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Topologically ordered zigzag nanoribbon: e/2 fractional edge charge, spin-charge separation,
and ground-state degeneracy
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We numerically compute the density of states (DOS) of interacting disordered zigzag graphene nanoribbon
(ZGNR) having midgap states showing e/2 fractional edge charges. The computed Hartree-Fock DOS is linear
at the critical disorder strength where the gap vanishes. This implies an I-V curve of I ∝ V 2. Thus, I-V curve
measurement may yield evidence of fractional charges in interacting disordered ZGNR. We show that even a
weak disorder potential acts as a singular perturbation on zigzag edge electronic states, producing drastic changes
in the energy spectrum. Spin-charge separation and fractional charges play a key role in the reconstruction
of edge antiferromagnetism. Our results show that an interacting disordered ZGNR is a topologically ordered
Mott-Anderson insulator.
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I. INTRODUCTION

Graphene has numerous remarkable properties [1–3]. One
prominent feature is that, in the absence of disorder, zigzag
graphene nanoribbons (ZGNRs) can support chiral symmetry
protected topological (SPT) [4–9] edge states displaying an
integer charge [10]. Disorder has profound effects on ZGNRs.
In particular, an interacting disordered ZGNR becomes a
Mott-Anderson insulator [11–13] with spin-split energy lev-
els [14]. Furthermore, localized gap-edge states reduce the
size of the gap between the occupied and unoccupied midgap
states with energies −�s/2 and �s/2, respectively, to �s

(see Fig. 1). In the weak disorder regime, solitonic midgap
states [15,16] may have an e/2 fractional charge on each
of the opposite zigzag edges, i.e., there is one for each
edge [14], where e is the electron charge, see Fig. 2. These
fractional charges have small disorder-induced charge vari-
ances. In addition, the charge fractionalization is protected
against quantum charge fluctuations by the nonzero �s. Here
�s � 10−2� ∼ 1 THz, where � is the gap value; this is
sufficiently large that quantum charge fluctuations can be
ignored (see Girvin [17]). In the absence of disorder, typically,
� ∼ 0.2t [18], where t ∼ 3 eV is the hopping constant.

An excellent opportunity to observe these boundary
charges has recently arisen, as rapid progress has been
made in the fabrication of atomically precise GNRs [19].
The chiral Luttinger liquid theory of fractional quantum
Hall edges [20,21] predicts an I-V curve of I ∝ V 1/ν . The

*Corresponding author: eyang812@gmail.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

corresponding DOS is given by

ρ(E ) ∝ E1/ν−1, (1)

where ν is the filling factor, and the energy E is determined
from the Fermi energy (these edges support gapless exci-
tations). This predicted I-V curve has been experimentally
confirmed [22]. It should be noted that Laughlin quasiparticles
have an odd denominator fractional charge eν, and an even
denominator fractional charge e/2 is not found in fractional
quantum Hall systems. The aforementioned I-V curve may
be derived heuristically by assuming that a tunneling electron
fractionalizes into m = 1/ν fractionally charged quasiparti-
cles [23], where

e → e/m + · · · + e/m. (2)

(This tunneling process is illustrated in Fig. 3.) However,
the chiral Luttinger liquid theory does not apply to ZGNRs.
Furthermore, the gap-edge states are all localized along the
ribbon direction, in contrast to the fractional quantum Hall
edge states. Moreover, the average edge charge of the gap-
edge states with energies within a small interval δE is e/2;
however, significant disorder-induced charge fluctuations may
occur. Some of these states are more localized on the left or
right zigzag edges. This tendency increases as the electron
energy deviates from ±�s/2. Despite this, if we apply the
above heuristic argument to a ZGNR with m = 2, then we find
that the I-V curve is given by

I ∝
∫

dε1

∫
dε2θ (eV − ε1 − ε2) ∝ V 2, (3)

where θ and ε1,2 are the step function and quasiparticle
energies, respectively. This I-V curve is equivalent to a linear
tunneling DOS. A topological insulator is usually not signif-
icantly affected by a disorder potential, but the SPT phase
of a ZGNR is profoundly changed by disorder. However, the
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FIG. 1. (a) Zigzag edge antiferromagnetism of interacting ZGNR
without disorder. (b) Schematic of interacting (solid curves) and non-
interacting (dashed curves) ZGNR band structures. The unoccupied
and occupied states near the wave vectors k = ±π/a0 are shown: R
and L represent states confined on the right and left zigzag edges,
respectively (a0 = 1.73a is the unit cell length of the ZGNR and
a = 1.42 Å is the C-C distance). The small arrows indicate spins. The
spin-split energy levels of the spin-up (solid lines) and spin-down
(dashed lines) gap-edge states of the interacting disordered ZGNRs
are shown. These states decay exponentially from the zigzag edges.
In the limit of an infinitely long ribbon the gap �s may vanish and
a soft gap can develop. Another degenerate ground state can be
obtained by exchanging ↑ and ↓ spins.

physical processes involved in this effect and the properties of
the interacting disordered state are not well understood.

In this study, we propose an experiment that may provide
evidence of the presence of e/2 fractional charges in interact-
ing disordered ZGNRs. We compute the DOS of an interact-
ing disordered ZGNR and find that, for the critical disorder
strength where the ZGNR supports gapless excitations (i.e.,
where �s vanishes), our computed Hartree-Fock (HF) DOS is
linear near the Fermi energy. This finding is in agreement with
the heuristic argument given above. In addition, our results
show that even a weak disorder potential behaves similar to a
singular perturbation on zigzag edge electronic states, gener-
ating drastic changes in the energy spectrum. It also induces
a magnetic zigzag edge reconstruction in which fractional
edge charges and spin-charge separation play a significant
role. Moreover, disorder also changes an SPT phase to a
topologically ordered phase [5,24].

II. MODEL

There are two types of disorder, namely diagonal and
off-diagonal disorder. We model off-diagonal disorder by
randomly varying the nearest-neighbor hopping parameters,

disorder

zigzag

zigzag

FIG. 2. Two e/2 fractional zigzag edge charges of an interacting
disordered ZGNR. Note that red (blue) probability density means
that the wave function has A (B) chirality, i.e., it is finite only on A
(B) carbon atoms. Since there is negligible tunneling between these
sites we will call this type of state a mixed chiral state.

eV

ee/2

e/2

FIG. 3. A tunneling electron is fractionalized when it enters an
interacting disordered ZGNR.

see Fig. 4. However, since the results of off-diagonal disorder
and diagonal disorder are similar we mainly report, in this
study, on the results of diagonal disorder, shown schematically
in Fig. 5. In diagonal disorder Nimp defects or short-ranged im-
purities are randomly placed at carbon sites �Rj . Let us analyze
the scattering of left and right edge states by a short-ranged
disorder potential. Consider a spin-up electron at k = π

a0
with

the wave function φR↑ localized on the right zigzag edge. For
a short-ranged potential, a significant wave vector transfer
in a backscattering occurs for |k − k′| ∼ 1/a0 [25]. Such a
short-ranged disorder potential couples the chiral zigzag edge
state R ↑ to another chiral zigzag edge state L ↑ on the
opposite zigzag edge at k = − π

a0
, as shown in Fig. 6 [their

wave functions φR and φL are depicted in Figs. 7(a) and 7(b)].
This process produces the bonding or antibonding edge state
with the wave function 1√

2
(φL + φR) or 1√

2
(φL − φR). The

probability density of one of these states is shown schemat-
ically in Fig. 7(c) (a mixed chiral state). These states display
charge fractionalization with 1/2 charges on the left and right
zigzag edges. But states with uneven fractions may also be
generated. Numerical calculations are needed to determine the
distribution of these edge charges.

The strength of the potential ε j is chosen randomly from
the energy interval [−
,
]. The values of ε j depend on the
type of charged impurities in the substrate and defects in
graphene. The number of impurities or defects is also relevant
in determining the strength of the disorder potential. In the
Born approximation disorder strength is characterized by the
parameter 


√
nimp, where nimp = Nimp/N is the ratio between

FIG. 4. Off-diagonal disorder: Random network of hexagons
consisting of A and B carbon atoms. A zigzag edge site is connected
to two other carbon atoms while a site away from the edges is
connected to three other carbon atoms. The hopping parameter t is
not the same for all sites. The zigzag edges have definite chirality,
consisting A or B carbon atoms. In contrast, armchair edges have
mixed chirality.
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FIG. 5. Diagonal disorder: Site energies are varied randomly.
Colors represent strength of on-site disorder potential. Again a
zigzag edge site is connected to two other carbon atoms while a site
away from the edges is connected to three other carbon atoms. But
the hopping parameter t is the same for all sites.

the numbers of impurities and total carbon atoms. The range
of an impurity potential is important in determining properties
of the Dirac electrons in ZGNRs [25–27]. However, a short-
ranged disorder potential gives more robust charge fractional-
ization [14]. In the following all our numerical results are for
short-ranged potentials, unless stated otherwise.

We applied a Hubbard model to the interacting disor-
dered ZGNRs and used a self-consistent HF approximation
(HFA); this is because the self-consistency provides an ex-
cellent approximation when both disorder and interactions
are present [28–30]. We include both electron-electron inter-
actions and disorder in a tight-binding model at half-filling.
When U = 0 disorder can be treated exactly in the HFA while
in the other limit, where disorder is absent, interaction effects
can be represented well by the HFA, which widely used in
graphene-related systems [31,32]. Its results are consistent
with those of density-functional theory [18]. The total Hamil-
tonian in the HFA is

H = −
∑
〈i j〉σ

ti jc
†
iσ c jσ +

∑
iσ

εic
†
iσ ciσ

+U
∑

i

(ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉)

− U

2

∑
i

(ni↑ + ni↓), (4)

R↑
L↓

0 k

R↓
L↑

FIG. 6. States localized on the right and left zigzag edges are
represented, respectively, by R and L. The long arrows indicate
the coupling, induced by a short-ranged disorder potential, between
states R ↑ and L ↑ or R ↓ and L ↓.

FIG. 7. Schematic drawing of the site probability distribution
|ψ |2 of two degenerate edge states with wave functions ψL and ψR is
shown. They are localized on the (a) left and (b) right edges, respec-
tively. (c) Disorder couples these states and can generate antibonding
and bonding edge states with the wave functions ψ = 1√

2
(φL − φR )

and ψ = 1√
2
(φL + φR ), respectively.

where c†
iσ and niσ are the electron creation and occupation op-

erators at site i with spin σ . Since the translational symmetry
is broken, the Hamiltonian is written in the site representa-
tion. In the hopping term the summation is over the nearest-
neighbor sites (the average value of hopping parameters is
〈ti j〉 = t ∼ 3 eV). The eigenstates and eigenenergies are com-
puted numerically by solving the tight-binding Hamiltonian
matrix self-consistently. The self-consistent occupation num-
bers 〈niσ 〉 in the Hamiltonian are the sum of the probabilities
to find electrons of spin σ at site i:

〈niσ 〉 =
∑

E�EF

|ψiσ (E )|2. (5)

The sum is over the occupied eigenstates with energy E below
the Fermi energy EF . Note that {ψiσ (E )} represents an eigen-
vector of the tight-binding Hamiltonian matrix with energy
E . For notational simplicity, we suppress its dependence on
E from now on. The ratio between the disorder strength
and interaction strength is κ = 


√
nimp/U � 1 in the weak

disorder regime. Varying the strength 
 is approximately
equivalent to changing

√
nimp. In this work, the ribbon width

was set to w = 7.1 Å and the on-site repulsion was U = t . To
investigate very long ZGNRs it is vital to use sparse matrix
diagonalization techniques.

III. QUANTIZED FRACTIONAL CHARGE OF
MIDGAP STATE

For the sake of clarity we briefly summarize the results
we obtained in Ref. [14]. The midgap states with energy
|E | ≈ �s/2 � �/2 and edge charge qA ≈ 1/2 represent soli-
ton states. They consist of almost equal contributions from
the valence R and conduction band L states (or from the
valence band L and conduction band R states) with energies
near −�/2 and �/2, respectively, as shown in Fig. 1. A
soliton state has small disorder-induced charge fluctuations.
In addition, spin-split states are also present [8], as in a Mott-
Anderson insulator [13]. For a given disorder realization,
greater spin-splitting occurs for states with |E | ≈ �s/2 than
for those with |E | ≈ �/2. In the limit where disorder strength
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FIG. 8. (a) Plot of qA for disorder potential strength 
 = 0.1t ,
where each point represents the probability of finding an electron of a
gap-edge state on A carbon sites, qA. The disorder realization number
is ND = 300, and the ribbon length is � = 196.8 Å. Here the impurity
or defect–to–carbon atom ratio is nimp = 0.1. The gap size is �s ≈
0.12 �

2 . (b) Plot of qA for U = t in the absence of disorder, where the
on-site electron repulsion and hopping parameter are indicated by U
and t , respectively.


 → 0 and ribbon length � → ∞ the energy of a soliton
decreases toward E = 0 and qA → 1/2 with very small fluctu-
ations, i.e., the value of the fractional charge approaches e/2.

Here we provide a new and efficient way to analyze nu-
merical results. The numerical results are presented in the
following way: For each HF quasiparticle state with energy
E and spin σ we compute the total probability density on A
carbon sites, denoted by

qA =
∑
i∈ A

|ψiσ (E )|2. (6)

We plot all the possible values of (E , qA). This plot makes
it easier to delineate physics behind charge fractionalization.
We find that disorder behaves similar to a singular pertur-
bation on zigzag edge electronic states [33]. This singular
perturbation is analogous to the nonperturbative coupling
between the left and right wells of a double quantum well (the
nonperturbative aspect can be seen by using instantons of the
inverted double well potential [34]). A disorder potential or
a magnetic field can produce drastic changes in the electron
wave functions [35,36], see Figs. 8(a) and 8(b). Figure 8(a)
shows the distribution of (E , qA) for 
 = 0.1t . Note that
particle-hole symmetry (chiral symmetry) is broken. Even a
weaker disorder potential with 
 = 0.03t produces similar
drastic changes in the energy spectrum when compared to
the disorder-free behavior, see Fig. 9. Note that in this weak
disorder regime charge fractionalization is more accurate:
Midgap states shown in the figure has qA very close to 1/2.
In contrast to the case of 
 = 0, shown in Fig. 8(b), there
are numerous states with qA ≈ 1/2 in the energy range |E | <

�/2. If the disorder potential experienced by the left and right
edges differs, then charge values will deviate from 1/2.

We have also examined off-diagonal disorder. In the pres-
ence of off-diagonal disorder, a zigzag edge site is connected
to two other carbon atoms while a site away from the edges
are connected to three other carbon atoms, but the hopping

FIG. 9. Plot of qA for 
 = 0.03t , U = t , nimp = 0.1, l =
1232.5 Å, and ND = 2166. Zero-energy states with qA rather close to
1/2 are indicated by an arrow. Blue (red) dots are for spin-up (-down)
states.

parameter is not the same for every site. Despite this our
numerical results show that fractional midgap states do exist
as in diagonal disorder, see Figs. 10 and 11. The network
topology, i.e., how many carbon atoms each site of the zigzag
edges is connected to, is crucial for charge fractionalization.
Whether disorder is off-diagonal or diagonal is immaterial.

We find that the localization length along the edges de-
creases as |E | decreases toward �s/2. A small localization
length means that the repulsive energy between an electron
in a soliton state and an added electron in another soliton
state can be small since they can avoid each other. This effect
determines the magnitude of �s.

IV. LINEAR TUNNELING DENSITY STATES

The e/2 fractional charge fluctuations decrease as |E | →
�s/2. Thus, we investigated the effect of this behavior on
the DOS near the Fermi energy. (Note that the tunneling
DOS measures the number of quasiparticle excitations of the
interacting disordered ZGNR.) We examined longer ZGNRs
than those in Ref. [14]. This allows us to extract the behavior
of the DOS in the limit E → 0. We performed finite-size

FIG. 10. Plot of the probability density of a fractionalized gap-
edge state in the presence of off–diagonal disorder. It is a mixed
chiral state; green and blue represent different chiralities. Its energy
is E = −0.019t with qA = 0.495. The range of hopping parameters
is 0.94 < ti j/t < 1.06 and the ribbon length is � = 199.3 Å. A zigzag
ribbon consists of zigzag lines. In this ribbon they are labeled from
j = 1 to 8.
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FIG. 11. Same as in Fig. 10 but with a longer ribbon length � =
494.5 Å. The gap-edge-state energy is E = 0.055t with qA = 0.51.
The range of hopping parameters is 0.94 < ti j/t < 1.06.

calculations and computed the DOS given by

ρ(E ) = DδE (E )

lNDδE
, (7)

where DδE (E ) is the total number of states in the energy
histogram interval δE and ND is the number of disorder re-
alizations. We defined the critical point 
c as the value where
�s is zero, i.e., where the gap closes. The heuristic argument
given above suggests that the DOS at 
c is linear near the
Fermi energy. The DOS result for 
 = 0.18t � 
c is plotted
in Fig. 12. Our numerical results show that the energy range
where the DOS is linear increases as ribbon length � grows
and that fluctuations in the DOS also decreases. Note that 
c

does not represent a metal-insulator transition point, and the
gap-edge states are all localized in the interacting disordered
ZGNR [37]. Note also that 
c decreases as � increases (this is
a finite-size effect).

In the limit � → ∞ our results for 
 < 
c suggest that the
DOS decreases exponentially to zero as E → 0, see Fig. 13.
The shape of the resulting soft gap can be fitted well with an
exponential form of

ρ(E ) = A(eαx2 − 1), (8)

where x = E/(�/2) and the fitting parameters are A = 0.164
and α = 162. This suggests that the size of the exponential
gap is of the order of ∼0.05�

2 .

FIG. 12. Plot of DOS ρ(E ) for disorder potential strength 
 =
0.18t . Here the disorder realization number ND = 4409, the impurity
or defect–to–carbon atom ratio nimp = 0.1, and ribbon length � =
740.46 Å. The histogram interval is δE = 0.02 �

2 . The solid line
represents a linear fit to ρ(E ).
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FIG. 13. The DOS displays an exponential soft gap near E = 0.
Parameters are U = t , 
 = 0.03t , nimp = 0.1, l = 1232.5 Å, and
ND = 2166. Histogram interval is 0.014 �

2 .

V. SPIN-CHARGE SEPARATION

An interacting disordered ZGNR displays antiferromag-
netism that is weakly perturbed, see Fig. 14. As shown in
Fig. 1(a) a zigzag ribbon consists of zigzag lines. Away from
the outer two zigzag edges a zigzag line inside the ribbon
is mostly antiferromagnetically coupled with the neighboring
two zigzag lines. Magnetization is mostly ferromagnetic on
each of the two boundary zigzag edges but the two zigzag
edges are antiferromagnetically coupled. On the left zigzag
edge the site spin direction flips in a region. Also note that
on the right zigzag edge the site spin values are nearly zero
in two regions. These effects are due to the singular nature of
disorder, as we explain below.

Let us introduce disorder into the pure SPT phase and try
to understand how the singular disorder potential disrupts the
SPT phase. Suppose that the site occupation numbers of the
disorder-free left edge are ni↑ = 0.7 and ni↓ = 0.3. Then those
of the right edge are ni↑ = 0.3 and ni↓ = 0.7, respectively.

FIG. 14. Net site spin values Si = Si↑ + Si↓ = ni↑ − ni↓ are plot-
ted, where niσ is the site occupation number for spin σ . A zigzag
ribbon consists of zigzag lines. In this ribbon they are labeled from
j = 1 to 8. Blue (red) lines indicate positive (negative) spin values.
This result is for one disorder realization with diagonal disorder. The
parameters are U = t .
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FIG. 15. (a) Site-spin z components, Si↑ = ni↑ (blue) and Si↓ =
−ni↓ (red), plotted along edges. Here niσ is the site occupation
number. The left and right figures correspond to the left and right
zigzag edges, respectively. The number 1/2 indicates a removed or
added electron occupation number. (b) Net site spin values Si =
Si↑ + Si↓ are plotted.

Assume that disorder generates one spin-up and one spin-
down occupied soliton state near the gap edge displaying
charge fractionalization. In other words, a spin-up electron
on the left zigzag edge of the interacting ZGNR is converted
into two e/2 fractional charges, one of which resides on the
left zigzag edge while the other resides on the right zigzag
edge [Fig. 15(a)]. Similarly, a spin-down electron on the right
zigzag edge is also replaced by two e/2 fractional charges,
with one each residing on the left and right zigzag edges
[Fig. 15(a)]. Hence, the total z component of the site spin
Si = Si↑ + Si↓ on the zigzag edges changes sign along the
edge direction, as shown in Fig. 15(b). The total occupation
number of each site ni = ni↑ + ni↓ is now close to one (i.e.,
the ZGNR is half-filled). Note that the disorder potential
creates an even number of solitons to minimize the energy
cost of double occupancy of a site (a soliton consists a pair
of fractional charges). Thus, even if the disorder potential
is weak it can still disrupt the SPT phase. In addition, the
magnetic zigzag edge reconstruction can also lead to a spin-
charge separation [15,23,38]. Figures 16(a) and 16(b) show
how a charge fractionalization process results in an object

(a)

(b)

left right

SiSi

O O

SiσSiσ

O O

0.65
0.5

-0.5
-0.35

0.65

-0.35
-0.65

0.35

0.3 0.3

-0.3

FIG. 16. Plot of total z component of ground-state site spin Si.
Process of spin-charge separation is displayed in (a) and (b).

(eL, 0) that displays spin-charge separation. Here eL denotes
an electron charge located on the left edge and number 0
means no spin. When such an object moves along the zigzag
edge it will carry charge but no spin.

VI. MAIN PHYSICS

Disorder has profound effects on a ZGNR as it breaks
particle-hole symmetry (chiral symmetry), in addition to
inducing spin splitting. Other symmetries are also broken:
translational, reflection, rotational, and inversion symme-
tries. Spin-rotational symmetry is spontaneously broken [39].
Time-reversal symmetry is already broken by antiferromag-
netism. There is no symmetry that will protect edge states
in an interacting disordered ZGNR. Moreover, as we already
remarked, there are doubly degenerate ground states that are
connected to each other via reversal of electron spin directions
(see Fig. 1). All this suggests that an interacting disordered
ZGNR is qualitatively different from the disorder-free inter-
acting ZGNR.

We now explain the essential physics of charge fraction-
alization and the physical nature of interacting disordered
ZGNRs. The e/2 charges are a result of the subtle interplay
between network topology of the underlying lattice, electron
correlation and disorder. In each disorder realization particle-
hole symmetry (chiral symmetry) is broken, but after disor-
der averaging the symmetry is approximately restored. This
implies that the average edge charge is e/2 at each energy
|E | < �/2, but with a significant charge variance. However,
if the tunneling DOS develops a soft gap [28,40], then the
charge variance near zero energy will be negligible in the
weak disorder regime, see Fig. 9. What is the physical origin
of a soft gap? The essential physics is that it is difficult for the
tunneling electron to avoid other electrons since it takes long
time for interacting electrons to diffuse away from each other
(see Girvin and Yang, Ref. [23], pp. 290 and 645). Our numer-
ical simulation shows that an interacting disordered ZGNR
cannot be reached iteratively from a disorder-free chiral SPT
state. Moreover, an interacting disordered ZGNR has a doubly
degenerate ground state, e/2 fractional charges, spin-charge
separation, and broken chiral symmetry. Thus we expect that
it is in a topological ordered phase rather than in an SPT phase
(see Wen [5] for the distinction between them). An interacting
disordered ZGNR is somewhat analogous to topologically
ordered Laughlin states. In both systems fractional charge and
ground-state degeneracy are intimately related [5,23].

VII. CONCLUSIONS

In conclusion, an interacting disordered ZGNR is a one-
dimensional topologically ordered insulator with e/2 solitonic
fractional charges and with twofold ground-state degeneracy.
Even a weak disorder potential behaves similar to a singular
perturbation, producing spin-splitting and drastically modi-
fying the energy spectrum. We conducted a numerical study
showing that the DOS is linear at the critical disorder strength.
Measurement of the I-V curve may thus provide evidence
for the presence of fractional charges in an interacting dis-
ordered ZGNR. We also found that spin–charge separation
and fractional edge charges play a significant role in the
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reduction of edge antiferromagnetism. We hope that our work
will stimulate experimental tests investigating the presence
of e/2 fractional charges in interacting disordered ZGNRs.
However, several experimental possibilities and challenges
exist. In particular, investigation of tunneling between zigzag
edges, as in fractional quantum Hall bar systems [41], may
be fruitful. Quantum shot noise may directly measure [42] the
tunneling fractional charge of a ZGNR. Resonant tunneling
measurement through a quantum dot structure made of a rect-
angular ZGNR may also be explored [43]. Finally, it would be
interesting to investigate other zigzag nanoribbon systems that
exhibit antiferromagnetism, e.g., silicene and boron nitride
nanoribbons [44,45]. Disorder can couple the left and right
zigzag edges and lead to charge fractionalization.
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APPENDIX: PARTICLE FRACTIONALIZATION
IN OTHER SYSTEMS

Kitaev’s chain [46], polyacetylene, and interacting dis-
ordered ZGNRs all have end states. There are similarities
and differences between them [16]. It is both interesting and
instructive to take note of them.

Chiral symmetry guarantees existence of edge states in
ZGNRs and polyacetylene. However, in the presence of disor-
der there is an important difference between ZGNRs and poly-
acetylene. Let us consider the Su-Schrieffer-Heeger effect in
detail [47]. Consider finite-length polyacetylene in one of the
dimerized phases, see Fig. 17. The electron density is uniform
with occupation number ni = 1 at all sites i. Here two nearly
degenerate soliton end states exist (bonding and antibonding
states); one will be occupied and the other unoccupied. Dis-
order will spilt these states because their wave functions are
somewhat different. Then two possibilities are present. (a)
The boundary fractional charges will suffer quantum charge
fluctuations because the energy splitting is small (only a large
energy splitting will suppress quantum charge fluctuations,
see an insightful discussion by Girvin [17]). (b) Disorder will
most likely not couple the left and right ends equally. Hence
the boundary charge will not be exactly e/2. There is as yet
no conclusive experimental evidence for fractional charges in
polyacetylene (but spin-charge separation was observed).

Consider Kitaev’s toy model of one-dimensional p-wave
superconductivity, which has relevance to topological super-
conductors [48]. Particle-hole symmetry plus bulk edge cor-
respondence guarantees the presence of zero-energy modes.
It exhibits a charge neutral particle that is divided between
the two ends of the chain. These Majorana zero modes are
expected to display non-Abelian statistics [49]. Figure 18
displays such zero modes of a finite length chain. (This is a
well-known result and we show it here just for comparison
with polyacetylene and ZGNRs.)

Now let us discuss edge states of a ZGNR. The probability
density of the midgap states is fractionalized equally between

FIG. 17. (a) Finite-length dimer chain with unit cell containing
two carbon atoms connected by single bond. The intracell hopping
t ′ is smaller than the intercell hopping t . (b) Tight-binding energy
spectrum. Two nearly degenerate gap states exist. (c) Probability
density of a gap state as function of site index i. A peak is apparent
at the red (blue) site at the left (right) end. The probability densities
of the bonding and antibonding states are almost identical.

the left and right zigzag edges [9]. It is similar to fraction-
alization occurring at the end points of polyacetylene [15]
and Kitaev’s chain [46]. However, in interacting disordered
ZGNRs fractional charges reside on the zigzag edges that
form the side boundary of the ribbon, see Fig. 2. In addition,
the presence of a gap �s protects the fractional charges against
quantum charge fluctuations.

FIG. 18. Kitaev’s chain has two degenerate zero-energy states.
They can be combined to give one bonding and one antibonding
states, see Fig. 7. For each of these states the probability to find
an electron (hole) at site i = 1, . . . , 15 is |ui|2 (|vi|2). We have set
the hopping parameter equal to the value of the gap t = � and the
chemical potential μ = 0. A Majorana zero mode (half a real fermion
mode) at each end of the chain is displayed.
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