effect of network architecture

The previous sections have demonstrated that the testing
loss is a useful estimator of several independent error metrics.
Specifically, the loss functional appears to reliably estimate
the error relative to the reference FEM solution; the deviation
from symmetry; the deviation from conservation of flux; and
the error introduced into subsequent mobility measurements.
Thus, the loss is a useful single metric of performance via
which to compare different NNM architectures.

In Fig. 10, the testing loss is plotted against the total
network capacity. Here, network capacity is measured as the
total number of parameters in the network, given in terms of
the width w and depth d by

(2 + 1)w + (d − 1)(w + 1)w + (w + 1) (30)

since the networks have two inputs and one output. The col-
ored lines in Fig. 10 correspond to different network depths,
so that the various capacities within each line identify the net-
work widths. The error bars show maxima and minima over all
random seeds, whereas the lines indicate mean performance.

The data in Fig. 10 show that, for network capacities
below 5 × 103, increasing capacity improves testing loss for
any choice of depth. This suggests that, for those networks,
insufficient capacity is a primary bottleneck toward repre-
senting more accurate approximations of the true solution. In

particular, for the networks with two hidden layers, increasing
the capacity improves the loss by nearly two orders of mag-
nitude. Furthermore, in this low-capacity regime, increasing
depth improves performance for a given capacity. In other
words, when insufficient network capacity is the primary
barrier to improved performance, deeper networks make more
efficient use of that limited resource. Indeed, this is consistent
with the effects of architecture observed in Figs. 5, 7, 8,
and 9. Specifically, shallow networks perform particularly
poorly in all metrics throughout this work, even compared to
networks with comparable capacity and as few as two hidden
layers.

For deep networks with moderately large capacities (5 ×
103 to 5 × 104), testing loss is essentially independent of
network architecture (i.e., independent of both depth and
capacity/width). This suggests that insufficient network ca-
pacity is no longer a primary bottleneck to improving solution
accuracy. The investigation by [20] suggested that the internal
representations learned by networks in the NNM become
essentially independent of width above some critical size, so
it is not surprising that loss similarly becomes independent of
width. However, it is noteworthy that this limiting loss value
is also independent of network depth (among those with two
or more hidden layers).

For networks with capacities of 5 × 104 or above, testing
loss begins to increase with further increases in capacity.
Figure 5 illustrates that these same networks sometimes ex-
hibit relative errors nearly as high as some shallow networks,
despite having two orders of magnitude more capacity. Their
poor performance can be understood in terms of the difficul-
ties commonly encountered in training very deep, wide neural
networks. For instance, Berg and Nyström [16] noted similar
loss in performance when training networks with five or more
hidden layers, and attributed this to vanishing gradients. Re-
finements in the network architectures and training algorithms
can be expected to alleviate this phenomenon.

Note that the behavior of these networks with very large
capacities cannot be described in terms of overfitting, another
problem commonly encountered by networks with exces-
sively large capacities. Overfitting is typically defined as a
significant gap between the training and testing losses of
networks. In the NNM, however, the testing and training sets
are drawn from identical distributions. In the implementation
used here, in particular, the training set is redrawn regularly
throughout training, so that it is fundamentally impossible
for the network to be overfitting to a specific set of training
samples.

Finally, Fig. 11 shows the total training time of the NNM
solutions against testing loss. The same two populations
identified in Figs. 5 and 8 are evident again in Fig. 11. The
cluster on the right contains all the shallow networks as well
as the narrowest of the deep ones. The cluster on the left
consists of those networks that attained better than 1% error
relative to FEM (Fig. 5). Within each cluster, testing loss and
training time are loosely correlated. For all networks, training
time was on the order of hours. However, it is important to
note that the implementation in this work was not concerned
with optimizing the computational efficiency of the NNM, but
rather with ensuring that the training process was thoroughly
converged (Sec. II B).
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FIG. 11. Total training time and final testing loss of the NNM
solutions. Marker color indicates the depth of the network, and
marker area indicates its width.

Once again, the networks in the right cluster perform
disproportionately poorly, even though many of them have
capacities comparable to some of those in the left cluster
(Fig. 10). Thus, not only do the networks in the left cluster
achieve better accuracies (as measured by testing loss or
any of the various error metrics in this paper), but they also
finish training far more rapidly. Further, this conclusion is true
even between networks of equal capacity. These observations
demonstrate many benefits of using deeper architectures in the
NNM, and several disadvantages of using shallow architec-
tures.

IV. CONCLUSIONS

This work investigated the performance of the neural net-
work method (NNM) when used to solve the electric potential
and field in the slit-well device. This problem features a non-
convex geometry, which makes it particularly challenging to
solve with the NNM. Performance was quantified in multiple
metrics, and compared against a reference FEM solution.

The best network architectures studied here reliably
achieved relative errors below 0.1% in both the potential and
the field. NNM solutions also recovered spatial symmetries
of the true solution to roughly the same extent that they
approximated the true solution. Regarding conservation of
flux, the NNM solutions performed comparably to the ref-
erence FEM solution. Finally, particle simulations conducted
using the NNM electric fields yielded mobility measurements
consistent with those based on the FEM electric field. In
each of these metrics, the testing loss was found to provide
a useful estimator of the networks’ true performance. That
is, networks with smaller losses were found to be closer
to the true solution; to more closely approximate the target
symmetries; to conserve flux more accurately; and to produce
better particle simulations.

These empirical investigations uncovered several valuable
insights for practical use of the NNM. Accurate solutions to
physical problems can be obtained even without explicitly
enforcing known physical invariants of the true problem. The
importance of architecture was reemphasized: deep archi-
tectures consistently outperformed shallow ones, converging
to better solutions in less time and using fewer degrees of

FIG. 12. Electric field intensity of the FEM solution, shown on
(a) linear and (b) logarithmic color scales.

freedom. Finally, the testing loss may provide a practical
means of gauging a solution’s accuracy, even when the ground
truth is unknown and convergence is not theoretically guaran-
teed.

In summary, this work demonstrates that the NNM can
successfully solve a problem that is ill conditioned due to the
nonconvexity of its domain. The NNM solutions were found
to be particularly appropriate for use in subsequent particle
simulations. This suggests that it could be a useful tool for the
study of microfluidic and nanofluidic devices (MNFDs) and
other biophysical systems. Moreover, differential equations
in domains with complicated geometries arise throughout
physics and other fields. These results support the feasibility
of using the NNM to solve this fundamental and ubiquitous
class of problems.
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APPENDIX A: ADDITIONAL PLOTS OF THE
ELECTRIC FIELD SOLUTION

Figure 12 shows the FEM electric field intensity through-
out the domain, in both linear and logarithmic color scales.
In particular, Fig. 12 illustrates that the peak field intensity
occurs near the reentrant corners, with a magnitude of about
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0.36. In the bottom corners of the well, the field intensity is
over four orders of magnitude weaker. These features con-
tribute to the difficulty of applying the NNM to the slit-well
electric field problem since the standard loss functional used
during training places equal weight on all regions of � and
∂�. The regions of very intense electric field near the reentrant
corners, specifically, seem to be most difficult to resolve for
the NNM, as seen in the error maps shown in Fig. 4.

APPENDIX B: DETAILS OF FLUX LOSS CALCULATIONS

This Appendix contains descriptions of how the metrics
shown in Figs. 7 and 8 were computed. For Fig. 7, the integrals
in Eq. (21) were computed by sampling 10 000 uniformly
spaced points on ∂B(x; ε) for each choice of the center x.
Candidate samples for the centers were generated according

to the same procedure described in Sec. II B, but with 10 times
higher sample density, and all points within a distance ε of ∂�

were rejected.
The leftmost points in Fig. 7 correspond to Eq. (24). For

the NNM solutions, these were computed by Monte Carlo
integration over � using 10 times higher sampling density
than in Sec. II B. The rightmost points in Fig. 7 correspond
to Eq. (25). These were not computed using a Monte Carlo
integration approach. Because 〈Ẽn̂〉∂� is a small number com-
puted by summing many positive and negative terms, it is
vulnerable to catastrophic cancellation. For this reason, it was
computed using a uniform mesh of points along ∂�, sampled
with 100 times higher density than in Sec. II B. For the FEM
solution, the integrals required for Eqs. (24) and (25) were
both computed in FENICS using Gaussian quadrature via the
assemble command.
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