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Long-lasting desynchronization by decoupling stimulation
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Several brain disorders are characterized by abnormally strong synchronization of neuronal activity. In
Parkinson’s patients, permanent high-frequency deep brain stimulation is used to suppress symptoms. To
specifically counteract synchronized neuronal activity with a substantially reduced amount of stimulation current,
theory-based desynchronizing stimulation techniques were developed, e.g., coordinated reset stimulation.
Desynchronizing stimulation may shift adaptive networks from attractors with strong synchronization and strong
synaptic coupling to attractors with weak synchronization and weak coupling. This is to cause stimulation effects
that persist after cessation of stimulation. Corresponding preclinical and clinical studies reported long-lasting
desynchronization and related symptom relief. However, desynchronizing stimulation requires parameters
to be adapted to characteristics of the synchronized neuronal activity. Furthermore, desynchronization does
not guarantee long-lasting change of network activity. We here present a qualitatively different approach
to induce long-lasting, sustained changes of neuronal network dynamics: decoupling stimulation. Instead of
primarily desynchronizing neuronal activity, decoupling stimulation employs synaptic plasticity mechanisms to
specifically decouple neuronal networks. In this way, neuronal networks get robustly shifted to attractors with
desynchronized neuronal activity. We present a theoretical framework that explains how neuronal responses to
single stimuli as well as to spatiotemporally correlated stimulus sequences impact on network connectivity.
This provides a theoretical base for designing effectively decoupling stimulation protocols. To overcome
limitations of primarily desynchronizing stimulation, we present a random reset stimulation protocol, which
uses spatiotemporal stimulus randomization to effectively decouple neurons. Theoretical predictions of random
reset-induced decoupling as opposed to desynchronization-induced decoupling achieved by coordinated reset
stimulation are compared to simulations of networks of integrate-and-fire neurons with spike-timing-dependent
plasticity. Decoupling and related long-lasting desynchronization effects achieved by random reset stimulation
are more robust with respect to parameter changes than those for coordinated reset stimulation. For both random
reset and coordinated reset stimulation, simulation results and theoretically predicted decoupling rates show
good quantitative agreement for sufficiently strong stimulation amplitudes. Intriguingly, single stimulus-related
mechanisms may have a stronger decoupling impact than stimulus sequence-related mechanisms. We discuss
scope and limitations of our decoupling approach for different types of synaptic plasticity and its application to

deep brain stimulation.
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I. INTRODUCTION

Synchronization processes abound in various fields of the
natural sciences [1]. Prominent examples include the syn-
chronous flashing of fireflies, the synchronization of circadian
rhythms with the daylight cycle, and the synchronized action
of heart cells [1]. In many systems synchrony of rhythmic
activity is critical for optimum functioning. In other systems,
however, abnormally strong synchrony is associated with
impaired function. For instance, in the brain pathological
synchronization of neuronal activity is related to several brain
disorders, such as Parkinson’s disease [2] and epilepsy [3].
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Experimentally observed synchronization phenomena mo-
tivated theoretical studies on coupled oscillators and led to a
deep theoretical understanding of synchronization processes
[4-6]. The state of an oscillator is typically described by its
phase on a limit cycle. Networks of such phase oscillators
have been used to study synchronization of populations of
active elements, e.g., metronomes, heart cells, or neurons
[4-11].

Possible applications in biology and medicine led to exten-
sive research on stimulation techniques that allow for actively
synchronizing or desynchronizing the collective dynamics of
coupled oscillators. Early studies were devoted to inducing
temporary desynchronization by delivering a single stimulus
pulse of moderate amplitude at a vulnerable phase of the
collective rhythm [12-14]. Repetitive or demand-controlled
stimulus delivery can counteract pronounced synchroniza-
tion. Stimulation-induced desynchronization has been demon-
strated computationally [14], in experiments on coupled elec-
trochemical oscillators [14,15], and in patients with essential
tremor stimulated through implanted electrodes [16]. Stimuli
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with sufficiently high amplitude can cause a phase reset,
so that the phases of simultaneously stimulated oscillators
align regardless of their individual phases before stimulus
administration [13,14]. Thus, a phase resetting stimulus pro-
vides control over the oscillators’ phases and can be used
to restart a network of oscillators independently of its initial
dynamic state. A second, weaker pulse following a phase-
resetting pulse may desynchronize a neuronal network by
hitting it in a vulnerable state [17]. Periodic stimulation may
also cause desynchronization. The effect of periodic stimu-
lation on a population of synchronized oscillators depends
on the stimulation frequency. While synchronous oscillations
become phase locked to the stimulation for certain stimulation
frequencies, other frequencies desynchronize the oscillators.
This effect is known as chaotic desynchronization [18,19].
Suitable frequencies were predicted from estimated phase
response curves of synchronous oscillations. Furthermore,
real time estimates of phase response curves can be used to
time stimulus delivery such that phase differences between
individual oscillators grow. A corresponding close-loop setup
for invasive deep brain stimulation was suggested in Ref. [20].
In contrast, coordinated reset (CR) stimulation causes desyn-
chronization without phase-dependent stimulus delivery and
without synchronizing stimuli [21]. During CR stimulation,
phase resetting stimuli are administered in a coordinated way
to different subpopulations of oscillators. Appropriate time
shifts between stimuli induce phase shifts between rhythmi-
cally active subpopulations and break the dominant rhythm
of synchronized oscillators [21]. Other desynchronizing stim-
ulation methods use linear and nonlinear delayed feedback
as smooth stimuli or envelop of pulse trains, delivered either
permanently or on demand [22-27], or specifically target
vulnerable nodes and perturb their dynamics such that they
destabilize and finally break the global synchronous rhythm
[28]. Theoretical studies on stimulation by means of a com-
mon white Gaussian noise input, on the other hand, showed
that such input can either synchronize or desynchronize a
population of oscillators [29].

All those studies were devoted to networks of oscillators
with fixed coupling strengths. However, in various systems
adaptive coupling mechanisms allow for a reshaping of net-
work connectivity in response to appropriate stimuli or envi-
ronmental changes [30,31]. Networks with adaptive coupling
strengths can be found in different scientific fields and include
transport networks, wireless communication networks, social
networks or neuronal networks. Often reshaping of network
connectivity is realized by local rules that alter weights of
individual connections according to the local dynamics [32].
For instance, in the tubular network formed by the slime mold
Physarum polycephalum the thickness of links is regulated
according to the flow through the network [33], or in wireless
communication networks where paths from initial sender to
final receiver have to be established by self-organization of
nodes in a way that balances the needs for network connec-
tivity, robustness against perturbations and data-traffic per-
formance [34]. In the nervous system, a prominent adap-
tive coupling mechanism is spike-timing-dependent plasticity
(STDP). It modifies synaptic coupling strengths according
to the relative timing of pre- and postsynaptic discharges,
or spikes [35-38]. In several brain regions STDP causes a

strengthening of excitatory synaptic connections if the post-
synaptic spike follows shortly after the presynaptic one and
a weakening in the opposite case. Network adaptation due to
STDP has been found to stabilize activity patterns of neuronal
networks [39] and is believed to play a crucial role in memory
formation and maintenance [40]. In general, adaptive connec-
tivity may increase the self-organizational complexity and can
lead to coexisting states with distinct collective dynamics. In
adaptive networks of oscillators, these include synchronized,
desynchronized and cluster states [41-48].

Of particular interest is the response of plastic networks to
external stimuli. In neuronal networks with STDP, stimulation
of subpopulations may lead to the formation of strongly con-
nected neuronal clusters encoding information about earlier
stimuli [40,49]. Other, studies revealed that responses of adap-
tive networks to external stimuli may be complex and even
counterintuitive. For instance, uncorrelated white Gaussian
noise stimulation, a perfect means for desynchronization in
networks with fixed coupling strength, may strengthen synap-
tic connections in neuronal networks with STDP, thereby
supporting synchrony [50]. In contrast, as shown computa-
tionally, desynchronization by CR stimulation of such net-
works may result in a desynchronization-induced synaptic
decoupling [51]. In multistable networks, desynchronization-
induced decoupling may drive the synchronized network into
the basin of attraction of stable desynchronized states. This
causes long-lasting desynchronization, which persists after
cessation of stimulation [51]. Multistable neuronal networks
have been used to model disease-related qualitative changes
of neuronal activity. Parkinson’s disease, for instance, relates
to excessive neuronal synchrony in the subthalamic nucleus
(STN) [2]. Corresponding brain regions have therefore been
described as a multistable neuronal network in which a
pathological state with synchronized activity coexists with a
physiological state with desynchronized activity [30,51,52].
This led to the hypothesis that appropriate stimulation may
induce long-lasting therapeutic effects, by driving the system
into the attractor of a physiological state [51]. Long-lasting,
cumulative desynchronization as well as therapeutic effects of
CR stimulation were demonstrated in animal experiments as
well as clinical proof-of-concept studies [53-56].

However, desynchronizing stimulation is an indirect means
which does not necessarily lead to decoupling [52]. Further-
more, effective desynchronization requires stimulation param-
eters to be adapted to characteristics of the collective synchro-
nized rhythm, especially its dominant frequency [22,52,57].
The latter requirement may further complicate matters if
there is not just one dominant frequency as, for instance, in
Parkinson’s disease and other brain disorders [58,59].

What might be an alternative to desynchronizing stim-
ulation? Previous work on CR stimulation has shown that
spatiotemporal stimulus patterns may not only desynchronize
neurons, but also reshape network connectivity and thereby
allow for long-lasting therapeutic effects [51,53-56]. As stim-
ulation electrodes improve, more complex spatiotemporal
stimulus patterns can be delivered to target brain regions.
For instance, segmented multisite electrodes enable to tar-
get distinct neuronal subpopulations of the stimulated brain
region using directional steering [60,61]. Appropriately de-
signed spatiotemporal stimulus patterns may be able to induce
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long-lasting therapeutic effects during brain stimulation
and overcome limitations of primarily desynchronizing
stimulation.

We present a stimulation approach that directly weakens or
strengthens the adaptive connections. To this end, we deliver
spatiotemporal patterns of phase-resetting stimuli to generate
activity patterns that trigger a desired reshaping of network
connectivity. In the first part of the paper, we present a theo-
retical framework, Sec. III, that relates reshaping of network
connectivity to the response characteristics of neurons to a sin-
gle stimulus and spatiotemporal correlations in the sequence
of applied stimuli, Sec. IV. Our approach is quite general and
broadly applicable in that it allows for various modifications
of network structure, including strengthening or weakening
of synaptic connections between individual neurons or certain
groups of neurons, Sec. VI. However, we here emphasize the
decoupling aspect because of its significance to neuroscience
and neurology. Based on our theoretical results, we design a
random reset (RR) protocol in Sec. V A. Delivering stimuli at
random times to random locations leads to parameter-robust
decoupling in networks with stable desynchronized states. We
compare theoretical predictions on decoupling by RR and CR
stimulation for different types of STDP in Sec. VII. Finally,
we perform simulations for networks of leaky integrate-and-
fire neurons with STDP and compare simulation results with
our theoretical predictions, Sec. VIII. Our results provide a
novel theoretical framework, e.g., for designing deep brain
stimulation protocols for preclinical and clinical use.

II. SPIKE-TIMING-DEPENDENT PLASTICITY

We consider network adaptation as a result of STDP. In
the main text, we focus on canonical Hebbian STDP [36,38],
which was used in previous studies on desynchronization
by CR stimulation [51,52]. Other forms of STDP, such as
symmetric Hebbian and anti-Hebbian STDP, will be discussed
in the Appendix. Canonical Hebbian STDP reinforces causual
relations ships between post- and presynaptic spiking activity.
It is realized by updating the weights of individual synaptic
connections w;_,; when spikes of the presynaptic neuron i
or postsynaptic neuron j arrive at the synapse. The update is
given by the STDP function [63]:
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W (t) depends on the time lag t = fpoq — tpre between latest
spike arrival times of post- and presynaptic spikes. Here we
consider only axonal delay #; as those are typically much
longer than dendritic ones. Thus, a presynaptic spike at time #;
arrives at time e = t; + t4, while postsynaptic spikes arrive
instantaneously, see schematics in Figs. 1(a) and 1(c). The
parameter § scales the update of individual synaptic weights
per spike. The STDP decay time 7 is usually in the range of
tens of milliseconds [36]. Tz scales the asymmetry in STDP
decay times. S > 0 scales the ratio of overall depression
fi’oo dt W(t) < 0 to potentiation [;~ dt W(r) > 0. STDP can
be classified as depression dominated (8 > 1), potentiation
dominated (8 < 1), or balanced (8 = 1).
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FIG. 1. Illustration of stimulation-induced weight dynamics.
(a) Schematic of spike trains of neurons i and j connected by a
synapse with synaptic weight w,_, ;. Presynaptic spikes arrive after
a delay time #, at the synapse (dashed). (b) Example of a neuronal
network embedding neurons i and j and separate stimulation of
four subpopulations of equal size, as optimally used for CR stimula-
tion. Neuronal subpopulations are labeled as P* with, k =0, 1,2, 3
(colored regions). (c) Schematic of weight dynamics resulting from
spike trains shown in panel (a) after applying the STDP function,
Eq. (1). Weights of ingoing synapses are updated at spike times of
the postsynaptic neuron while outgoing weights are updated at the
arrival times of the presynaptic spikes at the synapse [62]. Time
lags fyost — tyre considered for weight updates are shown by solid
(ingoing) and dashed (outgoing) red bars, respectively. (d) One
possible realization of a stimulation sequence S causing spiking
responses of neurons i and j shown in panel (a). Stimuli are delivered
to the four subpopulations (colors) shown in (b). The stimulation
sequence illustrated in (d) is generated using the CR stimulation
protocol described in Sec. V B.

III. THEORETICAL DESCRIPTION OF
STIMULATION-INDUCED SYNAPTIC
WEIGHT DYNAMICS

We analyze the weight dynamics resulting from the de-
livery of spatiotemporal sequences of stimuli to a neuronal
network with STDP. To this end, we consider sequences of
charge-balanced pulsatile stimuli delivered to neuronal sub-
populations. In neuroscience and medicine electrical stimuli
are typically charge-balanced to avoid tissue damage [64].
We characterize pulsatile stimulation protocols by means of
a stimulation sequence S. Formally, S is a sequence of pairs
including a stimulation time s; and a location 7y, i.e.,

S = {(s0, Po), (51, P1), ... }. @)

Here the index k counts individual stimuli. P specifies which
neuronal subpopulation receives the stimulus that is delivered
at time s,. We will consider P, as the set of neurons that
receive the stimulus. By assuming that all neurons in Py
receive the same stimulus, we neglect the influence of the
distance between the neuron and the stimulation contact.
One possible stimulation sequence is illustrated in Figs. 1(b)
and 1(d).

To study stimulation-induced reshaping of network con-
nectivity, we first consider a single synaptic weight w;_,;
between presynaptic neuron i and postsynaptic neuron j.
Spiking of either neuron is characterized by their spike trains
x(t)=Y, 8@ —tl), with [ =i, j. The sum runs over all
spike times ¢! of the neuron. §(¢) is the Dirac delta distribution.
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When a phase-resetting stimulus is delivered to neuron / at
time s; the neuron is assumed to fire a single spike in direct
response to that stimulus. We denote the timing of that spike
by #'. As the neuronal response is in general stochastic, we
introduce the distribution of spike response times A; (s, . It
characterizes the probability distribution of spike times ¢/ of
neuron / in response to the stimulus delivered at time s;. A
phase reset is characterized by the fact that the distribution of
spike response times does not depend on the precise timing
of the stimulus in relation to the neuron’s dynamical state,
ie., A(sg,t') = A(t! — ;). In the present paper, we further
restrict ourselves to the case where the distribution of spike
response times is sufficiently homogeneous among the neu-
rons, i.e., A (£ — sp) = At — 5p).

We consider the case where neurons mainly spike in re-
sponse to stimulus administration. This case will be referred to
as stimulation-controlled spiking in the following. Formally,
this requires that stimuli are delivered faster than the neurons
intrinsic spiking frequency, i.e., 7;(Sk)s < 1, and that the
spiking response occurs before the next stimulus is received,
i.e., A; decays fast compared to interstimulus intervals. Here
r; is the /th neuron’s mean firing rate, i.e., r; = m, in the
absence of stimulation. X refers to time averaging and (x)s
to averaging over the sequence S. For stimulation-controlled
spiking, we can approximate the stimulated neurons’ spike
trains as

X))~ Y 8t — (s + Aol 3)

k,lE’Pk

Ay = t,i — s¢ is the time lag between stimulus delivery and
evoked spiking response of neuron /. Ay is distributed accord-
ing to the distribution of spike response times A(Ay).

Next, we consider the mean rate of weight change J;;,
which is given by [62]

wis it +T)— wi (1)

$_j(t, T): = T

Z%Z

tj,t;espike pairs

Wt — @t +ta)]. 4)

Here T is the length of a time window starting at # and the sum
runs over all pairs of post- and presynaptic spike times to be
considered for weight updates in that time window. Note that
the ensemble of considered spike pairs depends on the STDP
scheme [65]. Using Eq. (3) for pre- and postsynaptic neurons
in Eq. (4) enables us to calculate J;; for a given stimulation
sequence S.

The dynamics of a synaptic weight w;_, ; resulting from
stimulation with a certain stimulation protocol can be quan-
tified by the expectation value (7;;(¢, T)) which can be ob-
tained by ensemble averaging over all possible realizations
of stimulation sequences S for the respective protocol. For
stationary stimulation protocols, where the spatiotemporal
correlations in the sequence S do not change over time, that
expectation value is independent of time ¢, i.e., (J;;(t, T)) —
(Ji;(T)). Furthermore, it saturates as a function of T, i.e.,
(Ji;(T)) — (jiﬁo) for time windows that are long enough
to capture all temporal characteristics of the stimulation

protocol. From Eq. (4), we find

1
W)= [N+ 1w, )
Here N;;(t) is the average number of time lags 7, between
post- and presynaptic spike times, per unit time that contribute
to weight changes.

IV. STIMULUS- AND SEQUENCE-INDUCED RESHAPING
OF NETWORK CONNECTIVITY

Analyzing Eq. (5), we find two fundamental mechanisms
of stimulation-induced reshaping of network connectivity:
stimulus-induced reshaping and sequence-induced reshaping.
These two mechanisms result from two distinct contributions
to time lags ¢ between post- and presynaptic spikes. The first
one results from the stochastic responses of the neurons to
individual stimuli and will be denoted as A. It is quantified by
the shape of the distribution of spike response times A. The
second one results from interstimulus intervals between stim-
uli delivered to the pre- and postsynaptic neuron, respectively.
The latter will be denoted as S. Using r = S + A, we find

Nij(t) = /dA A(A)/dS Dij(S|A)(t — 8§ — A)

1 1
x [@(9(;[, —S—A)+ <S—>j®(s+ A —td)},

(6)

where A(A) = [di'A(t")M(t' + A) is the distribution of time
lags if post- and presynaptic neurons spike in response to
the same stimulus. p;;(S|A) is the probability distribution
that neurons i and j receive stimuli with an interstimulus
interval S and the time lag between the resulting pair of spikes
contributes to the weight change in Eq. (5) for a given A. (S);
refers to the mean time interval between subsequent stimuli
that arrive at neuron /. From Egs. (5) and (6), we can infer the
contributions of stimulus- and sequence-induced reshaping to
the synaptic weight dynamics.

Stimulus-induced reshaping is represented by the outer
integral in Eq. (6). The latter runs over all possible realizations
of time lags A resulting from the stochastic spiking responses
of post- and presynaptic neurons to a single stimulus. The
distribution of those time lags is given by A(A) and does not
depend on the realization of interstimulus intervals. Therefore,
reshaping of network connectivity due to stimulus-induced
reshaping is solely controlled by the shape of A. The latter
may be manipulated by adjusting stimulus parameters, e.g.,
the stimulus wave form or amplitude.

The contribution of sequence-induced reshaping to the
synaptic weight dynamics is represented by the inner integral
in Eq. (6). The key quantity characterizing sequence-induced
reshaping is p;;(S|A). It captures two aspects: (i) the dis-
tribution of interstimulus intervals between stimuli delivered
to neuron j and i, respectively, and (ii) whether time lags
resulting from the triggered spiking responses contribute to
weight updates. The former aspect characterizes spatiotem-
poral correlations in the stimulation sequence S. The latter
aspect characterizes the considered STDP scheme. In the
nearest neighbor scheme considered throughout the paper,
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FIG. 2. Stimulus-induced reshaping during slow stimulation.
(a) Synaptic transmission delay #, shifts distribution of time lags
A(z) relative to the STDP function W(z¢), Eq. (7). (b) Estimated
average weight change per spike (7;7°)"™ / f3io" in units of § (contour
lines) for Gaussian approximation, Eq. (8), for simultaneous slow
stimulation of pre- and postsynaptic neurons, Eq. (7). Results are
shown as function of the width of the Gaussian distribution o;
relative to the synaptic delay 7, and the asymmetry in STDP decay
times tg. Gray horizontal line marks the case of symmetric STDP
decay times. Parameters: 8 = 1, i.e., balanced overall depression and
potentiation, and #; = 3 ms (a): Solid line shows STDP function for
g = 1, 7, = 10 ms and dashed line for 7z = 4. (b) 7, = 10 ms.

postsynaptic spikes are paired with the latest presynaptic spike
arrival and vice versa. Another choice may be an all-to-all
scheme in which time lags between all post- and presynaptic
spikes contribute to weight updates, see Discussion. Next, we
consider stimulus and sequence-induced reshaping for two
special cases.

In the first case, we assume that pre- and postsynaptic
neurons are stimulated simultaneously and stimulation is
slow compared to the STDP decay times 74 and 7,1y, i.e.,
pij(SIA) ~ §(S). We denote the frequency at which stim-
uli are delivered as f3I. In this case, weight changes are
dominated by stimulus-induced reshaping, and (7;5°) can be
approximated by

SIR

()~ (T = foam / dt At +1)W().  (7)
With Eq. (7) we calculate (7,5°)'® for a Gaussian distribution

of spike response times

t-p3)*

e ®)

1

Ar) =
\J2ro}?
Note that (7;7°)*'® does not depend on ;, as only A(z) enters
Eq. (7). We will therefore set u; = 0 in the following. In
Fig. 2, (7:)5® is shown for STDP functions with balanced
overall depression and potentiation, 8 = 1. We find that the
width of the distribution of spike response times o, in units of
the synaptic transmission delay and the asymmetry of STDP
decay times 1y are critical for the net effect of SIR on synaptic
weights. In particular, sharp distributions lead to a weakening
of the synaptic weight, while strengthening is observed for
asymmetric STDP decay times, tz > 1, and broad distribu-
tion, o, > t4. Thus, this special case describes the previously
observed decoupling through strongly synchronized spiking
as studied in Refs. [66,67].

As the second special case, we consider stimulation with
independent Poisson spike trains delivered at a stimulation

frequency S’:im to pre- and postsynaptic neurons, respec-
tively. Then, we find p(S) = f£ exp(—f% IS — 14]) and can

set L(A) = §(A). Assuming stimulation-controlled spiking,
Eqg. (3), we obtain independent Poisson spike trains with firing
rate S’:im for both, the pre- and the postsynaptic neuron. Using

Egs. (6) and (5) we find
()~ (T2) = (fh) f dt exp (— finlth)W@). (9

This yields (jij?o)P =8(fF Vo [+ £ )T — B+
fEatit) ™ (T5)F < 0 guarantees that STDP leads to de-
coupling of neurons with uncorrelated Poisson spike trains. It
is therefore often considered as an indicator for the existence

of a stable desynchronized state [68].

V. RESHAPING OF NETWORK CONNECTIVITY DURING
RANDOM AND COORDINATED RESET STIMULATION

We study the contributions of stimulus- and sequence-
induced reshaping in more detail for two specific stimula-
tion protocols. The first protocol intends to avoid unfavor-
able resonant relationships between stimulation frequency
and neuronal firing rates. To this end, we obviate spatial
and time periodicities in the stimulation pattern and rather
deliver stimuli to randomly chosen neuronal subpopulations
of finite size at random times. We will denote such a protocol
as random reset (RR). We hypothesize that spatiotemporal
random stimulation may reduce spatial-temporal correlations
between stimulus administrations and, in turn, induce a statis-
tic of time lags between pre- and postsynaptic spikes that is
comparable to that obtained for independent Poisson spiking
(see previous paragraph). For comparison, as second protocol
we consider coordinated reset (CR) stimulation. By design,
CR stimulation is a desynchronizing stimulation protocol [21]
which is characterized by distinct spatiotemporal correlations
in the stimulation sequence.

For both protocols, we study stimulus- and sequence-
induced reshaping of network connectivity. To this end, we
calculate ./\/,-j(t) and (._7,30) according to Egs. (6) and (5),
respectively.

A. Random reset stimulation

Random reset stimulation means to deliver stimuli at ran-
dom stimulation times s; to randomly selected neuronal sub-
populations P, thereby minimizing spatiotemporal correla-
tions in the stimulation sequence. Interstimulus intervals S; =
Sk+1 — Sk are drawn from a shifted exponential distribution

Sk — Ta
Trr

Here T, accounts for a finite duration of a single stimulus.
®(x) is the Heaviside step function and 7ggr determines the
time scale of interstimulus intervals. 7grg sets the mean stimu-
lation frequency to fXR ~ (T, + Trr) ™. In the limit of short
stimuli 7, — 0, Eq. (10) yields a Poisson spike train for the
sequence of stimulation times. Each stimulus is delivered to
a neuronal subpopulation Py that contains N, = N/2 neurons.
Here N is the total number of neurons and N, is the number
of neurons per stimulated subpopulation P. For illustration,

P(Si) o< exp <— > O(Sk — Ta). (10)
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FIG. 3. Theoretical predictions for stimulation-induced reshaping of network connectivity during RR and CR stimulation. (a) Spike trains
for RR stimulation in the limit of stimulation-controlled spiking, Eq. (3) for N = 1000 neurons using the Gaussian approximation for the
distribution of spike response times Eq. (8) with o; = 2.5 ms. Stimuli are delivered to N, = 500 neurons with adjacent indices at a time.
(b) NER(2) according to Eq. (6) for Pyy synapses (orange) and Pt synapses (blue). (c) Theoretical prediction for average weight updates
per spike (7;5°)(S); in units of § for PRR (top) and PRR synapses (bottom) as function of Trr/74+ and o3 /7. We find stimulation-induced
strengthening (Ji;’.") > 0 (gray) and weakening (Jl.;?o) < 0 (white) of the synaptic weight, w;_, ;. [(d) and (e)] Representative snapshots of
connectivity matrices during RR stimulation for o3 < 7, (d) and 03 > 7, (e), respectively. (f) Same as (a) but for CR stimulation. (g) ./V}?R(t)
for ng( (orange) and Pgﬁ synapses (blue). (h) Same as (c) but for Pﬁi (top) and Prgﬁ synapses (bottom). [(i) and (j)] Snapshots of connectivity
matrices during CR stimulation with o;, as in (d) and (e), respectively. Parameters: Tgg = Tcg = 50 ms, 7, = 1/130 Hz™', 0, = 2.5 ms [(a) and
(b) as well as () and (g)], 0.5 ms [(d) and (i)] and 6.5 ms [(e) and (j)]. Snapshots are taken at r = 100 s (d), 300 s (e), 50 s (i), and 200 s (j)
after onset of stimulation. Synaptic weights at t = 0 were distributed such that (w;_, ;) = 0.38. This was done by setting 38% of the weights to

one and the others to zero.

subpopulations contain neurons with subsequent indices while The prefactors are the probabilities that the next (latest)
accounting for periodic boundary conditions. A raster plot of  stimulus received by the postsynaptic neuron is the (n £ k)th

spiking activity resulting from a representative RR stimula- stimulus. In case (b), ijR(S |A) does depend on A as time
tion sequence under the assumptions of stimulation-controlled lags between different spike pairs are considered when the

spiking is shown in Fig. 3(a). presynaptic spike arrives before or after the postsynaptic one
We calculate the distribution of time lags per unit time at the synaptic terminal, i.e., depending on whether A > ¢, or

N; j(t) during RR stimulation. This distribution will be de- A < ty, respectively. This yields

noted as N(¢) in the following. To this end, we consider RRD R

a presynaptic spike in response to the nth stimulus. According pij " (SIA s 1a) = 8(S) + F7(£S). (13)

to the nearest neighbor STDP scheme, Sec. II, the arrival time o RR.a RR.b RR )

of this presynaptic spike at the synapse is paired with the Contrlbuthqs pi; " and p;7 to pit(S|A) are wellghted by

latest and the next postsynaptic spikes. Using the stimulation- the. probab1l'1t'y that .bOth7 neuron / and j receive stimulus 7.

controlled spiking approximation introduced above, these ~ 1his probability is givenby (Ne —|j — ilw)/Ne, for [j —ilx =

spikes result from the latest and the next stimuli delivered to Ve and O otherwise. Here |j — |y refers to the absolute dis-

the postsynaptic neuron. We distinguish between two cases: ~ tance between l'Il'dlCCS i apd J under con§1derat10n of'perlodlc

(a) only the presynaptic neuron receives the nth stimulus ~ boundary cond1t10n§. Using the re§ulF in Eq. (6) Ylelds Fhe

and (b) both post- and presynaptic neurons receive the nth average number of time lags per unit time for RR stimulation

stimulus. For both cases, we calculated the probability distri- M‘}R(t )

bution pR(S|A) by considering intervals S between stimuli Results for NV$%(¢) are shown in Fig. 3(b). The probabil-
delivered to the post- and presynaptic neuron. In case (a), ity that pre- and postsynaptic neurons i and j, respectively,
P%R(SM) does not depend on A, i.e., p}‘jR(Sm) = p?jR(S), receive stimuli simultaneously is critical for the shape of

It results from the distribution of intervals between stimulus  Nj"(7). In Fig. 3 we consider the two extreme cases of
deliveries to a single neuron FRR(S). Assuming that delays maximum and minimum probability. Those will be denoted

are shorter than the minimum interstimulus interval, ; < T,,  as PRR and PRR synapses in the following. For RR stimula-
we find tion, Pn‘ﬂfx synapses are synapses that connect neurons with
adjacent indices, i.e., |j — iy = 1, while PR} synapses are
RR, RR RR . . o ,min,
Pij ‘) =FTS) +FT(=9) an connecting neurons with faraway indices |j — iy > N,. The
with two cases result in qualitatively different shapes of J\/?}R(t).
o e For PRR synapses, we find a pronounced peak centered at 7 =
N, N 0. This results from a strong contribution of stimulus-induced
RR — 1= = oo

F(8) = Z N (1 N > peeap(S). (12) reshaping. In contrast, for PRR synapses, NR(¢) approaches a

k=1 D : J
combination of two exponentials as T decreases. For T, — 0
The kth summand in Eq. (12) contains the (k — 1)th con- it converges to rﬁR exp (—rrr|t — t4]), expressing the lack of
volution of p(§). The zeroth convolution refers to p itself. temporal correlations in the stimulation sequence. Note that
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N;;(t) would possess a similar shape if pre- and postsynaptic
spike trains were independent Poisson spike trains with firing
rates r; = rj = rrr, With rgg = 1 /%(RR + Ty), see Eq. (9).

Using V5% (7) in Eq. (5), we obtain (7;%°) which yields an
estimate of the rate of weight change for a synapse between
neurons 7 and j. Results for (7,5°) for PRR and PRR synapses
are shown in Fig. 3(c) (top and bottom), respectively. For
Pnlifx synapses, (J;3°) becomes positive for o, > 1, indicat-
ing strengthening of synaptic connections. Otherwise, we
find that RR stimulation results in a weakening of synaptic
connections. The transition from weakening to strengthening
is a result of the asymmetry in STDP decay times which
is expressed by tz # 1 in the STDP function, Eq. (1). In
contrast, we find solely negative (7,5°) for PRR gynapses. As

Trr increases, stronger weakening of synaptic connections per
spike is expected, however, less spikes per second are evoked.

B. Coordinated reset stimulation

During CR stimulation, stimuli are administered periodi-
cally. The interval between two subsequent stimuli is denoted
by Tcr which, together with the finite duration of a single
stimulus 7y, yields the mean stimulation frequency fSR =
1/(Tcr + Tp) and stimulation times s, = k(Tcr + Ta). CR
stimulation is administered to M, = 4 disjoint neuronal sub-
populations P; € {P°, P!, P2, P3}, resembling a set of four
stimulation contacts, a typical setup [69,70] enabling pro-
nounced desynchronizing effects [71]. Each subpopulation
contains 25% of the neurons. This is illustrated in Fig. 1(b).

Coordinated reset simulation with randomly varying

sequences is delivered in cycles of four stimulus
administrations, each one delivered to a different neuronal
subpopulation P, 1=0,1,...,M,—1. After each
stimulation cycle the sequence of subpopulations for the next
cycle is generated randomly. This leads to spatiotemporal
correlations in the sequence S. One representative realization
of a CR stimulation sequence is depicted in Fig. 1(d). That
sequence is S = {(so, P°), (s1, P?), (52, P), (53, P?),
(S4’ 7)2), (S57 Pl)v (567 P3)v (S7, 7)0), (58, 7)] )s (Sg, 7)3)’
(510, P?), (s11, P?)}. A raster plot of spike trains generated
for a representative CR stimulation sequence using the
stimulation-controlled spiking approximation is shown in
Fig. 3(f).

In the CR stimulation setup (Fig. 1) synapses may either
connect two neurons that are part of the same subpopula-
tion P! and, hence, are always stimulated simultaneously, or
synapses may connect neurons belonging to different subpop-
ulations, which are never stimulated simultaneously. These
two types of synapses will be denoted as PSR and PSR
synapses, respectively. For both types of synapses, we cal-
culated p;; CR(S|A) by considering the time intervals between
stimulus dehverles to the presynaptic and the latest and the
next stimulus deliveries to the postsynaptic neuron. As stimuli
are delivered periodically, these time intervals S are integer
multiples of Tcg + Tp. As each subpopulation is stimulated
exactly once during a CR cycle, intervals S are bounded from
above and below by +2M,(7cr + T ), respectively.

PSR(S|A) for PLX synapses can be obtained by counting
all possible sequences that lead to a certain interval S between
post- and presynaptic stimuli. Again assuming t; < Tx, we

find
R(SIA ta)

_6(S)+Z

for i, j € P. (14)

The result for PSR synapses is given in the Appendix, see

Eq. (A1). Using p{R(S|A S 1) in Eq. (6) yields NSR(2).
Shapes of M?R(t) for the two types of synapses are shown

in Fig. 3(g). In contrast to RR stimulation, we find that N5% (7)
possesses pronounced peaks at integer multiples of Tcr +
T;, reflecting strong temporal correlations in the stimulation
sequence.

Results for (7;5°) are shown in Fig. 3(h) for PER (top

max
panel) and PSR synapses (bottom panel). We find qualitatively

similar behavior as for corresponding types of synapses dur-
ing RR stimulation. However, in contrast to RR stimulation,
slow CR stimulation leads to weaker decoupling per spike for

CR
P, synapses.

M,
'”‘ Me = lm = Mel g1 6 m(Tex + T,

VI. CONTROL OF NETWORK TOPOLOGY

The probability that post- and presynaptic neurons are
stimulated simultaneously is critical for the expected rate of
weight change of a synapse. This probability scales the rela-
tive contributions of stimulus- and sequence-induced reshap-
ing to the overall synaptic weight dynamics. If the probability
is high, stimulus-induced reshaping strongly contributes to the
weight dynamics. Furthermore, stimulus-induced reshaping
can either strengthen or weaken synaptic connections, see
results for PSR and PRR synapses in Figs. 3(c) and 3(h). These
effects can be harnessed for controlling network structure
by using appropriately designed stimulation protocols. First,
by frequent simultaneous stimulation of certain groups of
neurons, strong contributions of stimulus-induced reshaping
can be realized. And second, adjusting the shape of stimuli
allows for either weakening or strengthening corresponding
synaptic connections.

We illustrate reshaping of network topology by means of
RR and CR stimulation in Fig. 3. Spike trains are generated
according to the stimulation-controlled spiking approxima-
tion, Eq. (3), using the Gaussian approximation, Eq. (8), for
the distribution of spike response times, see the Appendix
for details. Snapshots of connectivity matrices, containing the
synaptic weights w;_, ;, during stimulation with o, < t; are
depicted in Figs. 3(d) and 3(i), for RR and CR stimulation,
respectively. Snapshots for o; > ¢, are shown in Figs. 3(e) and
3(j), respectively.

VII. SHAPE OF STDP FUNCTION DETERMINES
STIMULATION-INDUCED WEIGHT DYNAMICS

Synaptic reshaping during stimulation is determined by the
STDP function, Eq. (1). In the present paper, we focus on the
canonical form of STDP, Eq. (1) [63]. This type of STDP was
observed in various brain regions including the neocortex [35]
and hippocampus [36]. Synaptic reshaping for other types of
STDP is discussed in the Appendix.
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FIG. 4. Shape of STDP function affects stimulation-induced re-
shaping during RR and CR stimulation. Expected weight change per
spike (jij?c)(S)i /6 for different shapes of the STDP function W (z).
[(a)—(c)] W(t) for potentiation-dominated, 8 = 0.2 (a); balanced,
B =1 (b); and depression-dominated STDP, g = 1.8 (c). [(d)-(i)]
(\750)(5),-/6 for these STDP functions for CR (dashed) and RR
stimulation (solid) as obtained from Egs. (5) and (6) using p{ and
PR} from Sec. V. [(d)—(f)] Results for PRY and PR synapses are
shown below respective STDP functions. [(g)—(i)] According results
for PRR and PER synapses. A(t) is approximated by a Gaussian
distribution with 05 = 1 ms. Parameters: 7, = 10 ms and 7z = 4.

We evaluate the expected rate of weight change (J7°),
Eq. (5), for different STDP parameters for RR and CR
stimulation. In particular, we vary the ratio between long-
term depression and long-term potentiation 8. In Fig. 4, we
compare the expected weight change per spike (J;7°)(S)i/d
during RR and CR stimulation for PSR and PRR synapses,

Figs. 4(d)-4(f), and PSR and PRR synapses, Figs. 4(g)-4(),
and different shapes of the STDP function W (¢), Eq. (1). We
find that decoupling during both RR and CR stimulation is
most pronounced for depression-dominated STDP for which
all synaptic weights can be reduced for sharp distributions
of spike response times A. Furthermore, for such rules the
weakly connected state is typically stable [72]. This indicates
that stimulation decouples the neurons, but also leads to long-
lasting aftereffects.

In general weakening of synapses between subpopulations
during CR stimulation shows a pronounced dependence on
the interstimulus intervals and therefore on the stimulation
frequency, see Figs. 4(h) and 4(i). In contrast, weakening
due to RR stimulation is more robust to changes of inter-
stimulus intervals. This results from the qualitatively differ-
ent shapes of NS®(r) and NVR(r) discussed above. While
/\/i(j?R (¢) possesses pronounced peaks at multiples of Tcg + T3,
which may or may not be adjusted to time lags at which the
STDP function yields effective decoupling, i.e., W[—(Tcr +
T)—ti]+W( TR + T — 1) < O, ./\/}}R(t) lacks such peaks
and therefore allows for averaging over wide ranges of time
lags. The latter typically causes decoupling for depression-
dominated STDP rules, see Fig. 4(i).

Additionally, we present similar plots for various different
types of STDP functions in the Appendix. In general, we

observe that RR stimulation causes robust weakening for PRR

synapses for depression-dominated STDP. Well-adjusted CR,
however, my perform better in a limited range of stimulation
frequencies. The performance of both stimulation protocols
for PSR and PRR synapses, respectively, depends on the shape
of the STDP function at slightly negative time lags (~—t,). If
W (—tz) < 0, this may lead to fast decoupling, exploiting a
phenomenon called “decoupling by synchronization” [66,67].
On the other hand, if W(—t;) > 0, then stimulation strength-
ens these synapses.

VIII. STIMULATION OF PLASTIC NETWORKS
OF INTEGRATE-AND-FIRE NEURONS

We compare theoretical predictions for the limit of
stimulation-controlled spiking of the previous sections to
computer simulations for RR and CR stimulation of networks
of oscillatory excitatory leaky integrate-and-fire neurons with
STDP. Integrate-and-fire models describe the subthreshold dy-
namics of the neurons’ membrane potentials. Once the latter
pass a spiking threshold spikes are generated. Details on the
model are given in Sec. X. In particular, we consider slightly
depression-dominated STDP for which a stable desynchro-
nized state with weak synaptic connections coexists with a sta-
ble synchronized state with strong synaptic connections, see
Fig. 8 and Ref. [72]. To study stimulation-induced decoupling,
we prepare the network in the synchronized state. This mimics
the initial conditions used in previous computational studies
on CR stimulation, see for instance Ref. [73]. Then either RR
or CR stimulation is applied for 1 h of biological time. At
each stimulation time step, a short charge-balanced stimulus
of amplitude A is administered, see Sec. X for details. After
cessation of stimulation we simulated the network dynamics
for additional 1000 s in order to study long-lasting aftereffects.

To study stimulation-induced reshaping of network con-
nectivity as well as acute and long-lasting desynchronization
effects, we determine the time-averaged mean synaptic weight
(w) and the time-averaged Kuramoto order parameter [5]

T+t 1 N o)
0, 1= dr' |—= ) et
n= vy

P, quantifies the average degree of synchronization in a time
interval of length T starting at time ¢. In particular, p, ~
1 indicates highly synchronous spiking activity and p, ~ 0
desynchronous activity. In order to calculate p, we assign
phases ¢;(t) to each neuron i, which increase linearly in time
during individual interspike intervals by a total amount of
27 [74].

Results for the Kuramoto order parameter and the mean
synaptic weight are shown in Fig. 5. Additionally, raster
plots of neuronal spiking activity evoked by either stimulation
protocol are shown in Fig. 5(a). When a stimulus of moderate
amplitude A is applied to a neuronal subpopulation, only some
neurons show spiking responses. This is due to a finite refrac-
tory period during which the neurons’ membrane potentials
are far below the spiking threshold, see Sec. X. Nevertheless
we find decoupling during RR and CR stimulation as pre-
dicted by our theory, see Fig. 5(b). However, decoupling dur-
ing RR stimulation is significantly stronger so that the mean

. (15)
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FIG. 5. Stimulation-induced decoupling and long-lasting desynchronization in networks of oscillatory leaky integrate-and-fire neurons

with STDP. (a) Raster plots of simulated spiking activity during onset (left), cessation (center), and 1000 s after cessation (right) of RR (red,
top) and CR (green, bottom) stimulation. (b) Time trace of Kuramoto order parameter and mean synaptic weight during and after RR and
CR stimulation, same color code as in (a). Solid curves mark averaged Kuramoto parameter for time windows of 20 s and dashed curves the
range of one standard deviation. Gray horizontal region marks approximated boundary between basins of attraction for desynchronized and
synchronized states, see Fig. 8. Labels mark times at which statistics for acute (AC) and long-lasting (LL) effects was obtained. See panel
(a) for raster plots of respective spiking activity. Right panels show corresponding asymptotic solutions. [(c)—(f)] Acute effects of RR [(c) and
(d)] and CR [(e) and (f)] stimulation as function of the ratio v = ryynen/ fsim Of the neuronal firing rate in the synchronized state ryyeh to
stimulation frequency f;n and the stimulation amplitude A. Columns show time-averaged Kuramoto order parameter (left) and mean synaptic
weight (right), respectively. Time averages are taken over the last 7 = 40 s of neuronal activity during stimulation, see panel (b). [(2)-()]
Long-lasting effects of RR [(g) and (h)] and CR [(i) and (j)] stimulation. Panels are arranged in the same way as [(c) and (f)] but time averages
are take over a T = 40 s time window 1000 s after cessation of stimulation, see panel (b). We find that mean synaptic weights were sufficiently
far from the boundary between basins of attraction for either state at that time. Vertical lines mark v for low integer ratios: 1 : 4,1:3,1: 2,
3:4,1:1,3:2 (from left to right). Parameters for (a) and (b): A =5 «, Tcrrr = 50 ms (v ~ 0.21), 8 = 1.4, t, = 10 ms, 1z = 4. Other
parameters are given in Sec. X. Results for panels (c)—(j) are obtained by averaging over four network realizations and five realizations of

stimulation sequences per network.

synaptic weight approaches zero while its reduction during
CR stimulation is weaker. Still, both stimulation protocols
drive the network into the attractor of a stable desynchronized
state, see Fig. 5(b) (right panel) for asymptotic solutions.
In that state, ongoing weight updates due to STDP lead to
slightly nonzero mean weight (=0.01). As weight updates
depend on the statistics of time lags, stimulation may lead to
even lower mean synaptic weights, see Fig. 5(b) (left panel).
Following the literature on desynchronization stimulation,
we distinguish between acute and long-lasting desynchro-
nization effects [51,52]. Acute desynchronization refers to
desynchronization while stimuli are delivered. Long-lasting
desynchronization refers to the phenomenon that neuronal
activity remains desynchronized after the cessation of stim-
ulation. Results for Kuramoto order parameters (pac) evalu-
ated during RR and CR stimulation are shown in Figs. 5(c)
and 5(e), respectively. Corresponding mean synaptic weights
(wac) are shown in Figs. 5(d) and 5(f), respectively. We find
that the decoupling effect of RR stimulation is more robust
with respect to changes of the stimulation frequency than
that of CR stimulation, compare Figs. 5(d) and 5(f). Most
remarkably, RR stimulation causes decoupling even if only
weak acute desynchronization is achieved, compare Figs. 5(c)

and 5(d). This is in marked contrast to the decoupling effect
of CR stimulation which relies on acute desynchronization,
see Figs. 5(e), 5(f), and 5(b). For long-lasting desynchro-
nization, stimulation has to reduce synaptic weights such
that the network is driven into the basin of attraction of
a stable desynchronized state. In consequence, long-lasting
desynchronization effects induced by RR stimulation are more
robust with respect to changes of the stimulation frequency
than those of CR stimulation, compare Figs. 5(g) and 5(i).

In Fig. 6, we compare simulation results for different
stimulus amplitudes A to theoretical predictions, Eq. (5). We
find good quantitative agreement for strong stimulation. For
weaker stimulation our theory overestimates the decoupling
effect of RR and CR stimulation. Remarkably, differences
between decoupling rates for the different types of synapses
remain even for weak stimulation. Furthermore, we find faster
decoupling for RR than for CR stimulation for the same
stimulation frequency.

IX. DISCUSSION

Desynchronizing stimulation can decouple oscillatory neu-
ronal networks with STDP [51]. Several computational
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FIG. 6. Theoretical predictions compared to simulations of stim-
ulated networks of leaky integrate-and-fire neurons with STDP.
Synaptic weight dynamics during RR [(a) and (c)] and CR stimu-
lation [(b) and (d)] with Tgricr = 50 ms for different stimulation
amplitudes, see legend. Upper panels show averaged weights for PRR
(a) and PSR synapses (b). Bottom panels show average weights for
PRR (¢) and PSR synapses (d). Lines indicate theoretical predictions
for either type of synapse under the assumption of a constant rate
of weight change given by Eq. (5) and A(A) = §(A). Stimulation
amplitudes are set to A =35 (diamonds), 10 (circles), and 50 «
(squares). Parameters: 8 =14, t;, =3 ms, g =4, . = 10 ms;
other model parameters are given in Sec. X. Results are obtained by
averaging over ten network realizations and all synapses of respective

types.

studies predicted different features of stimulation-induced
long-term desynchronization and corresponding symptom re-
lief [73,75,76], which were thereupon verified in animal ex-
periments and clinical studies [53-56]. However, desynchro-
nization does not necessarily lead to decoupling and may
be limited by the need to adjust stimulation parameters to
dynamic characteristics of the network, typically its dominant
frequency [52]. We here presented a qualitatively different
approach to specifically decouple oscillatory neuronal net-
works: decoupling stimulation. Stimulation is not applied to
primarily desynchronize oscillators, but to cause activity pat-
terns that specifically decouple adaptively coupled oscillators.
We studied decoupling stimulation in neuronal networks with
STDP. We presented a theoretical framework that relates the
stimulation-induced synaptic weight dynamics to the response
characteristics of individual neurons to individual stimuli
as well as spatiotemporally correlated sequences of stimuli.
Based on our findings, we presented an effective decoupling
stimulation technique—RR stimulation—that overcomes the
need to adjust parameters to the dominant frequency.

The presented theoretical framework holds for resetting
stimuli where each spike results from the stochastic response
of individual neurons to an administered stimulus. It provides
estimates for the rate of synaptic weight changes during stimu-
lation of neuronal networks with STDP. Our theory can be ap-
plied to stationary and nonstationary systems and does not rely
on a particular implementation of STDP. A critical assumption
is that the stimulation allows for controlling neuronal spike
timings. Corresponding high response fidelity of neuronal
spikes to administered stimuli has been observed during deep
brain stimulation [77,78], an established therapy for Parkin-
son’s patients [79]. Beyond that, our theoretical framework is
valid for a large number of systems because phase resetting by
delivery of a stimulus is a universal phenomenon. Phase reset-
ting has been demonstrated in a large number of theoretical

and experimental studies on hyperpolarizing or depolarizing
electrical pulses [80-83] as well as excitatory or inhibitory
postsynaptic potentials [84-88]. Accordingly, stimulus-
induced neuronal phase resetting was observed in a variety
of different systems, ranging from simple squid axons [89]
to central pattern generators for respiratory rhythm [90-92],
neuronal population activity in brain slices of inferior olive
[93] and consummatory licking [94]. Phase resetting of corti-
cal rthythms has been realized using several stimulation tech-
niques, e.g., transcranial magnetic stimulation [95] and sen-
sory stimulation, e.g., visual and auditory stimulation [96-98].

Our theoretical framework can be applied to a general
class of stimulation protocols and can be used for the de-
sign of stimulation techniques which specifically weaken
or strengthen plastic synaptic connections. It relates the
stimulation-induced weight dynamics to the response charac-
teristics of neurons to a single stimulus and to spatiotemporal
correlations between stimuli. Because of its implications to
neuroscience and medicine [51,54-56], we here focused on
decoupling stimulation. Instead of primarily inducing desyn-
chronization with stimuli tuned to the network’s dominant
frequency, we directly decouple the neurons by delivering
RR stimulation, a stimulation pattern with appropriate spa-
tiotemporal randomization. RR stimulation differs signifi-
cantly from previous approaches using randomized stimuli,
e.g., delivering common white Gaussian noise [29] or un-
correlated noise input [50]. While common noise can be
adjusted to cause either acute synchronization or desynchro-
nization [29], uncorrelated noise has been found to strengthen
synaptic connections and thereby support synchrony in plastic
neuronal networks [50]. Spatiotemporal patterns of phase-
resetting stimuli delivered during RR stimulation, on the other
hand, synchronize simultaneously stimulated neurons, while
subpopulations receiving subsequent stimuli desynchronize
temporarily. The degree of resulting partial acute synchrony
depends on the number of simultaneously stimulated neurons.
The two limiting cases of simultaneous stimulation of all
neurons and single neuron stimulation result in perfect acute
synchronization and Poisson like spike trains, respectively, in
the theoretical limit of strong and fast stimulation.

While our theory does not require a particular type of
STDP, the latter has a great impact on the emergence of
dynamical states in plastic neuronal networks. It has been
found that the interplay of synaptic and spiking dynamics can
lead to a rich repertoire of emerging network motifs [72,99]
and coexisting dynamical states in networks of oscillatory
neurons. These states include desynchronized, synchronized
and cluster states, see, for instance, Refs. [41,46,73,100].
Previous theoretical studies managed to connect the shape
of the STDP function to the emerging dynamical states. It
has been found that antisymmetric STDP [tz = 1 in Eq. (1)],
with balanced depression and potentiation, (8 = 1), leads to
the emergence of a single synchronous state in networks of
oscillatory neurons [39]. A general theory for the dynamics
of synaptic weights in weakly connected excitatory recur-
rent neuronal networks was presented in Ref. [72]. Analyz-
ing the shape of W (t), the authors reported that a stable
state with strong synaptic connections emerge for strongly
potentiation-dominated STDP (8 <« 1) and a stable state with
weak synaptic connections for strongly depression-dominated
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FIG. 7. Stimulation of conductance-based leaky integrate and
fire neuron. (a) Time trace of the membrane potential V () of a single
leaky integrate-and-fire model (black) and the dynamic threshold Vi,
(black dotted). (b) Individual stimuli are given by charge-balanced
rectangular pulses consisting of an excitatory part (red) of amplitude
A mV and an inhibitory part (orange) of amplitude —4A/30 mV.
(c) Same as (a) but the neuron receives stimuli at r = 0.2 s and
t = 0.35 s, respectively. The stimulation current Iy, is shown in
panel (d). Dotted horizontal lines in (a) and (¢) mark Vs (bottom)
and Vi (top). Parameters: A = 5 «.

STDP (B > 1). For values of g that are close to one, different
states may coexist. In particular, for STDP functions with
asymmetric STDP decay times (tg > 1) and B/tz < 1 that
are slightly depression-dominated (8 Z 1) a complex motif
structure and coexisting states with strong and weak synaptic
connections, respectively, can emerge [72]. States with strong
and weak synaptic weights, are typically associated with syn-
chronized and desynchronized spiking activity, respectively.

Based on our theoretical framework, RR stimulation was
designed to induce decoupling in networks with depression-
dominated STDP, see Figs. 4, 9, 10, and 11, by inducing a
corresponding statistics of time lags between spikes of post-
and presynaptic neurons without primarily desynchronizing
them. Such STDP favors the existence of a stable state with
weak synaptic weights [72] and desynchronized activity. We
therefore hypothesize that sufficiently long RR stimulation
of such networks induces long-lasting desynchronization that
outlasts stimulation. Furthermore, our theory predicts that
decoupling effects of RR stimulation are more robust with
respect to changes of the stimulation frequency than effects
of CR stimulation for depression-dominated STDP. However,
CR stimulation may perform better in a limited range of
stimulation frequencies, Fig. 4(i).

We compared our theoretical predictions for decoupling
effects caused by RR and CR stimulation to simulations
of networks of oscillatory excitatory leaky integrate-and-fire
models with STDP. In these networks, stable desynchro-
nized and synchronized states coexist for slightly depression-
dominated STDP, see Fig. 8. We find good quantitative agree-
ment between theory, which assumes stimulation-controlled
spiking, and simulations for sufficiently high stimulus ampli-
tudes enabling stochastic phase resetting of individual stimuli.
For moderate stimulus amplitudes decoupling is slower than
predicted as nonstimulus locked network dynamics weakens
control of the collective dynamics by the stimuli delivered,
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FIG. 8. Coexisting desynchronized and synchronized states in
networks of leaky integrate-and-fire neurons with STDP. Raster plots
of neuronal spiking activity for either state are shown in panels
(a) (desynchronized) and (b) (synchronized). Panel (c) shows snap-
shots of the distributions of synaptic weights for either state. Panel
(d) shows the STDP function for 8 = 1.4, which we use in panels
(a)—(e) and in the main text. The time-averaged Kuramoto order
parameter p after equilibration for different inital mean weights is
shown in panel (f). Multistability arises for depression-dominated
STDP, 8 > 1.

see Fig. 5(a). However, the theoretically predicted qualitative
differences between decoupling rates of synapses within and
between separately stimulated populations are still valid for
moderate stimulus amplitudes, see Fig. 6. Unlike CR, RR
stimulation has pronounced decoupling effects during and
after stimulation [Figs. 5(d) and 5(h) and then 5(f) and 5(j)].
The decoupling effects of RR stimulation are robust with
respect to variations of the frequency ratio v = rgynch/ fstim
and do not require the stimulation frequency to be adapted
to the mean frequency of the synchronized rhythm rgynch.
This translates to pronounced long-lasting desynchronization,
achieved over a wide range of frequency ratios v [Fig. 5(g)].
Remarkably, pronounced desynchronization during stimula-
tion is not required for significant changes of the synaptic
connectivity and corresponding long-term desynchronizing
outcome. In fact, during RR stimulation synchronization is
only moderately reduced [Fig. 5(c)]. In contrast, by design CR
stimulation causes pronounced desynchronization within a
considerable range of frequency ratios v [Fig. 5(e)]. However,
desynchronization during CR stimulation does not necessarily
imply reduction of synaptic weights (see the green vertical
stripes in [Fig. 5(f)]. Accordingly, the parameter range asso-
ciated with long-term decoupling [Fig. 5(j)] and long-term
desynchronization [Fig. 5(i)] is smaller and intersected by
vertical stripes in the parameter plane spanned by stimulation
amplitude A and frequency ratio v. The latter occur for values
slightly exceeding small integer ratios v. For those frequency
ratios a considerable amount of stimuli gets delivered to neu-
rons during their refractory period which reduces efficiency of
CR stimulation.

To enhance long-lasting desynchronization effects, a series
of computational studies focused on modifying the sequence
by which stimuli are delivery to different stimulation sites. For
this, rapidly or slowly varying CR sequences [70,76], periodic
flashing sequences [101] as well as various stochastic versions
thereof [102] were used. Recently, it was also suggested to de-
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liver neuron-type specific stimuli in order to induce a constant
time shift between spikes of excitatory and inhibitory neurons
as STDP would lead to a modulation of the synaptic coupling
between both types of neurons and thereby lead to transi-
tions between desynchronized and synchronized states [103].
Our results reveal two basic mechanisms for stimulation-
induced reshaping of network connectivity: stimulus-induced
and sequence-induced reshaping. The former characterizes
synaptic weight changes in response to individual stimuli and
the latter refers to weight changes caused by spatiotemporal
correlations in the sequence of stimuli. By appropriately
designing a stimulation protocol, the two mechanisms can
be adequately combined to weaken or strengthen synaptic
connections within and between individual neuronal subpopu-
lations. Accordingly, the theoretical framework presented here
allows for a quantitative understanding of the results from
computational studies mentioned above and can be used to
optimize the outcome of these multisite stimulation protocols
or design novel stimulation techniques. Spatial randomiza-
tion, as put forward in this study, can technically be achieved
by means of segmented stimulation contacts [104] combined
with superposition-based spatial steering of stimulation cur-
rent [105].

Both stimulus- and sequence-induced reshaping can cause
a strengthening or weakening of synaptic connections. Their
respective impact on network structure depends on the STDP
function. In the main text, we focused on the canonical Heb-
bian form of STDP as presented in Refs. [35,36]. However,
various different forms of STDP were observed in experi-
ments [106]. We discuss both types of reshaping for other
Hebbian and anti-Hebbian STDP functions in the Appendix.
Stimulus-induced reshaping results from time lags between
spiking responses triggered by a single stimulus. For phase-
resetting stimuli these time lags are short compared to the
STDP decay times, which are typically in the range of 10—
100 ms [106]. The resulting weight change is determined by
the interplay of STDP, synaptic transmission delays, and the
shape of the distributions of spike response times. Decoupling
occurs if the distributions of spike response times are sharp
compared to the effective synaptic transmission delays. In that
case decoupling takes place for any type of STDP where long-
term synaptic depression occurs when postsynaptic spikes
arrive at the synapse shortly before presynaptic ones. This
includes the canonical Hebbian STDP with balanced and
unbalanced depression and potentiation as, for instance, ob-
served in hippocampal cultures [36] and pyramidal neurons in
rat cortical slices [107], as well as anti-Hebbian STDP, as, for
instance, observed for excitatory synapses on inhibitory in-
terneurons in neocortex [108]. Corresponding decoupling was
reported by studies on highly synchronized population bursts
[66,67] and dominates synaptic reshaping of synapses be-
tween neurons that are likely to receive stimuli simultaneously
during RR and CR stimulation, see Figs. 4(d)—4(f) and Fig. 11
in the Appendix for respective STDP functions. A strengthen-
ing of synaptic connections due to stimulus-induced reshaping
may occur for STDP functions that cause potentiation for
small negative time lags, for instance symmetric Hebbian
STDP, see Figs. 9(d)-9(f), or asymmetric anti-Hebbian STDP,
see Figs. 10(d)-10(f), or if the width of the distribution of
spike response times exceeds the synaptic delay and presynap-
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FIG. 9. Stimulation-induced reshaping during RR and CR stim-
ulation for symmetric Hebbian STDP. Expected weight change per
spike (Jijo)(S);/(S for different ratios of overall depression over
potentiation 8 for Wsy(¢), Eq. (B1), are shown. [(a)—(c)] Wsu(?)
for potentiation-dominated, § = 0.2 (a); balanced, 8 = 1 (b); and
depression-dominated STDP, 8 = 1.8 (¢). [(d)-(i)] (ji;’.o)(S),-/zS for
these STDP functions for CR (dashed) and RR stimulation (solid)
as obtained from Egs. (6) and (5) using p{} and pf* from Sec. V.
Results for PRR and PSR synapses (orange) are shown in panels

max max

(d)—(f) and results for PRR and PSR synapses (blue) are shown in

panels (g)—(i). A(t) is approximated by a Gaussian distribution with
05 = 1 ms. Parameters: 7, = 10 ms, 7z = 4.

tic spikes that arrive at the synapse shortly before postsynaptic
ones lead to strong potentiation. The latter holds for the canon-
ical Hebbian STDP function [36]. On the contrary, sequence-
induced reshaping results from spatiotemporal correlations
between stimuli. The latter determine the temporal structure of
stimuli received by post- and presynaptic neurons. Resulting
time lags between the neurons’ spikes are of the order of inter-
stimulus intervals which are of the same order as STDP decay
times for stimulation frequencies, e.g., commonly used in CR

(b) (c)
1.0- (e)]| - (f)
S (d)
B0 ——— —
=N (9)] (| (i
0'0: ...... -W- :..III
0 100 2000 100 2000 100 200

TCR/RR TCRrR/RR TCRrR/RR

FIG. 10. Stimulation-induced reshaping during RR and CR stim-
ulation for asymmetric anti-Hebbian STDP. Same as Fig. 9 but for
asymmetric anti-Hebbian STDP, Eq. (B3).
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FIG. 11. Stimulation-induced reshaping during RR and CR stim-
ulation for symmetric anti-Hebbian STDP. Same as Fig. 9 and 10 but
for symmetric anti-Hebbian STDP, Eq. (B2).

stimulation [54-56]. Therefore, the resulting effect on the
network structure is weaker [Figs. 6(c) and 6(d)] and depends
on the shape of the STDP function for time lags of the
order of the mean interstimulus intervals (S;). For stimulation
protocols with strong temporal correlations between stimuli,
e.g., CR stimulation [69] or periodic flashing CR stimula-
tion [101], our theoretical framework predicts decoupling of
stimulated populations for STDP functions with W (—(S;) —
ty) + W(S;) —t5) <0, see panels (h) and (i) in Figs. 4, 9,
10, and 11. The connectivity matrices presented in Ref. [69]
indeed confirm decoupling of separately stimulated popula-
tions. On the other hand, randomized stimulation protocols,
e.g., RR stimulation, lack strong temporal correlations be-
tween stimuli. Then, the expected synaptic weight change is
similar to the one resulting for independent Poisson spiking
of pre- and postsynaptic neurons. The latter typically leads
to a weakening of synapses in networks with depression-
dominated STDP and stable desynchronized states, see panels
(h) and (i) in Figs. 4, 9, 10, and 11. During RR stimulation,
synapses weaken when it is unlikely that post- and presynaptic
neurons receive stimuli simultaneously, otherwise, stimulus-
induced reshaping dominates the synaptic dynamics. The
ratio of respective synapses is controlled by the number of
simultaneously stimulated neurons. The latter can be varied
in order to scale contributions of stimulus- and sequence-
induced reshaping to the overall synaptic weight dynamics.
We therefore expect RR stimulation to be suitable to drive
such a network into the attractor of a stable desynchronized
state.

Here we presented results for nearest neighbor STDP
schemes, see Figs. 1(a) and 1(c). Nearest neighbor STDP
schemes were used in previous studies on desynchronizing
stimulation in plastic neuronal networks, see for instance
[52,73]. Other studies considered all-to-all schemes in which
all possible pairings between post- and presynaptic spikes
are considered [62,68,109]. A detailed discussion on different
STDP schemes is presented in Ref. [65]. In fact, experimental
studies on cortical neurons reported that the depencence of
synaptic weight changes on the firing rate is better described

by nearest neighbor than by all-to-all schemes [110]. Our
theoretical result, Eq. (5), can be applied to other STDP
schemes by considering corresponding spike pairs for the
calculation of A;;(¢) and p;;(S|A) in Eq. (6). For all-to-all
STDP schemes, Nj;(¢) possesses higher counts for negative
time lags, because delayed spike arrivals from simultaneous
stimulation of pre- and postsynaptic neurons are paired with
all prior postsynaptic spikes. We may therefore expect an
even stronger decoupling effect for RR stimulation for all-
to-all STDP schemes with pronounced depression occurring
when presynaptic spikes appear shortly after postsynaptic
ones. For fast-decaying STDP functions, where STDP decay
times 7, and trT, are short compared to typical time lags
Ipost — Ipre, all-to-all and nearest neighbor schemes result in
similar weight dynamics [111].

Our implementation of the RR protocol assumes that sep-
arate stimulation of post- and presynaptic neurons is possible.
This assumption may not hold in an experimental setup due to
limited spatial resolution. In an experiment, segmented mul-
tisite electrodes with several stimulation contacts [60] could
be used to implement stimulation patterns similar to our RR
protocol. Further stimulation techniques allowing for multisite
stimulation include noninvasive vibrotactile stimulation [112]
and optical stimulation [113]. Using four stimulation sites,
as for instance used in the standard CR setup, each stimulus
could be delivered to two out of four randomly selected
stimulation sites. Our theory can be applied to this setup in
order to predict the synaptic weight dynamics in the limit
of stimulation-controlled spiking. The probability to receive
stimuli simultaneously scales the contributions of stimulus-
and sequence-induced reshaping to the overall weight dynam-
ics. For synapses between neurons located in the vicinity of
the same stimulation site, this yields very similar decoupling
properties as for the implementation of RR stimulation con-
sidered here in the case of neurons with nearby indices, see
panels (d)—(f) of Figs. 4, 9, 10, and 11, for respective STDP
functions. On the other hand, if post- and presynaptic neurons
are in the vicinity of different stimulation sites, both Egs. (11)
and (13) contribute to the weight dynamics. Contributions
are scaled by the probability that both sites are activated
simultaneously. Decoupling properties can be constructed by
superposition of the curves shown in panels (d)—(f) and (g)—(i)
for RR stimulation in Figs. 4, 9, 10, and 11.

Our results provide a theoretical base for the prediction
of synaptic reshaping due to stationary or nonstationary spa-
tiotemporal stimulus patterns. Stationary patterns include pe-
riodic high-frequency stimulation or coordinated reset stimu-
lation, which are delivered via deep brain stimulation as treat-
ment for neurological disorders such as medically refractory
Parkinson’s disease [56,114]. Nonstationary patterns include,
for instance a stepwise adjustment of stimulation parameters,
which might be advantageous in heterogeneous networks
where reshaping of certain synapses first might strongly affect
the network’s response to later stimuli. In future studies,
we anticipate to study synaptic reshaping in detailed models
that incorporate disease-specific network connectivity. For
instance, in the basal ganglia region, which includes major
target regions for deep brain stimulation in Parkinson’s pa-
tients, e.g., the STN, different segregated portions of neurons
are responsible for processing different sensory information
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[115,116]. While to date the exact mechanism leading to
motor symptoms is not completely understood, a major hy-
pothesis is a loss of functional segregation due to unwanted
up-regulated connectivity between microcircuits [115]. Ex-
perimental studies reported stimulation-induced reshaping of
excitatory connectivity which may contribute to therapeutic
effects [117-119]. In our generic model, RR stimulation led
to a complete decoupling of neurons. It is an open question
whether RR stimulation is also able to restore physiological
network connectivity. A previous computational study pro-
vided evidence that CR stimulation of the STN specifically
down-regulates pathological connectivity and restores phys-
iological synaptic connectivity patterns related to spatially
patterned time-correlated input [120]. In this context, it is
key to understand how multisite stimulation can be adjusted
to down-regulate certain synaptic connections, while not af-
fecting or even up-regulating others. Our results may provide
critical insight in this regard and may enable the design of
corresponding stimulation protocols. In general, our approach
can be applied to various networks with adaptive coupling
in different fields of science. Apart from decoupling neural
networks with pathology-related strong synaptic couplings
(see above), our approach may also be used to probe neuronal
synchrony-mediated physiological information processing,
e.g., in the context of sensory binding [121,122]. However, our
decoupling approach may also be applied to systems beyond
neuroscience and neurology, e.g., networks with adaptive
connections used to study opinion formation and epidemic
spreading [123-125]. Spatiotemporal stimulus patterns that
trigger a decoupling of nodes or groups of nodes in such
networks could present an effective tool to control network
dynamics.

X. MODELS AND METHODS
A. Leaky integrate-and-fire model

We perform simulations for excitatory networks of N =
1000 conductance-based oscillatory leaky integrate-and-fire
neurons. The range of membrane potential oscillations and the
single neurons’ firing rates were adjusted to match recordings
of oscillatory neurons in the subthalamic nucleus, a major
target brain region for deep brain stimulation in Parkinson’s
disease patients [126,127].

1. Subthreshold dynamics

The dynamics of the ith model neuron’s subthreshold
membrane potential V;(¢) is given by

av;
Ci— = gleak(Viest — Vi) + gsyn,i(t)(vsyn -V

dt
+Istim,i(t) + Inoise,i(t)~ (16)

C; is the membrane capacity, gk the leakage conductance,
and V. the resting potential. The second term is the exci-
tatory input current with reversal potential Vi, modeled by
a time-dependent conductance ggyn i(f), see below. Iyim ;(t) is
the stimulation current and Ineise ;(f) 1S @ noisy input current
accounting for Poisson input from other brain regions, see
below.

2. Spike generation

Whenever the membrane potential crosses the dynamic
threshold Vi ;(¢) a spike is generated and the dynamic thresh-
old value is set to Vi spike- The threshold dynamics during
individual interspike intervals is given by

A

Tth dt = _(Vth,i - Vth,rest)- (17)

We implement a simple rectangular spike shape by setting the
membrane potential to Vypike for a duration of ey Afterward,
V; is set to Vieget.

3. Synaptic dynamics

We consider excitatory coupling between neurons. The
synaptic conductances ggyn i(f) obey

d syn,i
Tsyn gd;” = —&syn,i
K Tgyn :
—i—TwajﬁiZS(t—tl]j —14). (18)

J€Gi 1

Here 7y, is the synaptic timescale, N the number of neurons,
t/j is the timing of the [/th spike of neuron j, and #; the
synaptic delay. We restrict ourselves to axonal delays as these
are typically longer than dendritic delays. The outer sum runs
over all presynaptic neurons G; of neuron i. The inner sum
runs over all spike times of the presynaptic neuron j. « is the
maximal coupling strength and w;_,; € [0, 1] is the synaptic
weight of the synapse between neurons j and i.

4. Poisson input

In addition to presynaptic input, each neuron receives
noisy excitatory input Iise;(#). To this end, we generate
independent Poisson spike trains with constant firing rates
Jroise- These are fed into excitatory synapses as presynaptic
spike trains such that the noisy input current to neuron i is
given by

Inoise,i(t) = gnoise,i(t)(vsyn = Vh). (19)
With synaptic conductance gpoise; Obeying
d gnoise,i i
Tsyn dotse = —g&noise.i T Knoise Tsyn Z S(Ik, - t)7 (20

ki

where Ky0ise Scales the noise intensity and t,ii is the time of the
k;th spike of the Poisson spike train fed into neuron i. A time
trace of the membrane potential for a single neuron is shown
in Fig. 7.

In order to ensure heterogeneity of the single neurons’
firing rates, membrane capacitances were Gaussian distributed
with mean (C;) and standard deviation 0.05(C;). All model
parameters are given in Table I.

5. Network topology

For reasons of comparability, the considered network
structure mimics that of earlier studies on coordinated reset
stimulation of STN neurons Ref. [128]. First, neurons were
distributed in an elipsoidal volume with semi-principle axes,
ay =2.5 lyate, ay = 6.0 licqe, a; = 3.0 lcqe. These were
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TABLE 1. Parameters for leaky integrate-and-fire model.

Subthreshold dynamics
(C)) 3 uF/cm?
(Zleak) 0.02 mS/cm?
Vrest —-38 mV
Vsyu 0mV
Vresel —67 mV
Shape of spike
Vipike 20 mV
Topike 1 ms
Threshold dynamics
Vth,spike 0 mV
Tth 5 ms
Vth,rest —40 mV
Synapses
Tsyn 1 ms
la 3 ms
K 8 mS/cm?
Noise
Knoise 0.026 mS/cm?
f ;wise 20 Hz

chosen such that the resulting volume for /sy = 1 mm fits
experimental measurements on the subthalamic nucleus pre-
sented in Ref. [129]. For a given total number of neurons N,
the scaling parameter /s, is used to artificially shrink the
volume in a way that the mean distance between connected
neurons matches experimental data for rat STN neurons, r; ~
0.543 mm [130]. Results presented in the main text are for
N = 1000. We performed additional simulations for N = 400,
800, and 1600 which led to qualitatively similar results. N
neurons were uniformly distributed in that volume. Synaptic
connections were introduced such that the total connectivity
amounts to about 7% compared to all-to-all coupling [128],
which yields on average 0.07N connections per neuron. The
probability for two neurons to connect is distance dependent
and given by p(d) o exp (—d/d.), with d. = 0.5 Isqe [128].
The resulting networks have a broader degree distribution
than networks generated with p independent of the distance
between neurons. We performed additional simulations for
networks with p independent of the distance between neurons
and found qualitatively similar result as for the ones presented
in the main text. All networks used throughout the manuscript
were fully connected. For all simulations that were presented
in the main text we set ly.,e = 0.35 mm, which sets the mean
length of synaptic connections to ~0.545 mm.

6. Simulation details

Initially, the neurons’ membrane potentials are distributed
according to a uniform distribution V; € [Vieset, Viest], thresh-
olds Vi,; are set to Viprest, and synaptic conductances gy,
and gnoise,; are set to zero. Synaptic weights are distributed
according to a bimodal distribution with w;_, ;(t = 0) € {0, 1}
such that a given mean weight (Wipita) := (Wi ;j(t = 0))
is obtained. In order to wait for the neuronal activity to

equilibrate STDP is switched off for the first 20 s. Simulations
were performed using the explicit Euler method with time step
h = 0.1 ms. Stationary networks were obtained by simulating
until the mean synaptic weight equilibrates.

B. Coexistence of synchronized and desynchronized state

We performed a detailed analysis of the network’s multi-
stability. For the parameters given in Table I, we found coex-
isting states of synchronized and desynchronized activity for
depression-dominated STDP functions, Eq. (1), with asym-
metric decay times tg > 1. This is in accordance with theo-
retical predictions for weakly connected networks presented
in Ref. [72]. In the main text we use 7z = 4, see Fig. 8(d).
Raster plots of neuronal spiking activity in desynchronized
and synchronized states are shown in Figs. 8(a) and 8(b), re-
spectively. Accordingly, corresponding distributions of synap-
tic weights and individual neurons’ firing rates are depicted
in Figs. 8(c) and 8(e), respectively. In order to distinguish be-
tween desynchronized and synchronized activity, we calculate
the time-averaged Kuramoto order parameter from Eq. (15) as
a function of the initial mean synaptic weight for stationary
networks. Results are shown in Fig. 8(f). We find coexist-
ing desynchronized and synchronized states for depression-
dominated STDP (where > 1). For the parameter set used
in the main text, i.e., g =4 and 8 = 1.4, networks with
(Winia1) 2 0.3 approach a stationary state with synchronized
neuronal activity and mean synaptic weight (w;_, ;) ~ 0.38.
Networks with (winia) < 0.25 approach a stationary state
of desynchronized activity. We find that network realizations
with mean initial weights 0.25 < (Winiga1) < 0.3 can approach
either state.

To study the effect of stimulation on the network dynamics,
we use the final network states of our study on multistability
as initial networks. For simulation results presented in Figs. 5
and 6, we used the networks with initial mean synaptic weight
(Winigal) = 0.5. These networks were simulated for 2000 s of
biological time in order to wait for the mean synaptic weight
to become stationary. Longer simulations showed that their
mean weights fluctuated around an average value of (w;_, ;) ~
0.38.

C. Stimulus waveform

During stimulation, sequences of charge-balanced pulses
were delivered to neurons in respective subpopulations. This
is modeled by applying the stimulation current

Liim,i (1) = AX (7). 2y

A is the stimulation amplitude in units mS/cm?. Following
earlier studies [69], X (¢) in units of mV is given by the
sum of stimuli administered to neuron i. Each stimulus is
characterizes by a stimulus wave form consisting of two
rectangular pulses. The first excitatory one of amplitude 1 mV
and duration of 0.4 ms is followed by an inhibitory one of
amplitude —4/30 mV duration 3 ms. Both, rectangular pulses
are separated by a gap of 0.2 ms. We set the minimum time
between subsequent stimulus deliveries to 7, & 7.69 ms. This
corresponds to a maximal stimulation frequency of 130 Hz.
The stimulus wave form and a representative response of a
neuron is shown in Fig. 7.
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D. Generation of spike trains according to
stimulation-controlled spiking approximation

Spike trains according to the stimulation-controlled spik-
ing approximation, Eq. (3), were generated as follows: First,
a stimulation sequence S is generated according to one of
the stimulation protocols, i.e., RR or CR stimulation. Then,
at the stimulation times s; one spike time #' is generated for
each stimulated neuron, i € P;. These times are distributed
according to A(t' — s;). In Figs. 3(a) and 3(b), we set A(t' —
sp) o exp((t' — s¢)?/207).

To study stimulation-induced network topology [Figs. 3(d),
3(e), 3(i), and 3(j)], we generated all-to-all coupled networks
with 1000 nodes. The initial mean weight is set to (Winitia1) =
0.38, which is realized by distributing initial weights accord-
ing to a bimodal distribution w;_,; € {0, 1} with this mean
value. Then, spike trains for each node were generated ac-
cording to the stimulation-controlled spiking approximation.
Given these spike trains, we calculated the weight dynamics
of individual synaptic weights w;_,; by applying the nearest
neighbor STDP scheme from Eq. (1). The connectivity matri-
ces presented in Figs. 3(d), 3(e), 3(i), and 3(j) show snapshots
of individual synaptic weights w;_, ;.
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APPENDIX A: RESHAPING OF NETWORK
CONNECTIVITY DURING CR STIMULATION

We calculate p{*(S|A) for PSR synapses. Without loss
of generality, we assume that the presynaptic neuron i is
part of subpopulation P9 and the postsynaptic neuron j is
part of subpopulation P%/. The mean number of occurrences
for interstimulus intervals between subsequent stimulations
of these neurons can be obtained as follows. We consider a
stimulus delivered to the presynaptic neuron at time s;. It
triggers a spike of the presynaptic neuron. As the postsynaptic
neuron does not receive a stimulus at time s, time lags
involving this presynaptic spike can only result from pairings
with postsynaptic spikes triggered by earlier stimuli, i.e., at
time sy _¢, or by future stimulation of the postsynaptic neuron,
i.e., at time s;4¢. Here, & is a natural number. For evaluation
of time lags resulting for the former case, we consider all
stimulation sequences with a stimulus delivered to P? at time
s¢ and a stimulation of P% at time sx_g but not at times
Sk—&+1> Sk—£+25 - - - » Sk—1. For the latter case, we consider all
stimulation sequences with a stimulus delivered to P% at
time s; and stimulation of P% at time s;4¢ but not at times
Sk+&—1> Sk+£—25 - - > Sk+1. The mean number of occurrences
per presynaptic spike are listed in Table II for all possible &.

TABLEII. Occurrence of contributions § = &(7cgr + T, ) to time
lags between post- and presynaptic spikes. Results are shown for PSR
synapses and CR stimulation with separate stimulation of M, = 4
neuronal subpopulations.

& Occ. per presyn. spike
§
E+1,2,....M, Mig[lJrZ(l—A’;;_ll)]Jer{;gi”
S,
EEM.+1,...,2M, -2 T (1-35)
k=E—M,
Otherwise 0

Finally, p{*(S|A) results from summation over &. We find

PR(SIA)

M, 1 & k—1 Me—E
Z;—;{W 1+;(1_Me—1) T -1

x {8[S + &(Ter + Ta)]l + 8IS — §(Ter + T}

w2 [ M2 k
- Z W Z <1_Me - 1)
g=Mot1| V€ k=g,
X {8[S + E(Tcr+Ta)] + 8[S — E(Tcr+T)1},
for P4 £ P, (AD)

Using this in Eq. (6) yields the result for V[§%(r) which is
depicted in Fig. 3(g).

APPENDIX B: PREDICTED PERFORMANCE OF CR AND
RR STIMULATION FOR DIFFERENT STDP FUNCTIONS

We calculate (»75?0) using Egs. (5) and (6) for different
shapes of STDP functions. In the brain, different types of
Hebbian and anti-Hebbian STDP have been observed, see
for instance Ref. [106]. For both types, qualitatively different
profiles have been reported [106]. Here, we consider symmet-
ric and asymmetric shapes. An asymmetric Hebbian STDP
function was considered in the main text. In the following,
we consider an symmetric Hebbian one, with weight updates
given by

]

_u _
Wsn(t) = 8(2¢ = — e T ), (B1)
a symmetric anti-Hebbian one
_ 0 _ I
Wsau(t) = —8(26 + —e G-Pry ), (B2)
and an asymmetric anti-Hebbian one
—eiﬁ, t >0,
Wisan(?) =810, t=0. (B3)
}S%Re_ﬁ, t > 0.

Parameters are chosen as in the main text. 8 scales the
ratio between long-term depression and long-term potenti-
ation such that 8 > 1 yields depression-dominated, 8 = 1
balanced, and 8 < 1 potentiation-dominated STDP.
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Results for the symmetric Hebbian STDP function Wsy (¢),
Eq. (B1), are shown in Fig. 9. We find fast strengthening
of PRR and PSR synapses, Figs. 9(d)-9(f), and weaken-
ing of PRR and PSR synapses for balanced and depression-
dominated STDP functions. For asymmetric anti-Hebbian

STDP, Fig. 10, we find mainly strengthening of PRR and
PER synapses, Figs. 10(d)-10(f), and weakening of PRR

synapses for balanced and depression-dominated STDP func-
tions. Weakening PSR synapses by CR stimulation is only
observed for a very narrow range of small interpulse in-
tervals, Fig. 10(g)—10(i). For symmetric anti-Hebbian STDP

functions, Fig. 11, fast weakening occurs for PRR and PSR

synapses during both types of stimulation. Here, we only

find weakening of PRR and PCR synapses for depression-

dominated STDP. For the latter, weakening of PRR synapses

during RR stimulation is more pronounced that weakening of
Pn(iili synapses during CR stimulation.

For all types of depression-dominated STDP functions,
we find that weakening of PRR synapses during RR stimu-
lation is more robust with respect to changes of interstim-
ulus intervals, than weakening of PSR synapses during CR

R X min
stimulation.
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