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Nonlinear phase-amplitude reduction of delay-induced oscillations
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Spontaneous oscillations induced by time delays are observed in many real-world systems. Phase reduction
theory for limit-cycle oscillators described by delay-differential equations (DDEs) has been developed to analyze
their synchronization properties, but it is applicable only when the perturbation applied to the oscillator is
sufficiently weak. In this study, we formulate a nonlinear phase-amplitude reduction theory for limit-cycle
oscillators described by DDEs on the basis of the Floquet theorem, which is applicable when the oscillator
is subjected to perturbations of moderate intensity. We propose a numerical method to evaluate the leading
Floquet eigenvalues, eigenfunctions, and adjoint eigenfunctions necessary for the reduction and derive a set
of low-dimensional nonlinear phase-amplitude equations approximately describing the oscillator dynamics. By
analyzing an analytically tractable oscillator model with a cubic nonlinearity, we show that the asymptotic
phase of the oscillator state in an infinite-dimensional state space can be approximately evaluated and nontrivial
bistability of the oscillation amplitude caused by moderately strong periodic perturbations can be predicted on
the basis of the derived phase-amplitude equations. We further analyze a model of gene-regulatory oscillator
and illustrate that the reduced equations can elucidate the mechanism of its complex dynamics under nonweak
perturbations, which may be relevant to real physiological phenomena such as circadian rhythm sleep disorders.

DOI: 10.1103/PhysRevResearch.2.033106

I. INTRODUCTION

Time-delayed feedback can break continuous time-
translational symmetry and lead to oscillatory behavior in
many physical, biological, social, and engineered systems
[1–8]. In biology, for example, ultradian oscillations in the
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hypothalamic-pituitary-adrenal (HPA) system are induced by
time-delayed synthesis of hormones in the adrenal cortex [9].
Also, somite segmentation in zebrafish is regulated by oscil-
latory dynamics induced by time delays in the synthesis of
proteins [10], and mammalian circadian rhythm is generated
by feedback regulations of clock genes in suprachiasmatic
nucleus (SCN) [11]. Such oscillatory dynamics in systems
with time delays can be described as stable limit-cycle orbits
of delay-differential equations (DDEs).

In many of such systems, each oscillatory unit, or os-
cillator, is not isolated but perturbed by external forcing
or by mutual coupling with other oscillators, and the state
of each oscillator may deviate from the unperturbed limit
cycle of an isolated oscillator when the perturbation is not
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sufficiently weak. Therefore, it is important to understand how
perturbations of moderate intensity can modulate the period,
amplitude, and other properties of delay-induced oscillations.

For example, in the case of zebrafish somite segmentation,
it is known that strong couplings between cells are necessary
for the spatiotemporal oscillatory dynamics of her1 (zebrafish
hairy-related gene1) expression [10]. In the case of circadian
clock genes, the oscillatory period in the free-running con-
dition is known to be slightly different from 24 h, but they
are entrained by the periodic external day-and-night lights
through retinal ganglion cells [12,13]. Strong light stimula-
tion can further induce large modulation in the activities of
the clock genes [14]. Since irregular dynamics of circadian
rhythms manifest themselves as diseases such as sleep disor-
ders [13,15–17], understanding of the dynamics of circadian
clock genes under strong perturbations may facilitate thera-
pies for sleep disorders.

The phase reduction theory is a standard mathematical
framework for characterizing response properties of weakly
perturbed limit-cycle oscillators and analyzing their synchro-
nization dynamics via dimensionality reduction [18–24]. Re-
cently, the phase reduction theory has been extended also
to DDEs exhibiting stable limit-cycle oscillations, which re-
quires nontrivial mathematical generalization because DDEs
are infinite-dimensional dynamical systems [25,26]. However,
the phase reduction has a strong limitation in that it is applica-
ble only when the oscillator state remains sufficiently close
to the unperturbed limit cycle. Specifically, when nonweak
perturbations are applied or relaxation time of the system
state to the limit cycle is not sufficiently small, the amplitude
degrees of freedom may no longer be enslaved by the phase,
leading to the breakdown of the lowest-order phase-only
description. In such cases, the nonlinear interaction of the
phase and amplitude may lead to nontrivial dynamics that
cannot be captured by the phase reduction.

To overcome this difficulty, several mathematical frame-
works have been proposed for oscillatory systems described
by ordinary differential equations (ODEs), such as higher
order phase-resetting curves [27], extended phase equations
[28], and higher order phase-amplitude equations [29]. Still,
for oscillatory dynamics of DDEs away from the limit cycle,
much remains unknown because of their infinite-dimensional
nature. Thus, a general framework for dimensionality re-
duction of limit-cycle oscillators described by DDEs that
can analyze the effect of moderately strong perturbations is
needed. Such a framework would shed light on oscillatory
dynamical systems in which nonlinearity, time delay, and
strong perturbations coexist.

In this study, our interest lies in the situation where the
phase and amplitude of DDEs interact significantly in a
nonlinear manner. We develop a nonlinear phase-amplitude
reduction theory for DDEs, which gives a general mathe-
matical framework for reducing DDEs describing limit-cycle
oscillators to low-dimensional ordinary differential equations
on the basis of the Floquet theory [30–32]. We also propose
a practical numerical method, which we call the extended
adjoint method, to evaluate the Floquet eigenvalues, eigen-
functions, and their adjoint functions, which are necessary
for the reduction. By using biorthogonality of the Floquet
eigenfunctions and their adjoints, we project the oscillator

state onto an eigenspace spanned by a few slowly decaying
Floquet eigenfunctions and derive a set of phase-amplitude
equations which takes into account nonlinear interactions
between the slowly decaying Floquet eigenmodes. In contrast
to the standard lowest-order phase reduction, the amplitude
component associated with the second Floquet eigenfunction
is included, which can play important roles when the relax-
ation of the system is slow or when the system is strongly
perturbed.

We confirm the validity of the theory using an analytically
tractable DDE with a cubic nonlinearity by showing that
the reduced phase-amplitude equations accurately predict the
amplitude of the phase-locked oscillations under a periodic
force, which exhibits nontrivial bistable response induced by
the nonweak amplitude effects. We then apply the theory to a
model of a gene-regulatory oscillator under moderately strong
forcing and analyze its synchronization dynamics. We show
that the reduced phase-amplitude equations can also predict
nontrivial bistable dynamics of the system, which is analogous
to a circadian disorder called advanced sleep-phase syndrome
(ASPS) [15–17].

II. THEORY

In this section, we derive a set of reduced nonlinear phase-
amplitude equations for limit-cycle oscillators described by
DDEs on the basis of the Floquet theory and propose a
practical numerical method to calculate the Floquet eigenval-
ues, eigenfunctions, and their adjoints that are necessary for
the reduction. We also derive approximate phase-amplitude
equations for the oscillators subjected to periodic external
forcing.

A. DDEs with a stable limit-cycle solution

We consider general delay-differential equations (DDEs)
that have a stable limit-cycle solution. Mathematical analysis
of such DDEs, for example, analyzing the synchronization
properties when they are periodically perturbed, is not easy
because they describe nonlinear infinite-dimensional dynam-
ical systems on Banach spaces. Our aim is to derive sim-
pler tractable equations by reducing them to low-dimensional
ODEs while preserving their essential quantitative properties
and to analyze synchronization dynamics of nonlinear oscilla-
tors described by such DDEs under moderately strong exter-
nal perturbations. In previous studies [25,26], phase reduction
methods for stable limit-cycle solutions of DDEs have been
developed, which are applicable when the perturbations given
to the system are sufficiently weak. In this study, we develop
a nonlinear phase-amplitude reduction theory for DDEs.

We consider a DDE for X (t ) ∈ RN , represented as a col-
umn vector, with a maximum delay time τ > 0. To construct
a solution of the DDE, we have to take into account the history
of X (t ) from t − τ to t . Thus, we introduce its history-function
representation, X (t )(σ ) ≡ X (t + σ ) (−τ � σ � 0) [30–32].
Here, X (t )(·) ∈ C0 and C0 = C([−τ, 0] → RN ) is a Banach
space of (column) vector-valued continuous functions map-
ping [−τ, 0] into RN , which is equipped with a norm ||x||C0 =
supθ∈[−τ,0] ||x(θ )||, where || · || is the usual Euclidean norm
on RN . This history function X (t ) represents the state of the
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dynamical system described by the DDE at time t , where the
state space of the system is given by the infinite-dimensional
Banach space C0.

Using the above notation, a DDE can generally be written
as

d

dt
X (t )(σ )

=
{

d
dσ

X (t )(σ ) (−τ � σ < 0),

N (X (t )(·)) + G(X (t )(·), t ) (σ = 0).
(1)

Here, the vector-valued functional N : C0 → RN represents
the system dynamics and G : C0 × R → RN denotes external
perturbation applied to the system that depends on the system
state X (t ). Both functionals are assumed to be sufficiently
smooth. This DDE can describe not only systems with discrete
delays but also systems with distributed delays [33]; see
Ref. [34] for the relation between nonlinear functionals and
their kernel representations, which are widely used for sys-
tems with distributed delays described by integrodifferential
equations.

We consider a situation in which the DDE (1) without
the external perturbation (G = 0) has a stable limit-cycle
solution X0(t ) whose period is T , i.e., X0(t + T ) = X0(t ),
and represent it as a history function X (t )

0 (·) ∈ C0 satisfying
X (t+T )

0 = X (t )
0 , where

X (t )
0 (σ ) ≡ X0(t + σ ) (−τ � σ � 0). (2)

In what follows, we also denote the limit cycle as X (φ)
0 , where

we use the phase φ (0 � φ < T ) in place of the time t to
parametrize system state on the limit cycle. The phase φ in-
creases from 0 to T , where the origin φ = 0 can be chosen as a
specific system state on the limit cycle. When the system state
evolves along the limit cycle without perturbation, the phase
φ increases with a constant frequency 1, i.e., φ = t (mod T ).
Similarly, we also denote T -periodic history functions, such
as the Floquet eigenfunctions, using the phase φ instead of t
when necessary.

The definition of the phase can further be extended to
the basin of attraction of the limit cycle by assigning the
same phase value φ to the set of system states {X (t )} that
asymptotically converge to the same system state as X (φ)

0
when the system evolves without perturbation [25,26], i.e.,
limt→∞ ‖X (t ) − X (φ+t )

0 ‖C0 = 0, yielding the notion of asymp-
totic phase �(X (t ) ) : C0 → [0, T ) that maps a system state
X (t ) in the basin to a phase value. The asymptotic phase �

satisfies

d

dt
�(X (t ) ) = 1 (3)

when the system state evolves in the basin of the limit cycle
without perturbation. The isosurfaces of �, called isochrons,
are not simply hyperplanes in general. For ordinary differen-
tial equations, the asymptotic phase has been used as a canon-
ical representation of rhythms of stable oscillatory dynam-
ics [18–21,35] and provides in-depth insights into strongly
perturbed oscillatory dynamics [24,27–29,36]. Recently, it
has also been defined for DDEs and other nonconventional
oscillatory systems [25,26].

We assume that the relaxation dynamics of the system
state to the limit cycle can be decomposed into a few slow
modes and remaining faster modes, which are well separated
in timescale from each other. In this case, a rectangular coor-
dinate frame moving along the periodic orbit, which was used
in Refs. [35,37,38], is not useful for reducing the dynamics
to low-dimensional ODEs, because fast and slow components
interact already at the lowest order in this coordinate frame.
It is also not easy to proceed with the asymptotic phase
and associated amplitudes, because they are generally given
by highly nonlinear functionals of the system state X (t ).
We therefore use a coordinate frame defined by the Floquet
eigenfunctions to decompose the system state as discussed
in Ref. [23] for ODEs. The space spanned by the Floquet
eigenfunctions with nonvanishing relaxation rates is tangent to
the isochron at each point on the limit cycle. For this purpose,
we need to calculate the Floquet eigenvalues, eigenfunctions,
and their adjoints of DDEs.

B. Floquet theory for DDEs

We first describe the Floquet theory for the DDE (1)
without the perturbation term, i.e., G = 0. We denote small
deviation of X (t ) from X0(t ) as Y (t ) = X (t ) − X0(t ), and
introduce its history-function representation Y (t )(·) ∈ C0 with
Y (t )(σ ) ≡ Y (t + σ ) (−τ � σ � 0) as

Y (t )(σ ) = X (t )(σ ) − X (t )
0 (σ ) (−τ � σ � 0). (4)

The linearized variational equation for Y (t ) is given by

d

dt
Y (t )(σ ) = L(t )(Y (t ))(σ ) (−τ � σ � 0), (5)

where L(t )(Y (t ) ) is a history representation of a linear func-
tional defined by

L(t )
(
Y (t )

)
(σ ) =

⎧⎨
⎩

d
dσ

Y (t )(σ ) (−τ � σ < 0),

∫ 0
−τ

dσ ′�̄(t )
(σ ′)Y (t )(σ ′) (σ = 0).

(6)

Here,

�̄(t )(σ ) ≡ δN (X (t )(·))
δX (t )(σ )

∣∣∣∣
X (t )=X (t )

0

(7)

is a functional differentiation of N with respect to X (t )

evaluated at the system state X (t ) = X (t )
0 on the limit cycle.

Note that Eq. (5) gives a periodically driven linear system
because X (t )

0 is T periodic. In what follows, we expand N in
a functional Taylor series in Y (t ) as

N (X (t )(·)) = N (X (t )
0 (·)) + L(t )

(
Y (t )

)
(0) + Fnl(Y (t )(·)), (8)

where L(t )(Y (t ) )(0) represents a linear functional of Y (t ) de-
fined in Eq. (6) with σ = 0 and Fnl(Y (t )(·)) represents the
remaining nonlinear functional of Y (t ), respectively, and both
of these functionals are evaluated at X (t ) = X (t )

0 .
As an example, let us consider a simple DDE,

d

dt
X (t ) = N (X (t ), X (t − τ )), (9)
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which is equivalent to

d

dt
X (t )(σ ) =

⎧⎨
⎩

d
dσ

X (t )(σ ) (−τ � σ < 0),

N (X (t )(0), X (t )(−τ )) (σ = 0),

(10)

in the history-function representation. By using the chain rule
for functional differentiation and representing the terms in N
as

X (t )(0) =
∫ 0

−τ

dσ ′δ(σ ′)X (t )(σ ′) (11)

and

X (t )(−τ ) =
∫ 0

−τ

dσ ′δ(σ ′ + τ )X (t )(σ ′) (12)

using Dirac’s δ function δ(·), we obtain

�̄(t )(σ ) = N1(t )δ(σ ) + N2(t )δ(σ + τ ), (13)

where N j (t ) ≡ ∂x jN (x1, x2) ( j = 1, 2) is evaluated at
(x1, x2) = (X (t )

0 (0), X (t )
0 (−τ )). The linearized dynamics for

the deviation Y (t ) can then be written as

L(t )(Y (t ) )(σ )

=
⎧⎨
⎩

d
dσ

Y (t )(σ ) (−τ � σ < 0),

N1(t )Y (t )(0) + N2(t )Y (t )(−τ ) (σ = 0).

(14)

Let us introduce a time-periodic linear operator L̂ of period
T , which acts on a complexified Banach space (C0)C [39, Sec.
III.7] as

(L̂Y (t ) )(σ ) ≡ − d

dt
Y (t )(σ ) + L(t )

(
Y (t )

)
(σ ) (−τ � σ � 0),

(15)

and rewrite Eq. (5) as (L̂Y (t ) )(σ ) = 0. Because Y (t ) obeys a
periodically driven linear system, by the Floquet theorem for
linear DDEs [30–32], the spectrum of L̂ is at most countable
and (

L̂q(t )
i

)
(σ ) = λiq

(t )
i (σ ) (−τ � σ � 0) (16)

is satisfied, where λi ∈ C is the ith Floquet eigenvalue and
q(t )

i ∈ (C0)C is the corresponding T -periodic Floquet eigen-
function (i = 0, 1, 2, ...). Here, the largest eigenvalue, which
is 0 and simple by the Floquet theorem, is denoted as λ0 = 0
and the other eigenvalues are arranged in descending order of
the real part.

We also introduce adjoint eigenfunctions with respect
to a bilinear form appropriate for DDEs [40]. Following
Refs. [30–32], we define a bilinear form of two functions,
A ∈ (C0)C and B ∈ (C0)∗C , as

〈B(t ), A(t ); t〉 ≡ [B(t )(0), A(t )(0)] −
∫ 0

−τ

dσ

∫ σ

0
dξ

× [B(t )(ξ − σ ), �̄(t+ξ−σ )(σ )A(t )(ξ )]. (17)

Here, (C0)∗C = C([0, τ ] → CN∗) is the dual space of (C0)C
with respect to the bilinear form, consisting of (row) vector-

valued functions that map the interval [0, τ ] to CN∗, and [·, ·]
denotes the Hermitian scalar product of V ∈ CN∗ and U ∈ CN

defined as [V,U ] = ∑N
k=1 VkUk , where Vk and Uk are vector

components of V and U , respectively. An adjoint operator L̂∗
of L̂ with respect to this bilinear form can then be derived as

(L̂∗Y (t )∗)(s) = d

dt
Y (t )∗(s) + L(t )∗(Y (t )∗)(s) (0 � s � τ ),

(18)

where

L(t )∗(Y (t )∗)(s)

=
⎧⎨
⎩

− d
dsY

(t )∗(s) (0 < s � τ ),

∫ τ

0 ds′Y (t )∗(s′)�̄(t+s′ )(−s′) (s = 0).
(19)

Here, Y ∗(t ) ∈ CN∗ is a row vector of N complex components
and Y (t )∗(s) ≡ Y ∗(t + s) (0 � s � τ ) ∈ (C0)∗C is its history-
function representation.

The adjoint eigenfunction q(t )∗
i ∈ (C0)∗C of q(t )

i , which is
also T periodic, satisfies(

L̂∗q(t )∗
i

)
(s) = λ̄iq

(t )∗
i (s) (0 � s � τ ), (20)

where λ̄i is the complex conjugate of λi. If λi �= λ j , q(t )
i is

orthogonal to q(t )∗
j with respect to the bilinear form Eq. (17),

and hence they can be normalized to satisfy the biorthogonal
relation 〈q(t )∗

i , q(t )
j ; t〉 = δi, j . The zero eigenfunction of the lin-

ear operator L̂ can be chosen as q(t )
0 (σ ) = dX0/dt |t+σ (−τ �

σ � 0), which can be confirmed by differentiating Eq. (1)
with respect to t at X (t ) = X (t )

0 on the periodic orbit [25].
Note that this definition specifies the normalization of q(t )

0 . For
the other eigenfunctions q(t )

i (i = 1, 2, ...), we normalize them
such that max0�t�T (q(t )

i (0)) = 1. We use this convention for
the normalization throughout this study. We note that the
zero eigenfunction of the linear operator L̂ corresponds to
the tangential component along the limit cycle, namely, the
phase direction. Moreover, the zero eigenfunction q(t )∗

0 of the
adjoint operator L̂∗ gives the phase sensitivity function of the
limit cycle, which characterizes linear response property of
the oscillator phase to weak perturbations [25,26]. Similarly,
the other eigenfunctions q(t )∗

i (i = 1, 2, ...) characterize linear
response properties of the amplitudes and called isostable
response curves for the case of ODEs [41].

The adjoint eigenfunctions can numerically be obtained
by an extension of the adjoint method for DDEs, which was
previously used to calculate the adjoint zero eigenfunction of
L̂ [25,26]. That is, we numerically integrate the linearized and
its adjoint equations while subtracting unnecessary functional
components by using the biorthogonality between the eigen-
functions and adjoint eigenfunctions. The main difference
from the adjoint method for q(t )∗

0 developed in the previous
studies is that we calculate the adjoint eigenfunctions also
for λi (i � 1). Therefore, during numerical integration, we
need to remove unnecessary functional components in the
directions of the lower-order eigenfunctions from 0th to (i −
1)-th, which grow faster than the ith component in order to
calculate the ith eigenfunction precisely. For i � 1, we also
need to renormalize the solutions of the equations by a factor
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eλit determined by the Floquet exponent in order to obtain the
correct eigenfunctions.

To numerically calculate the ith eigenfunction q(t )
i , we

integrate the linearized equation

d

dt
Y (t )(σ ) = L(t )(Y (t ) )(σ ) (−τ � σ � 0) (21)

forward in time. During the calculation, we subtract the
0th to (i − 1)-th eigencomponents from the numerical Y (t ),
which are unnecessary but arises due to numerical errors.
The Floquet eigenvalue λi is numerically evaluated from the
exponential decay rate of Y (t ). Then the eigenfunction q(t )

i (σ )
is obtained by compensating the exponential decay of Y (t )(σ )
as q(t )

i (σ ) = e−λit Y (t )(σ ) (−τ � σ � 0). See Sec. III.C and
Ref. [42] for further details. In a similar way, the ith adjoint
eigenfunction q(t )∗

i is calculated by numerically integrating the
adjoint linear equation

d

dt
Y (t )∗(s) = −L(t )∗(Y (t )∗)(s) (0 � s � τ ) (22)

backward in time while subtracting unnecessary eigencompo-
nents and then compensating the numerical result by a factor
e−λit . We call this procedure the extended adjoint method in
this study.

C. Nonlinear phase-amplitude equations

Our aim is to derive a set of low-dimensional dynamical
equations from the original DDE by projecting the system
state onto a moving coordinate frame spanned by a small
number of Floquet eigenfunctions. That is, we decompose the
deviation of the system state X (t ) from that on the limit cycle
X (t )

0 by using the eigenfunctions associated with the leading
M eigenvalues other than 0, which are assumed to be real and
simple for the sake of simplicity [43], as

X (t )(σ ) � X (φ)
0 (σ ) +

M∑
i=1

ρi(t )q(φ)
i (σ ), (−τ � σ � 0),

(23)

where X (φ)
0 is a system state on the limit cycle parametrized

by the phase φ ∈ [0, T ), q(φ)
i (i = 1, ..., M) is the Floquet

eigenfunction associated with λi and denoted as a function
of φ rather than t , and {ρi(t )} are real expansion coefficients
representing amplitudes of the Floquet eigenmodes. The sym-
bol � indicates that we approximate X (t )(σ ) by its projection
on the space spanned by the M eigenfunctions {q(φ)

1 , ..., q(φ)
M }.

We here use the term “amplitude” in a generalized sense,
allowing it to take both positive and negative values; it is
the component of the system state along the Floquet eigen-
function corresponding to the direction transversal to the limit
cycle and represents the deviation of the system state from the
limit cycle. Here, the phase value φ for a given state X (t ) is
determined in such a way that the state difference X (t ) − X (φ)

0

does not have a tangential functional component q(φ)
0 along

the limit cycle. Thus, we assume the following orthogonality
condition: 〈

q(φ)∗
0 , X (t ) − X (φ)

0 ; φ
〉 = 0, (24)

namely, the difference X (t ) − X (φ)
0 is on the hyperplane that is

tangent to the isochron on the limit cycle at X (φ)
0 . Note that

the phase defined in this way is different from the asymptotic
phase.

Because we use a linear coordinate frame spanned by the
Floquet eigenfunctions {q(φ)

i } (i = 1, ..., M), nonlinear inter-
actions between different eigenmodes generally arise. Specif-
ically, when the eigenvalue λ1 with the largest nonzero part is
close to 0, the perturbed system state does not go back to the
limit cycle quickly, and hence nonlinear interactions between
the phase eigenmode and the slowest decaying amplitude
eigenmode should be taken into account for better description
of the system.

For ordinary differential equations, such coupled nonlinear
phase-amplitude equations have been derived by transforming
the original equations around the limit cycle in several con-
texts [37,46]. Such transformation methods have also been
developed for DDEs in Refs. [47,48], though the treatments
of oscillatory dynamics in these studies are rather abstract.
Quantitative analysis of synchronization dynamics of DDEs
using the coordinate transform proposed therein have not been
very fruitful despite their potential advantages, mainly due to
the lack of practical methods for numerically evaluating the
Floquet eigenfunctions.

We hereafter restrict ourselves to the case in which λ1

takes a negative real value near zero and Re{λ2} 
 λ1 for
simplicity. To derive the phase and amplitude equations, we
retain only the slowest two modes associated with λ0 and λ1

and approximate X (t )(σ ) as

X (t )(σ ) � X (φ)
0 (σ ) + R(t )q(φ)

1 (σ ), (25)

where R(t ) = ρ1(t ) is the amplitude of the eigenmode corre-
sponding to λ1. The symbol � here indicates that we further
approximate X (t )(σ ) by its projection on a one-dimensional
space spanned by q(φ)

1 . We substitute this expression into
Eq. (1) and then project both sides of Eq. (1) onto the eigen-
functions q(φ)

0 and q(φ)
1 , respectively, by using biorthogonality

of the eigenfunctions and derive the equations for the phase φ

and the amplitude R.
As explained in Appendix A, the phase equation can be

derived as

dφ

dt
= 1 + q(φ)∗

0 (0)[Fnl(φ, R) + G(φ, R, t )]

1 + R
〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 , (26)

or, by rewriting the right-hand side,

dφ

dt
= 1 + q(φ)∗

0 (0)[Fnl(φ, R) + G(φ, R, t )]

− R
〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉
1 + R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉q(φ)∗
0 (0)[Fnl(φ, R)

+ G(φ, R, t )], (27)
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and the amplitude equation can similarly be derived as

dR

dt
= λ1R + q(φ)∗

1 (0)[Fnl(φ, R) + G(φ, R, t )]

− R
[〈

q(φ)∗
1 , L(φ)

(
q(φ)

1

)
; φ

〉 − λ1
]

1 + R
〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 q(φ)∗
0

(
0
)[

Fnl
(
φ, R

)
+ G

(
φ, R, t

)]
, (28)

where the nonlinear functional N in Eq. (8) is approximated
by an ordinary function of φ and R,

Fnl(φ, R) ≡ Fnl
(
Rq(φ)

1 (·)) = N
(
X (φ)

0 (·) + Rq(φ)
1 (·))

−N
(
X (φ)

0 (·)) − L(φ)
(
Rq(φ)

1

)
(0), (29)

and the external perturbation is also approximated as

G(φ, R, t ) ≡ G
(
X (φ)

0 (·) + Rq(φ)
1 (·), t

)
. (30)

In Eqs. (27) and (28), both the second and third terms on
the right-hand side depend on Fnl and G. Note that Fnl(φ, R)
includes only terms of O(R2) or higher, because the constant
terms and linear terms in R have already been subtracted in
Eq. (29).

Thus, by projecting the DDE onto the first two eigenfunc-
tions, a set of two-dimensional coupled ordinary differential
equations for the phase φ and amplitude R is obtained. In
order to consider the higher order effects of the amplitude
deviations, we have not expanded the third-order terms in
Eqs. (27) and (28) in a series of R and hence the dynamics
of φ and R are nonlinearly coupled at the second and higher
orders in R. This nonlinearity can be a source of intriguing
oscillatory dynamics [27–29,36]. We also note that the lowest-
order phase-amplitude equations (see Refs. [23,29,41] for the
case of ODEs)

dφ

dt
= 1 + q(φ)∗

0 (0)G(φ, R, t ),

dR

dt
= λ1R + q(φ)∗

1 (0)G(φ, R, t ), (31)

are obtained at the lowest-order approximation in R, where
Fnl(φ, R) is O(R2) and does not appear at the lowest order.

Finally, before proceeding, we note that there are also other
formulations of phase or phase-amplitude reduced equations
for analyzing higher order effects of perturbations on limit
cycles described by ODEs, such as nonpairwise phase interac-
tions [23], higher order phase reduction [49], nonlinear phase
coupling function [50], and higher order approximations of
coupling functions [41], which can capture more detailed as-
pects of synchronization than the lowest-order phase equation.

D. Averaged phase-amplitude equations

When the perturbation applied to the oscillator is a peri-
odic external force whose frequency is close to the natural
frequency of the oscillator, we may further derive simpler,
approximate phase-amplitude equations by averaging out the
fast oscillatory component as follows.

We assume that the perturbation G is purely external (i.e.,
independent of the system state and periodic in t with period

T ′ = T/r (frequency r), i.e.,

G(t + T/r) = G(t ). (32)

We also assume that the detuning between the natural fre-
quency of the oscillator and the periodic force is small and
denote it as �ω = 1 − r.

We introduce a slow phase variable ψ ≡ φ − rt . The equa-
tions for ψ and R can be written as

dψ

dt
= �ω + q(ψ+rt )∗

0 (0)[Fnl(ψ + rt, R) + G(t )]

1 + R
〈
q(ψ+rt )∗

0 , L(ψ+rt )
(
q(ψ+rt )

1

)
; ψ + rt

〉 ,
(33)

and
dR

dt
= λ1R + q(ψ+rt )∗

1 (0)[Fnl(ψ + rt, R) + G(ψ + rt, R, t )]

− R
[〈

q(ψ+rt )∗
1 , L(ψ+rt )

(
q(ψ+rt )

1

)
; ψ + rt

〉 − λ1
]

1 + R
〈
q(ψ+rt )∗

0 , L(ψ+rt )
(
q(ψ+rt )

1

)
; ψ + rt

〉
× q(ψ+rt )∗

0

(
0
)[

Fnl
(
ψ + rt, R

) + G
(
ψ + rt, R, t

)]
.

(34)

We also expand the nonlinear term Fnl in Taylor series of R up
to RN as

Fnl(ψ + rt, R) =
N∑

�=2

R�Fnl,�(ψ + rt ) + O(RN+1), (35)

where {Fnl,�} (� = 2, 3, ...) are expansion coefficients. Note
that the series for Fnl starts from O(R2).

Considering that ψ evolves only slowly while rt rapidly
increases, we approximate the terms with ψ + rt in Eqs. (33)
and (34) by their one-period average, for example, as

q(ψ+rt )∗
0 (0)Fnl,2(ψ + rt )

≈ 1

T ′

∫ T ′

0
q(ψ+rs)∗

0 (0)Fnl,2(ψ + rs)ds

= 1

T

∫ T

0
q(θ )∗

0 (0)Fnl,2(θ )dθ = a1 (36)

and

q(ψ+rt )∗
0 (0)G(t ) ≈ 1

T ′

∫ T ′

0
q(ψ+rs)∗

0 (0)G(s)ds

= 1

T

∫ T

0
q(θ )∗

0 (0)G

(
θ − ψ

r

)
dθ = g0(ψ ),

(37)

where ψ is kept constant during the integration. Expanding
Fnl(ψ + rt, R) up to O(R3) and averaging the coefficients, we
obtain approximate equations for ψ and R as

dψ

dt
= �ω + 1

1 + Ra0
[a2R2 + a3R3 + g0(ψ )] (38)

and
dR

dt
= λ1R + b2R2 + b3R3

− R(b0 − λ1)

1 + Ra0
[a2R2 + a3R3 + g0(ψ )] + g1(ψ ), (39)
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where the equations for the individual coefficients are given
in Appendix B. We check the validity of the above averaging
approximation numerically in the next section.

E. Evaluation of the phase and amplitude

Numerically, the values of the phase φ and amplitude R
can be evaluated from the system state X (t ) by the following
two-step procedure. First, we evaluate the phase of the state
X (t ) by choosing the phase value φ so that it satisfies the
orthogonality condition Eq. (24). Numerically, we find the
value φ̂ that minimizes the mean squared error,∣∣〈q(φ̂)∗

0 , X (t ) − X (φ̂)
0 ; φ̂

〉∣∣2
. (40)

There exists a neighborhood of the periodic orbit where
the phase and amplitude components defined by using the
Floquet eigenfunctions are uniquely determined [48, Lemma
1]. However, in general, there can exist multiple values of
φ̂ that satisfy Eq. (24) in the range 0 � φ̂ < T . To choose
the appropriate value from them, for each candidate of φ̂, we
evaluate the corresponding q1 component as

R̂ = 〈
q(φ̂)∗

1 , X (t ) − X (φ̂)
0 ; φ̂

〉
(41)

and adopt the value of φ̂ that has the smallest |R̂| as the
estimate of φ, and the smallest R̂ as the estimate of R.

F. Approximate evaluation of the asymptotic phase

The phase φ defined by the Floquet eigenfunction, which
we use in the present study for the phase-amplitude descrip-
tion, is different from the asymptotic phase �; the isosurface
of � is generally curved and tangent to the isophase plane
of φ at each point on the limit cycle. Since the asymptotic
phase � provides useful information on the nonlinear dy-
namical properties of the oscillator, it is convenient if we can
approximate � using φ and R. In this subsection, we propose
a method to approximately evaluate the asymptotic phase of
an unperturbed oscillator from φ and R defined by the Floquet
eigenfunctions, which is valid when R is sufficiently small.

When the perturbation is absent (G = 0), Eq. (26) for φ

can be written as

dφ

dt
= 1 + d (φ, R), (42)

where

d (φ, R) = q(φ)∗
0

(
0
)
Fnl

(
φ, R

)
1 + R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 . (43)

The asymptotic phase � of the system state X (t0 ) at time
t0 with phase φ0 and amplitude R0 can approximately be
obtained by integrating d (φ(s), R(s)) until the system state
goes back sufficiently close to the limit cycle as

�(X (t0 ) ) = φ0 +
∫ ∞

t0

d (φ(s), R(s))ds. (44)

When R is sufficiently small, we may ignore the higher
order terms in R in the equations for φ and R and assume
that φ increases constantly with frequency 1 and R decays

exponentially with rate λ1 as

φ = φ0 + t − t0, R(t ) = R0 exp (λ1(t − t0)), (45)

at the lowest order approximation. The asymptotic phase � of
the system state X (t0 ) can then be approximately evaluated as

�̂ = φ0 +
∫ ∞

t0

d (φ0 + s − t0, R0 exp [λ1(s − t0)])ds. (46)

In Secs. III E and IV, we use the above method to estimate
the asymptotic phase � of the oscillator and compare it with
direct numerical results.

III. ANALYTICALLY TRACTABLE MODEL

To demonstrate the validity of the proposed framework,
we first consider a limit-cycle oscillator described by a scalar
DDE with a cubic nonlinearity, for which approximate expres-
sions of the Floquet eigenfunctions and their adjoints can be
analytically derived, and analyze the effect of a periodic force
on the dynamics.

A. Model

The model is represented as

dx(t )

dt
= − x

(
t − π

2

)
+ εx(t )

[
1 − x(t )2 − x

(
t − π

2

)2
]

+ G(t ), (47)

where x(t ) ∈ R, ε = 0.05 is a small constant, and the external
periodic force is described by

G(t ) = G0 sin

(
2π

T
rt

)
, (48)

where G0 is the intensity of the periodic force and r is the ratio
of the natural frequency 2π/T of the limit cycle to that of the
external force. It is assumed that r is sufficiently close to 1.

When G = 0, this DDE has a limit cycle of period T = 2π

given by x0(t ) = sin t , or

x(t )
0 (σ ) = sin(t + σ ) (−τ � σ � 0) (49)

in the history-function representation, and its rate of attraction
to the limit cycle is determined by ε. When ε is small,
the relaxation time of the system state to the limit cycle is
considerably large as compared to the oscillation period as
shown in Figs. 1(a) and 1(b).

We denote the small deviation of the system state from the
limit cycle as y(t )(σ ) = x(t )(σ ) − x(t )

0 (σ ) (−τ � σ � 0). The
linear operator L̂ of this system is given by Eq. (6) with

�̄(t )(σ ) = δ(σ )

[
ε(1 − 3x0(t )2 − x0

(
t − π

2

)2
]

− δ
(
σ + π

2

)[
1 + 2εx0(t )x0

(
t − π

2

)]
, (50)

where δ is Dirac’s δ function. By retaining the first two leading
eigenvalues, the nonlinear phase-amplitude equations can be
derived as Eqs. (27) and (28).
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FIG. 1. (a) Time course of a scalar DDE with a cubic nonlinear-
ity, Eq. (47), showing a slow convergence of the system state to the
limit cycle. (b) Time course of the oscillator state projected onto the
(x, dx/dt ) plane. [(c), (d)] Extended adjoint method for calculating
q(t )

1 . (c) Peak heights of the time course of Y (t=nT )(0) measured at
each period vs t . The red squares are the data from which the Floquet
exponent λ1 is evaluated. (d) Time evolution of exp (−λ1t )Y (t )(0)
after compensating the exponential decay. (e) Eigenfunctions and
adjoint eigenfunctions associated with λ0 = 0 plotted as functions
of φ. The functions q(φ)

0 (0) and q(φ)∗
0 (0) are analytically derived,

while q̄(φ)
0 (0) and q̄(φ)∗

0 (0) are numerically obtained by the extended
adjoint method. (f) Eigenfunctions q(φ)

1 (0) and adjoint eigenfunctions
q(φ)∗

1 (0) associated with λ1.

B. Approximate analytical expressions of the eigenvalues and
eigenfunctions

We first derive approximate Floquet eigenvalues, eigen-
functions, and adjoint eigenfunctions of the model Eq. (47)
without the external force (G = 0) analytically. In what fol-
lows, we consider the case in which the relaxation of the
system state to the limit cycle is slow and assume that λ1 is
small and O(ε). First, the zero eigenfunction of L̂ is given
exactly as

q(t )
0 (σ ) = cos(t + σ ) (−τ � σ � 0) (51)

and the adjoint eigenfunction is

q(t )∗
0 (s) = 8

επ + 4
cos(t + s) (0 � s � τ ). (52)

To find the exponent λ1 with the second largest real part, we
introduce an ansatz

q(t )
1 (σ ) = Ceλ1σ [sin(t + σ ) + l cos(t + σ )] (−τ � σ � 0),

(53)

where l is a constant, and plug this into Eqs. (5) and (6).
We then obtain the approximate eigenvalue and the associated
eigenfunction up to O(ε) as

λ1 = − 8ε

π2 + 4
(54)

and

q(t )
1 (σ ) = 2√

4 + π2
e− 8εσ

π2+4

(
sin(t + σ ) − π

2
cos(t + σ )

)
(−τ � σ � 0),

(55)

respectively. Similarly, for the corresponding adjoint eigen-
function, we approximately obtain

q(t )∗
1 (s) = C∗

1 e
8εs

π2+4

(
sin(t + s) + π

2
cos(t + s)

)
(0 � s � τ ),

(56)

where the constant C∗
1 is determined from the normalization

condition 〈q(t )∗
1 , q(t )

1 ; t〉 = 1.

C. Numerical evaluation of the eigenvalues and eigenfunctions

To confirm the validity of the approximate analytical re-
sults for the Floquet eigenvalues, eigenfunctions, and adjoint
eigenfunctions obtained in the previous subsection, we numer-
ically evaluate these quantities by the extended adjoint method
and compare with the approximate analytical results.

First, as in the conventional adjoint method for DDEs
[25,26], we compute q(t )

0 (σ ) (−τ � σ � 0), which is simply
dX0/dt |t+σ , and then q(t )∗

0 (σ ) (−τ � σ � 0) by backwardly
integrating the adjoint linear equation. The adjoint
eigenfunction q(t )∗

0 is normalized such that 〈q(t )∗
0 , q(t )

0 ; t〉 = 1.
Next, we obtain the eigenfunction q(t )

1 with the largest
negative eigenvalue (λ1 < 0, λ1 > λi for i = 2, . . . , M) [43].
As an initial function, we take an arbitrary function Y (t=0)

ini

at t = 0 [51], subtract the q(t=0)
0 component from this initial

function as Y (t=0)(σ ) = Y (t=0)
ini (σ ) − 〈q(0)

0
∗,Y (0)

ini ; 0〉q(0)
0 (σ )

(−τ � σ � 0), where the second term represents the
projection of Y (t=0)

ini onto q(0)
0 , and numerically integrate

the linear equation (21) for Y (t ) from this initial condition to
t = T as explained before.

Similarly, in order to compute the eigenfunction q(t )∗
1 , we

initialize Y (t=0)∗(s) (0 � s � τ ) appropriately and numeri-
cally integrate Eq. (22) backward in time, subtracting the q(t )∗

0
component at every period, and compensate the exponential
decay in the numerical solution. The adjoint eigenfunction
q(t )∗

1 is normalized so that 〈q(t )∗
1 , q(t )

1 ; t〉 = 1.
Figure 1(c) shows the exponential decay of the peak

heights of Y (t=nT )(0), from which we obtain the Flo-
quet eigenvalue λ1. Figure 1(d) shows the time course of
e−λ1t Y (t )(0) that is used for numerical computation of eigen-
function q(φ)

1 . Figures 1(e) and (f) show the obtained pair of
Floquet eigenfunctions, where q(φ)

0 (0) and q(φ)∗
0 (0) are plotted

with respect to φ in Fig. 1(e), and q(φ)
1 (0) and q(φ)∗

1 (0) are
plotted with respect to φ in Fig. 1(f). We can confirm a
good agreement between the numerical results and approxi-
mate analytical results for the eigenfunctions. The numerical
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value of the largest negative exponent λ1 is approximately
evaluated as −0.030, which is also close to the theoretical
value −8ε/(π2 + 4) = −0.029.

D. Phase-amplitude equations

We now derive a set of nonlinear phase-amplitude equa-
tions from Eq. (47) with the periodic sinusoidal force. The
nonlinear term Fnl(φ, R) in Eq. (29) is explicitly given by

Fnl(φ, R)

= εRq(φ)
1 (0)

{
−(

x(φ)
0 (0) + Rq(φ)

1 (0)
)2 + (

x(φ)
0 (0)

)2

−
[
x(φ)

0

(
−π

2

)
+ Rq(φ)

1

(
−π

2

)]2
+

(
x(φ)

0

(
−π

2

))2
}

+ εx(φ)
0 (0)

{
−

[
Rq(φ)

1 (0)
]2

−
[
Rq(φ)

1

(
−π

2

)]2
}

(57)

and the reduced equations (27) and (28) for φ and R can be
derived using this equation.

Expanding the nonlinear term Fnl and applying the av-
eraging procedure, the approximate equations for the phase
difference ψ = φ − rt and R are given in the form of Eqs. (38)
and (39) with

g0(ψ ) = G0
1

T

∫ T

0
q(φ)∗

0 (0) sin

(
2π (φ − ψ )

T

)
dφ

= G0

(
g01 sin

2πψ

T
+ g02 cos

2πψ

T

)
(58)

and

g1(ψ ) =
∫ T

0
q(φ)∗

1 (0) sin

(
2π

(φ − ψ )

T

)
dφ

= G0

(
g11 sin

2πψ

T
+ g12 cos

2πψ

T

)
. (59)

Using numerically evaluated eigenvalues and eigenfunc-
tions, the coefficients in Eqs. (38) and (39) can be cal-
culated as λ1 = −0.029, a0 = 1.8418, a2 = 0.0436, a3 =
0.0415; b0 = 1.5353, b2 = −0.0053, b3 = 0.0212; and g01 =
−0.9622, g02 = 0, g11 = −0.8239, g12 = 0.5245. From these
coefficients, the equations for the phase difference ψ and the
amplitude R are obtained as

dψ

dt
= �ω + 1

1 + 1.8418R

(
0.0436R2 + 0.0415R3

−0.9622G0 sin
2πψ

T

)
,

dR

dt
= λ1R − 0.0053R2 + 0.0212R3

− 0.8239G0 sin
2πψ

T
+ 0.5245G0 cos

2πψ

T

− R(1.5353 − λ1)

1 + 1.8418R

(
0.0436R2 + 0.0415R3

− 0.9622G0 sin
2πψ

T

)
. (60)

FIG. 2. Evaluation of the asymptotic phase � from φ and R.
(a) Difference φ − � between φ and � plotted on the (φ, R) plane.
The data are obtained by direct numerical integration from ini-
tial system states given by x(t=0)(σ ) = x(φ)

0 (σ ) + Rq(φ)
1 (σ ). (b) Dif-

ference φ − �̂ between φ and �̂ estimated by using Eq. (61).
(c) Absolute difference |� − �̂| between the asymptotic phase �

measured directly by numerical integration and �̂ estimated by using
Eq. (61). (d) Asymptotic phase of the initial system states given by
x(t=0)(σ ) = sin σ + p sin(σ/2), which is not on the plane spanned
by the first two Floquet eigenfunctions. The black points indicate the
numerical results, the blue line indicates the phase φ evaluated using
the linearized isochrons, and the red line indicates the analytical
estimation of asymptotic phase �.

Thus, we have approximately reduced an infinite-dimensional
dynamical system described by a DDE to a set of ODEs for
the phase and amplitude.

E. Approximate evaluation of the asymptotic phase

In this subsection, we verify the validity of the approximate
expression for the asymptotic phase derived in Sec. II F by
evolving the present model from initial conditions far from the
limit cycle. From the reduced phase-amplitude equations and
Eq. (46), the asymptotic phase � for the present model can be
approximately evaluated from the phase φ and amplitude R as

�̂ = φ + [0.7553 + 0.0448 sin(2φ + 4.1499)

+ 0.0006 sin(4φ + 2.6902)]R2 (61)

up to O(R2). For a given system state x(t ), the phase φ and
amplitude R can be evaluated as explained in Sec. II E, and
the approximate asymptotic phase �̂ can then be obtained
by Eq. (61). We also directly evaluate the asymptotic phase
� for several initial conditions by numerically integrating
the system and measuring the time necessary for the system
state to converge sufficiently close to the limit cycle for
comparison.

As the first example, we try to estimate � when the initial
function is on the φ-R plane, that is, x(t=0)(σ ) = x(φ)

0 (σ ) +
Rq(φ)

1 (σ ) (−τ � σ � 0). Figure 2(a) shows � − φ for given
initial values of φ and R obtained by direct numerical inte-
gration of the DDE, and Fig. 2(b) shows analytical results of
�̂ − φ obtained from Eq. (61). Figure 2(c) shows the absolute
difference between � and its analytical estimation �̂. We can
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periodic input. (a) Dependence of maximum amplitude on G0 at
r = 1. (b) Dependence of maximum amplitude on r at G0 = 0.1.
Blue points show numerical results obtained by direct numerical
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dictions by the linear approximation, while black lines are numerical
solutions of the phase-amplitude equations (38) and (39).

confirm a good agreement between the approximate analytical
curve and direct numerical results for the whole range of φ

when |R| is not too large.
As the second example, we consider initial functions that

are not on the φ-R plane. We set the initial functions as
x(t=0)(σ ) = sin σ + p sin(σ/2) (−τ � σ � 0) with varying
values of p [52], and evaluated their asymptotic phase � by
direct numerical integration of the DDE. Figure 2(d) shows
the phase φ, the asymptotic phase � estimated by Eq. (61),
and the asymptotic phase � obtained by direct numerical
integration. We can confirm that the approximate analytical
estimate of the asymptotic phase given by Eq. (61) gives
reasonable agreement with the direct numerical results even
though the system state is considerably far from the φ-R plane.

F. Effect of a periodic force on the amplitude

In this subsection, we consider the effect of a periodic
external force of moderate intensity with small frequency
detuning. In particular, we focus on the average effect of the
periodic force on the amplitude R in the phase-locked state,
which cannot be analyzed without the amplitude equation.

Since g02 = 0 in Eq. (58), the ψ-nullcline on which ψ̇ = 0
is obtained from the averaged equation (38) as

ψ = T

2π
arcsin

(
−1 + Ra0

g01G0

[
�ω+ 1

1 + Ra0

(
a2R2 + a3R3

)])
(62)

when the argument of arcsin is in the range [−1, 1]. By
substituting Eq. (62) into Eq. (39), we can obtain the fixed
points of the averaged amplitude dynamics satisfying Ṙ =
Fs(R, G0,�ω) = 0, where Fs represents the right-hand side
of Eq. (39). The effect of the intensity of the periodic force
G0 and the detuning �ω on the stationary amplitude R of the
oscillation in the steady state can be evaluated from the partial
derivatives of Fs(R, G0,�ω) by the implicit function theorem.

Figure 3 shows the predicted amplitude of the oscillation.
The dependence of the amplitude on G0 at r = 1 is plotted
in Fig. 3(a), where the stationary amplitude obtained from
the averaged phase-amplitude equations (38) and (39) are
compared with the linear approximation of the stationary am-
plitude with a slope ∂R/∂G0 |R=0,G0=0,�ω=0= 18.2. Similarly,

FIG. 4. (a) Stable and unstable fixed points of the amplitude R
plotted against the frequency detuning r at G0 = 0.02. (b) Stable and
unstable fixed points at G0 = 0.1. A bistable region exists near r =
1.052. (c) Nullclines and stable fixed points on the (ψ , R) plane at
r = 1.052 and G0 = 0.1. The gray broken lines show the nullclines
satisfying ψ̇ = 0 and the gray solid line shows Ṙ = 0. The orange
and green dots show the stable fixed points (sp1 and sp2) and black
lines show the trajectories started from (−2, 0) and (−2.5, 0). Sp1 is
located at (−0.722, 0.992) and sp2 is at (−2.647, −0.064). (d) Time
course of Eq. (47) with G(x, t ) = 0.1 sin (1.052t ). The orange line
corresponds to the sp1, while the green line corresponds to the sp2 in
panel (c).

Fig. 3(b) shows the dependence of the amplitude on r at
G0 = 0.1, where the result of the phase-amplitude equations
are compared with linear approximation of the amplitude with
a slope ∂R/∂r |R=0.72,G0=0.1,�ω=0= 9.91. We can confirm that
the linear approximation appropriately predicts the changes
in the stationary amplitude of the delay-induced oscillator
subjected to a nonweak external periodic force when it is
slightly modulated. Moreover, the nonlinear phase-amplitude
equations can predict the amplitude more precisely than the
linear approximation in the given parameter range.

G. Bistable response of delay-induced oscillation
to a periodic force

In this subsection, we demonstrate that the present model
can exhibit a nontrivial bistable response to a periodic force
by a bifurcation analysis of Eqs. (38) and (39). Such a
phenomenon results from higher-order amplitude effects and
cannot be described by the phase-only equation nor the
lowest-order phase-amplitude equations. Using XPP-AUTO
[53], we numerically find stationary solutions in the range
R > −0.5 where the inverse 1/(1 + Ra0) exists (note that
a0 = 1.8418). Depending on the parameters G0 and r, we
observe quantitatively different behaviors of the system state
as shown in Fig. 4.

Figures 4(a) and 4(b) show the stable and unstable fixed
points on the (R, r) plane at two different values of G0.
The system is always monostable when G0 = 0.02, while a
bistable region where R can take two stable fixed points is
found around r = 1.052 when G0 = 0.1. Thus, it is expected

033106-10



NONLINEAR PHASE-AMPLITUDE REDUCTION OF … PHYSICAL REVIEW RESEARCH 2, 033106 (2020)

0 20 40
t

0

5

10

15

x(
t)

0 5 10 15
x(t)

-20

0

20

x'
(t

)

0 0.5T T
-10

-5
0
5

10

-0.1
-0.05
0
0.05
0.1

0 0.5T T
-1

0

1

2

-1
-0.5
0
0.5
1

q 0(
) (0

)

 q
0(

) *(
0)

q 1(
) (0

)

 q
1(

) *(
0)

)b()a(

(c) (d)

FIG. 5. (a) Time course of the gene-regulatory oscillator Eq. (63)
without perturbation (G = 0), showing a slow convergence to the
limit cycle. (b) Trajectory of the system state projected onto the
(x, dx/dt ) plane. (c) Floquet and adjoint eigenfunctions q(φ)

0 (0) and
q(φ)∗

0 (0) associated with λ0 = 0. (d) Floquet and adjoint eigenfunc-
tions q(φ)

1 (0) and q(φ)∗
1 (0) associated with λ1.

that DDE (47) with G(x, t ) = 0.1 sin (1.052t ) shows bistable
dynamics. Figure 4(c) shows the nullclines and stable fixed
points on the ψ-R plane at r = 1.052 and G0 = 0.1. The two
crosses show the stable fixed points at (−0.722, 0.992) and
(−2.647,−0.064), and the two black lines show the trajec-
tories started from (−2, 0) and (−2.5, 0). These predictions
from the reduced phase-amplitude equations can be confirmed
in Fig. 4(d), which shows the results of direct numerical
integration of DDE (47) with G(x, t ) = 0.1 sin (1.052t ). We
can clearly observe the bistable dynamics of the oscillator
caused by moderately strong periodic forcing.

IV. GENE-REGULATORY OSCILLATOR

In this section, as a more complex, biologically motivated
example of DDEs, we investigate a model of gene regulation
[3] under a periodic sinusoidal force given by

dx(t )

dt
= αC2

0

[C0 + x(t − τ )]2
− γ x(t )

R0 + x(t )
− βx(t ) + G(t ),

(63)

where x(t ) ∈ R is the state variable representing protein
concentration and α, β, γ ,C0, R0, and the delay time τ are
real parameters. The first term of the right-hand side repre-
sents protein synthesis with time delay for transcription and
translation, while the second and the third terms represent
degradation and dilution of the protein, respectively. Follow-
ing the previous research [3], we set β = 0.1, C0 = 10, and
τ = 1. The external periodic force is G(t ) = G0 sin ( 2π

T rt )
with intensity G0 and frequency mismatch r. We set the rate
constant of synthesis as α = 100, degradation as γ = 100,
and Michaelis constant of degradation as R0 = 10 so that the
system exhibits a slow convergence to a limit cycle orbit and
the effect of the amplitude dynamics can be clearly observed.

This system has a stable limit cycle with a period T =
2.46, which can be obtained only numerically. Figures 5
shows the system state x(t ) converging toward the limit-cycle
attractor; Fig. 5(a) plots the time course of x(t ) as a function
of t and Fig. 5(b) shows the system trajectory projected on the

(x, dx/dt ) plane. The time constant of the relaxation to the
limit cycle is much larger than the period of the oscillation as
can be seen from the figures.

For this model, the T -periodic linear operator L̂ is given by
Eq. (15) with

�̄(t )(σ ) = δ(σ )

{
−β − γ R0

[R0 + x0(t )]2

}

+ δ(σ + τ )

{ −2αC2
0

[C0 + x0(t − τ )]3

}
. (64)

Figures 5(c) and 5(d) show the first two eigenfunctions and
adjoint eigenfunctions of L̂ obtained by the extended adjoint
method [54], respectively. The second largest Floquet expo-
nent is λ1 = −0.0255 in this case. From these eigenfunctions,
the phase-amplitude equations (38) and (39) under the sinu-
soidal force can be obtained, where the coefficients are given
by a0 = 0.330, a2 = −5.33 × 10−4, a3 = 1.13 × 10−4, g01 =
−0.0296, g02 = −7.57 × 10−3, b0 = −2.48, b2 = −4.74 ×
10−3, b3 = 1.15 × 10−3, g11 = −0.176, and g12 = 0.282.

We first evaluate the validity of the approximate expres-
sion of the asymptotic phase in the absence of the external
force (G = 0). We take the initial condition as a constant
function, x(t=0)(σ ) = p, and evaluate the asymptotic phase
by Eq. (46) and by direct numerical integration of the DDE.
Figure 6(a) shows the phase φ, the asymptotic phase �

estimated by using Eq. (46), and the asymptotic phase �

evaluated by direct numerical integration of the DDE. It can
be seen that the approximate analytical result reproduces the
result of direct numerical measurement of the asymptotic
phase.

We next consider how the gene-regulatory oscillator be-
haves when it is subjected to a periodic external force. We
conduct bifurcation analysis for different values of G0 and r in
the same way as that for Eq. (47) using XPP-AUTO. When the
external periodic force is weak (G0 = 0.05) and the frequency
mismatch is small enough, the system is synchronized to
the periodic force with a single stable amplitude as shown
in Fig. 6(b); namely, the amplitude response is monostable.
When we apply a stronger force, G0 = 0.4, the region of syn-
chronization becomes wider. The amplitude of synchronized
oscillations is positive when the frequency mismatch is small,
whereas the amplitude is negative when the mismatch is large.
Moreover, there exists a bistable region around r = 0.99 as
shown in Fig. 6(c), where R can take either of two stable
values, similar to the previous simpler model with a cubic
nonlinearity described by Eq. (47).

Figure 6(d) shows two time courses of DDE (63) with
G0 = 0.4 and r = 0.9911 with different initial conditions. In
this case, a small-amplitude out-of-phase oscillation emerges
in addition to the large-amplitude oscillation that exists in a
wider range of r. Both types of oscillations are stable. In the
video in the Supplemental Material [55], the slow conver-
gences of the system state to either of these two oscillatory
states are visualized by projecting the system state onto the
(x, dx/dt ) plane. It is noteworthy that the frequency mismatch
required for this bistable dynamics is very small (less than
1%) in this model.
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FIG. 6. (a) Asymptotic phase values of initial functions
x(t=0)(σ ) ≡ p far from the limit cycle. The black points indicate
the asymptotic phase obtained by direct numerical integration, the
blue line indicates analytical estimation of the phase φ̂, and the
red line indicates analytical estimation of the asymptotic phase �̂.
(b) Stable and unstable fixed points plotted with respect to r at
G0 = 0.05. (c) Fixed points at G0 = 0.4. A bistable region exists
around r = 0.9911. (d) Time course of the DDE (63) with G0 = 0.4
and r = 0.9911. The red line shows the result for the initial condi-
tion x(t=0)(σ ) = X (φini=0.6T )

0 (σ ), while the blue shows the result for
x(t=0)(σ ) = X (φini=0.2T )

0 (σ ) (−τ � σ � 0). The green line represents
the external force.

V. SUMMARY

In this study, we have developed a general mathematical
framework for reducing delay-induced limit-cycle oscillators
described by DDEs into a set of nonlinear phase-amplitude
equations on the basis of the Floquet theory. By projecting
the original equation onto the reduced phase space spanned
by the first two Floquet eigenfunctions, we derived a set of
nonlinear phase-amplitude equations. We proposed an ex-
tended adjoint method for DDEs to numerically calculate the
Floquet eigenfunctions and their adjoint eigenfunctions. We
also developed a method to estimate the asymptotic phase of
the system states in a neighborhood of the limit cycle from
the phase and amplitude defined by the Floquet eigenfunc-
tions. The validity of the framework has been confirmed by
analyzing two models of delay-induced oscillations. In the
present framework, the derivation of the reduced equations
requires only the calculation of the first two Floquet and
adjoint eigenfunctions. Therefore, the reduction is practically
manageable even though the dynamical system to be reduced
is an infinite-dimensional DDE.

Despite the simplicity, the resulting reduced equations
convey richer information than simply linearizing the system
state around the periodic orbit. To illustrate this, we first
studied an analytically tractable DDE with a cubic nonlin-
earity. We derived an approximate expression of the nonlin-
ear asymptotic phase in terms of the phase and amplitude
and verified its validity using direct numerical integration
of the original system. Moreover, we revealed nontrivial
bistable synchronization of the system with a periodic external
forcing, where the amplitude can take two different stable
values depending on the initial condition, which cannot be
analyzed within the conventional phase-only or the lowest-
order phase-amplitude equations. We also analyzed a model
of gene-regulatory oscillator and showed that the reduced
phase-amplitude equations also enabled us to capture the
nontrivial bistable synchronization with a nonweak periodic
force.

The result for the gene-regulatory oscillator provides ana-
lytical insights into how the weak attraction of the limit cycle
and nonlinear interactions between the phase and amplitude
can alter the synchronization dynamics of gene regulatory
systems for circadian oscillations. For example, it is known
that, in the case of ASPS, out-of-phase (phase-advanced)
synchronized oscillation with the day-and-night lights is sta-
bilized in a similar manner to that shown in Fig. 6(d) of
the second model. It has also been reported that the free-
running period of circadian oscillation in ASPS patients is
shorter than 24 h [16], and the temporal therapy (phase
advance chronotherapy) can alter the out-of-phase synchro-
nization into in-phase synchronization [17]. Our theoretical
results imply that weak attraction of the limit cycle and
nonlinear interactions between the phase and amplitude could
induce small-amplitude oscillations and bistability of the out-
of phase and in-phase synchronized states. If this is the case,
the rate of attraction of the system state to the limit cycle, the
Floquet exponent λ1 in our study, could be used as another
effective index to understand circadian rhythm disorders in
addition to conventional indices like the free-running periods
and amplitudes of oscillation [11,14–16]. Thus, the phase-
amplitude analysis of delay-induced oscillations developed
in this study can shed new light on the complex biological
rhythms.

There are many other examples of natural and artificial
systems that exhibit complex oscillations due to the effect
of time delay [1–8]. For example, breathing of chronic heart
failure patients is a typical example of such natural systems
[1]. The present study would provide further insights into
nontrivial breathing dynamics. An example of artificial sys-
tems is the Mackey-Glass electrical circuit [56] that can be
modeled by a DDE, for which the present theory is read-
ily applicable to analyze the synchronization dynamics. The
present framework for reducing such time-delayed systems
to a set of nonlinear phase-amplitude equations can be use-
ful as a general analytical method to elucidate the origin
of complex synchronization properties under the effect of
nonweak perturbations or fluctuations. Further investigation
on the nonlinear phase-amplitude equations would provide
us with more insight into the synchronization dynamics in
time-delayed systems.
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APPENDIX A: DERIVATION OF THE NONLINEAR PHASE-AMPLITUDE EQUATIONS

In this section, details of the derivation of the phase-amplitude equations are presented. We first define a phase φ ∈ [0, T )
along the unperturbed limit cycle of Eq. (1) and represent the T -periodic eigenfunctions q(t )

j as functions of the phase φ(t ) as

q(φ)
j , where φ(t ) = t (mod T ). Because we assume that the functional components associated with the eigenvalues λi (i � 2)

decay quickly, we approximate the system state X (t ) as X (t )(σ ) � X (φ)
0 (σ ) + Rq(φ)

1 (σ ) (−τ � σ � 0), where X (φ)
0 is the system

state with phase φ on the limit cycle and R is the amplitude of the eigencomponent corresponding to λ1. Substitution of this
approximation into the functional differential equation (1) yields[

d

dφ
X (φ)

0 (σ ) + R
d

dφ
q(φ)

1 (σ )

]
φ̇ + q(φ)

1 (σ )Ṙ

=

⎧⎪⎨
⎪⎩

d
dσ

X (φ)
0 (σ ) + R d

dσ
q(φ)

1 (σ ), (−τ � σ < 0)

N (X (φ)
0 (·)) + R

∫ 0

−τ

dσ ′�̄(φ)(σ ′)q(φ)
1 (σ ′) + Fnl(φ, R) + G(φ, R, t ), (σ = 0),

(A1)

where

Fnl(φ, R) = N
(
X (φ)

0 (·) + Rq(φ)
1 (·)) − N

(
X (φ)

0 (·)) − R
∫ 0

−τ

dσ ′�̄(φ)(σ ′)q(φ)
1 (σ ′). (A2)

To derive the phase equation, we project both sides of Eq. (A1) onto the eigenfunction q(φ)
0 . Using the relations

d

dφ
X (φ)

0 (σ ) = q(φ)
0 (σ ), (A3)

d

dφ
q(φ)

1 (σ ) = −λ1q(φ)
1 (σ ) + L(φ)(q(φ)

1

)
(σ ), (A4)

and

N
(
X (φ)

0 (·)) = q(φ)
0 (0), (A5)

which follow from the definition q(φ)
0 (0) = dX0/dt |t , we obtain[

1 + R
〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉]
φ̇ = 1 + R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 + q(φ)∗
0

(
0
)[

Fnl
(
φ, R

) + G
(
φ, R, t

)]
. (A6)

The phase equation is thus given by

φ̇ = 1 + q(φ)∗
0 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)]
1 + R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 ,

= 1 + q(φ)∗
0 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)]
− R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉
1 + R

〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉q(φ)∗
0 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)]
. (A7)

Similarly, by projecting both sides of Eq. (A1) onto the eigenfunction q(θ )
1 , we obtain{

R
〈
q(φ)∗

1 ,
[ − λ1q(φ)

1 + L(φ)
(
q(φ)

1

)]
; φ

〉}
φ̇ + Ṙ = R

〈
q(φ)∗

1 , L(φ)
(
q(φ)

1

)
; φ

〉 + q(φ)∗
1 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)]
. (A8)

By substituting Eq. (A7) into Eq. (A8), the amplitude equation is derived as

Ṙ = λ1R + q(φ)∗
1 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)] − R
[〈

q(φ)∗
1 , L(φ)

(
q(φ)

1

)
; φ

〉 − λ1
]

1 + R
〈
q(φ)∗

0 , L(φ)
(
q(φ)

1

)
; φ

〉 q(φ)∗
0 (0)

[
Fnl

(
φ, R

) + G
(
φ, R, t

)]
. (A9)
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APPENDIX B: COEFFICIENTS OF THE PHASE-AMPLITUDE EQUATIONS

The expressions for the individual expansion coefficients in the phase and amplitude equations (38) and (39) are as follows:

a0 = 1

T

∫ T

0

〈
q(θ )∗

0 , L(θ )
(

q(θ )
1

)
; θ

〉
dθ, (B1)

a2 = 1

T

∫ T

0
q(θ )∗

0 (0)Fnl,2(θ )dθ, (B2)

a3 = 1

T

∫ T

0
q(θ )∗

0 (0)Fnl,3(θ )dθ, (B3)

g0(ψ ) = 1

T

∫ T

0
q(θ )∗

0 (0)G

(
θ − ψ

r

)
dθ, (B4)

b0 = 1

T

∫ T

0

〈
q(θ )∗

1 , L(θ )
(

q(θ )
1

)
; θ

〉
dθ, (B5)

b2 = 1

T

∫ T

0
q(θ )∗

1 (0)Fnl,2(θ )dθ, (B6)

b3 = 1

T

∫ T

0
q(θ )∗

1 (0)Fnl,3(θ )dθ, (B7)

and

g1(ψ ) = 1

T

∫ T

0
q(θ )∗

1 (0)G

(
θ − ψ

r

)
dθ. (B8)
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