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It has been theoretically demonstrated that two spins (qubits or qutrits), coupled by exchange interaction
only, undergo a coupling-based joint Landau-Majorana-Stiickelberg-Zener (LMSZ) transition when a linear
ramp acts on one of the two spins. Such a transition, under appropriate conditions on the parameters, drives the
two-spin system toward a maximally entangled state. In this paper, effects on the quantum dynamics of the two
qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated
qualitatively and quantitatively. The enriched Hamiltonian model of the two spins shares with the previous
microscopic one the same C2 symmetry which once more brings about an exact treatment of the new quantum
dynamical problem. This paper transparently reveals that the DM and d-d interactions generate independent,
enhancing or hindering, modifications in the dynamical behavior predicted for the two spins coupled exclusively
by the exchange interaction. It is worthwhile to notice that, on the basis of the theory here developed, the
measurement of the time evolution of the magnetization in a controlled LMSZ scenario can furnish information
on the relative weights of the three kinds of couplings describing the spin system. This possibility is very
important since it allows us in principle to legitimate the choice of the microscopic model to be adopted in a

given physical scenario.

DOI: 10.1103/PhysRevResearch.2.033092

I. INTRODUCTION

The anisotropic interaction term known as Dzyaloshinskii-
Moriya (DM) interaction or antisymmetric exchange in-
teraction was first phenomenologically introduced by I
Dzyaloshinskii to understand and explain the weak ferro-
magnetism in antiferromagnetic crystals [1]. Later, T. Moriya
furnished a theoretical derivation of such an interaction
term grounded on a robust general theory of the superex-
change interaction including the spin-orbit coupling [2]. This
anisotropic interaction term arises when antiferromagnetic
systems present low symmetry and strongly depends on the
geometry of the system as shown by T. Moriya [2]. Mathe-
matically, it is written precisely as

d- (S] X Sz), (1)

where S; and S, are the two interacting spins and d is the
so-called DM vector whose orientation is determined by the
geometry and then by the symmetry of the spin system.
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Generally, the DM interaction is small with respect to other
types of interactions, such as the exchange or the dipole-
dipole interaction. In spite of this, however, its contribution
proved to be essential to correctly describe several antifer-
romagnetic molecules [3-5]. Moreover, the DM interaction
proves to be crucial in figuring out the correct dynamics
of complex spin systems, e.g., tunneling and interference
between energy levels in single-magnet molecules [6,7].

It is interesting to point out that the DM interaction plays an
important role for quantum computing applications [8] and in
several different contexts like quantum dots [9] and spin chain
dynamics [10,11]. It has been demonstrated that the presence
of the DM interaction in spin chains deeply influences several
different physical quantities, like Berry’s phase [12], quantum
phase interference [13], quantum phase transitions [14], en-
tanglement transfer [15], thermal entanglement and telepor-
tation [16], and classical and quantum correlations [17]. The
effects of the DM interaction on the entanglement formation
in spin-qubit chains is particularly relevant. This interaction,
in fact, fosters the occurrence of long-distance correlations
[18-21] which turn out to be crucial in quantum technological
applications. Since the entanglement is a key resource in
quantum information [22], its controllable production and
manipulation [23] is, indeed, of fundamental importance.

The scope of this paper is to analyze the effects of both the
DM interaction and the dipole-dipole (d-d) interaction in the
dynamics of a two-qubit system. The d-d interaction between
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two spin sites takes into account the overlap between the wave
functions of the two interacting systems and is usually written
in terms of spin variables as [24]

Si-D-S,, @)

where D is the traceless dipole tensor. The form of this
tensor, that is, its nonvanishing entries strictly depend on the
symmetries of the system. Systems with uniaxial symmetry,
for example, would be characterized by a diagonal tensor with
dyy = dyy, = —d;/2[24], where djy. (k = x, y, z) stands for the
diagonal term in the k direction.

Differently from the papers cited above, we take into
account the presence of an external time-dependent field. In a
previous work [25] the authors have studied the same problem
considering only the exchange interaction. In this typical
scenario, they have demonstrated the possibility of generating
maximally entangled states of the two spins by applying
a Landau-Majorana-Stiickelberg-Zener (LMSZ) ramp [26].
In this paper, we want to investigate how the DM and the
d-d interactions influence such a dynamic behavior and to
highlight intriguing effects which can arise from the interplay
of the two types of interactions and the external fields.

The choice of the LMSZ framework [26] is based on the
fact that it is a very well known and quite easily experi-
mentally realizable time-dependent scenario. Although it is
idealized (infinite time duration of the experimental procedure
implying divergent energies of the adiabatic states), the LMSZ
model succeeds in grasping relevant physical features of the
physical systems under scrutiny [27]. However, if one is inter-
ested in a more realistic situation, then it is worth underlining
that the exact solution of the dynamical problem is known
also for a finite-time windowed LMSZ procedure [28]. This
aspect, then, allows us to make predictions closer, at least in
principle, to the experimental results. In this respect, it is im-
portant to stress that realistic descriptions of quantum systems
subjected to the LMSZ scenario are required to include also
environmental effects. To this end several analysis and models
have been proposed [29-34]. Different sources of incoher-
ences in the experimental framework, indeed, can influence
the system dynamics [35-38], like relaxation processes (e.g.,
spontaneous emission) or interaction with a surrounding envi-
ronment (e.g., nuclear spin bath). Also such an aspect has been
taken into account in the previous paper [25] and is analyzed
here, too, in the presence of the DM interaction.

In this work we study the effects of the DM and d-d
interactions in a system of two interacting three-level sys-
tems, too, where the occurrence of coupling-based LMSZ
transitions has been analytically demonstrated [39]. In the
last reference, in fact, the same authors demonstrated the
occurrence of coupling-based LMSZ transitions in case of two
interacting spin qutrits. The interest toward systems of inter-
acting N-level systems has grown exponentially in the past
few years, mostly thanks to the wide range of applications in
quantum information. Indeed, methods to manipulate qutrits
[40,41] and qudits [42] have been developed. Moreover, qutrit
systems have proven to be very useful in developing a more
secure quantum communication [43], besides showing a huge
potential in generating new type of entanglement [44].

The paper is organized as follows. Section II deals
with two interacting spin-qubit systems. In this section, the

generalization of the qubit model studied in Ref. [25], includ-
ing the DM and d-d interaction terms, is presented. Detectable
dynamical effects stemming from the presence of both or
just one of the interactions taken into account are brought
to light. Furthermore, DM and d-d-induced changes on the
possibility to get entangled states of the two qubits through
the coupling-based LMSZ transitions are discussed. An anal-
ogous analysis is developed in Sec. III for a two-spin-qutrit
system. Conclusive remarks are reported in the Sec. I'V.

II. SPIN-QUBITS

A. The model and the coupling-based LMSZ
effect enhancement

Let us consider the following two-qubit model:

H =ho(1)8] + hoy(1)65 + v:6165 + 1,61 65 + v.6{65

+ Y6165 + 16765 3)
The two spin-1/2’s are subjected to two local time-dependent
magnetic fields along the z axis and the first three coupling
terms account for an anisotropic exchange interaction [24].
The last two coupling terms, instead, represent the contribu-
tion of both the anisotropic d-d interaction and DM interaction
[24]. We point out that the presence of d-d interaction implies
that we have an equal contribution of the two mixed terms
(6765 and 667), that is, yxy = ¥y [24]. The DM interaction,
instead, arises when we have opposite contributions in the two
mixed terms, namely y,, = —Vy. [24]. Therefore, considering
both the two interactions, we can write two independent
parameters (y,, and y,,) for the two coupling terms under
consideration.

The interaction model here considered is appropriate for a
system possessing a C, symmetry with respect to the z axis
[45]. Tt is possible to convince oneself easily, indeed, that
the Hamiltonian keeps its form after a rotation of 7 around
the z axis for both spins (namely it means to perform the
following transformation 67 — —67, 65 — —6;, 65 — 6%,
a=1,2)[45].

Thanks to such a C, symmetry, it is easy to identify
the constant of motion 6765 which implies the existence of
two dynamically invariant two-dimensional (2D) subspaces
(related to the two eigenvalues £ of the integral of motion)
[45]. In this way the dynamical problem of the two spin-
1/2’s may be traced back to the solution of two independent
problems of single (fictitious) spin-1/2 governed by the two
Hamiltonians [45],

Hy =hQ4(1)6° + y+6* +T167 £y, 14, “4)

with Qi (1) = w1 £ w2, Y+ = ¥x F ¥y, 't = L5y + ¥y, and
1. being the two-dimensional identity operator associated
with each subspace.

Let us consider now an LMSZ-like scenario, as done in
Ref. [25],

hoi(t) =at, hwy() =0, 5)

that is, an LMSZ ramp (a linearly varying magnetic field) is
applied only on the first spin. If we study the two-qubit LMSZ
transitions in each subspace, then it is easy to convince oneself
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that they are given by

Py =1—exp{—2n(y: +T3)/ha}, (6)
where P, (P-) denotes the two-qubit LMSZ transition prob-
ability from the state |——) (|—+)) to the state |[++) (|+—))
and viceversa; the single qubit states are defined as 6°|£) =
+|+£). The analogous expressions in the absence of the d-d
and DM interactions, obtained in Ref. [25], are reported in
Egs. (A4). It is worthwhile to notice that this result shows
that the effect of the presence of new Hamiltonian terms due
to the DM and d-d interactions is to increase the probability
of the two-qubit LMSZ transition. Thus, the physical effect of
coupling-assisted LMSZ transitions for the two-qubit system,
brought to light in Ref. [25], turns out to be strengthened by
the presence of the new interaction terms. We point out that

the physical reason of the appearance of the term v'y2 + I'2
relies on the fact that this term is exactly the modulus of the
real transverse magnetic field we get by rotating the Hamilto-
nian H, around the z axis by the angle arctan(—I"1/y4).

B. Effects of the DM and d-d couplings on the dynamics

It is important to notice that the relative weights of the
different types of interaction make the Hamiltonian possess
different symmetries, giving rise to different dynamics and
consequently to different physical effects. In the following
we take into account all possible physical scenarios related
to different specific interactions.

If we had an isotropic exchange interaction, that is, y, =
¥y = ¥ /2, then we would obtain

Pr=1- exp{—ZnFi/Ea},

P =1- exp{—27‘r(y2 +I?)/hal.
In this case, thus, we see that the contribution of DM and
d-d interactions is fundamental for the occurrence of LMSZ
transition from |——) to |4++). We would get the analogous
result if we were in presence only of d-d interaction without
the DM contribution. In this instance, indeed, we would have
Yoy = Yy = I'/2, leading to

P, =1 —exp{—2nT?/ha},

(N

) ®)
P_=1—exp{—2ny~/ha}.

Further, if the system were characterized by just a pure DM
interaction without a relevant contribution of the anisotropic

d-d interaction, meaning that y,, = —y,, =I'/2, then we
would get
P, =0, P_=1—exp{—2n(y*+T%/ha}. (9)

Thus, with an isotropic exchange interaction, the presence of
only DM coupling does not generate an LMSZ transition in
the first subdynamics involving |++) and |——).

Finally, considering an anisotropic exchange, we get

Py =1 —exp{—2n(y} + T'?)/ha},

(10
P_ =1 —exp{—2ny>/ha},
in case of d-d interaction only and we have
P, =1 —exp{—2ny?/ha},
§ * (1)

P_ =1—exp{—2n(y? +T?)/ha},

when only the DM contribution is considered.

These examples illustrate how essential are both the sym-
metries and the anisotropies in determining the dynamics and
the response of the physical system when the system is sub-
jected to externally applied fields. We emphasize, moreover,
that the physical effects highlighted above are relatively easily
observable in laboratory during an LMSZ experiment. From
Egs. (7)—(9), we see, in fact, that, by analyzing the transition
|-—) — |++), we may get the transition or not depending
on the relative weights of the interaction terms. Therefore, by
measuring the time behavior of a physical observable like the
magnetization of the system we can have a direct confirmation
of the occurrence or nonoccurrence of the transition and then
we can understand what kind of interaction must be taken
into account in the Hamiltonian model describing the physical
system. The characteristic timescale of the transition, instead,
would reveal the magnitude of the LMSZ parameter ruling
the dynamics (that is, of the exponent of the LMSZ transition
expression) giving us information about the weights of the
interactions. We point out that for an ideal LMSZ scenario
it is not properly correct to talk about timescale because of
the infinite time duration of the procedure. However, what we
refer to by saying timescale is a more concrete and physically
reasonable scenario consisting in a time-windowed procedure
where timescale effects arise indeed and can be brought to
light.

C. Entanglement

A remarkable aspect related to the coupling-based two-
qubit LMSZ transitions concerns the possibility of generating
maximally entangled states of the two spins. As shown in
Ref. [25], when the system is initialized in |——) or |—+),
the two asymptotic concurrence [46] curves, respectively
writeable as

Ci =2lciic——| =2{/Pr(1 = Py), (122)
C_=2lcy_c_4|=2yP-(1 —P), (12b)

[c4+ and c__ (c4— and c_;) are the asymptotic amplitudes
of the states |++) and |——) (]4+—) and |—+)), respectively]
reach the maximum value Cy = 1 when Py = 1/2, respec-
tively. This circumstance happens when the exponential term
in Egs. (6) assumes the value 1/2, implying then

27 (y2 4 T'2)/ha = In(2). (13)

This result means that, when the condition in Eq. (13)
is fulfilled, the two-qubit system asymptotically reaches the
maximally entangled state (|++) + e/®|——))/+/2 in the first
case and (|+—) + ¢*'|—+))/+/2 in the second case. This fact
was proved in Ref. [25] by studying the exact time depen-
dence of the concurrence exploiting the analytical solutions
of the time-windowed LMSZ dynamical problem reported in
Ref. [28]. In that case only the exchange interaction was taken
into account; in the case considered in this work the analysis
is analogous with the only difference, however, that the LMSZ
parameter ruling the dynamics includes the contribution stem-
ming from the presence of the DM and the d-d interactions.

It is worthwhile to underline that the maximally entan-
gled state generation requires nonadiabatic conditions. This
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circumstance is due to the fact that the entanglement maxi-
mization in each subspace requires P = 1/2, that is, a half
transition, in order to get an equally weighted superposition
of the two involved states. Conversely, adiabatic conditions,
in fact, ensure the full transition (Py+ = 1) from |——) (|]—4))
to |[++) (J+—)). It is important to point out that this circum-
stance, that is, the nonadiabatic entanglement generation is
strictly related to the fact that we are considering a full level
crossing. If we consider the “half crossing,” i.e., the case in
which the evolution starts exactly at the crossing, then the
LMSZ transition probability 1 — exp(—A) is replaced by [1 —
exp(—A/2)]/2 [28,47]. We see, then, that the half-crossing
dynamics allows us to obtain the same results, namely a half
transition and the consequent entanglement generation for
the two-spin system, maintaining adiabatic conditions. This
last aspect, which opens possible interesting applications for
two-qubit scenarios, strengthens the physical relevance of the
half-crossing dynamics, already witnessed by deep theoretical
insights [48,49] and successful uses in experiments [50,51].

Finally, we point out that, differently from what happens
for the full LMSZ transitions, the presence of DM and d-d
interactions could promote or hinder the appearance of entan-
glement. In fact, as far as the full transitions are concerned,
if the adiabatic conditions are satisfied by the exchange
parameters, namely y?/fia > 1, then the two interactions
increase the transition probability or, in other words, make the
characteristic timescale of the transition shorter. On the other
hand, if yZ/ha > 1 are not satisfied, then the DM and d-d
interaction terms have the effect to enhance the exponential
ratio and then to foster adiabatic conditions and a consequent
full transition. In this last case, thus, the presence of the two
types of interactions has only positive effects.

As far as the entanglement is concerned, instead, if in
a given situation, we have 271)@% /ha >~ 1In(2), then the DM
and/or the d-d interactions negatively influence its occurrence
since the numerical value of the ratio in Eq. (13) would be
different from the required one for the half transition. Interest-
ingly, it could rather happen that if 272 /i < In(2), then the
two interactions positively contribute to reach the necessary
condition for the maximally entangled state generation. Con-
sidering the entanglement, therefore, both constructive and
destructive physical effects can stem from the presence of DM
and d-d interactions.

II1. SPIN QUTRITS

A. The model and the coupling-based two-qutrit LMSZ
transition enhancement

We consider now the same model analyzed before for two
interacting three-level systems [39], namely

H =ho 2+ n 2185 + 1578 + v 578 + 1 21 25,
(14)

The Hamiltonian fulfills the condition [H, K] = 0 with K =
cos[n(ﬁ)f + ﬁé)] [39,52]. This constant of motion generates
two dynamically invariant subspaces: a four-dimensional one
and a five-dimensional one [39,52].

It is worthwhile to notice that, similarly to what hap-
pens when DM and d-d interactions are absent, the
four-dimensional two-qutrit subdynamics can be effectively

described in terms of two decoupled spin-1/2’s whose Hamil-
tonians read [52]

ha)1 Az iy .
H, = -6 + () — 18T + (Yo + )67, (152)
ha)1 n R .
H, = Tazz + (v + )/y)crf — (yxy — Vyx)Csz. (15b)

We see that, compared to the analogous expressions in
Eq. (A5), the presence of nondiagonal coupling terms due to
DM and d-d interactions makes richer the two effective single
qubit Hamiltonians by giving rise to the term proportional
to 6y. What is remarkable here is that analogously to the
case analyzed in Ref. [39], also in this instance we can get
exact analytical results thanks to the effective description in
terms of two decoupled spin-1/2’s. We point out that such a
mathematical trick is based on the following mapping [52]:

[10) < [|++),

01 -,

01) < |+-) (16)
0—-1) < |=+),

[—10) < |——),

between coupled states of qutrits and coupled states of qubits.
The single-qutrit states |1), |0), and |—1) are eigenstates of PR
with eigenvalues 1, 0, and —1, respectively.

If two qutrits start from |—10), under an LSMZ ramp w; =
at, then they will reach asymptotically the state |10), |01),
and |0 — 1) with probabilities

PP,

P(1—P), (1—P)P, a7

respectively, being
P =1 —exp{—2n(7#2 + f‘i)/ﬁa},
P =1—exp{—2n(7? +'2)/ha),

(18a)
(18b)

the two probabilities of the two fictitious spin-1/2’s ac-
complishing the down-up transition and 7. = y, £ 3, [+ =
Vxy + Vyx+

From this result we can appreciate that, also in the case
of two interacting qutrits, the presence of the DM and d-d
interactions increases the two-qutrit LMSZ transitions and
consequently reduces the characteristic LMSZ dynamical
timescale. We underline that, similarly to the case of two

qubits, the term v 77 + '3 characterizing the LMSZ param-
eter is the modulus of the actual effective transverse field we
get by rotating the Hamiltonian Hy around the z axis by the
angle arctan(—I"s /7).

We take into account now the five-dimensional subdynam-
ics. As in Ref. [52] it is not possible to deal analytically
with the five-dimensional subspace unless specific conditions
on the coupling parameters are introduced. In particular,
putting y, = y, = ¥ /2 (isotropic exchange interaction), yx, =
—¥ = /2 (only DM interaction) and y, =0, we get a
further decomposition of the Hilbert subspace in three dy-
namically invariant subspaces: two unidimensional subspaces
and a three-dimensional su(2) one spanned by the two-qutrit
standard basis states {|1 — 1), |00), |—11)}. In the latter case,
thus, we can describe the two-qutrit dynamics in terms of an
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effective single three-level system whose Hamiltonian reads
Hy = ho 35 +7 35 - T 3. (19)

When the two spin-qutrits are initialized in the state |—11),
the LMSZ transition probabilities are characterized by the
transition probabilities

PH =P, P =2P(1 Py, P =(-P) (0)
with Py = 1 — exp{—27 (2 + ['?)/ha}, where we labeled
with 1,0, —1 the three states {|1 — 1), |00), |—11)}, re-
spectively. For the fictitious three-level system, we have
a generalization of the LMSZ probability expression
given by the presence of DM and/or d-d interactions
[see Egs. (A9)].

We underline that we are able to get exact results in
the five-dimensional subspace when only the DM interaction
is present and when the exchange interaction is isotropic.
This circumstance, of course, generates some changes in the
four-dimensional subdynamics which are discussed in the
following subsection. Finally, we point out that the dynamics
in the two one-dimensional subspaces is trivial.

B. Dynamical effects of DM and d-d interactions

Analogously to the qubit case, we can bring to light the
effects on the dynamics stemming from the presence of DM
and d-d interaction by considering different physical scenar-
ios. If only the isotropic exchange interaction were present,
that is, yx = y, = #/2 and yx, = ¥, = 0, then we would get
P, =0 and P, =1 — exp{—277?/ha}. We would have an
analogous result if the DM interaction is present, too, that is,
Viy = Vox = ["'/2. In this case, the only difference appears in
the expression of 2, which turns out to be

P, =1—exp{—27 (5% + 1) /ha}. 1)

Looking at expressions in Eq. (17), we see that, in this
instance, the two qutrits have no possibility to pass from the
state |—10) to the states |10) and |01). This circumstance
depends on the fact that P, =0 which can be understood
considering the fact that H; cannot generate a transition of
the fictitious first qubit since H; o 6%, as it is easy to verify
by Eq. (15a). The physical reason of this occurrence can
be traced back to the further decomposition of the four-
dimensional space in two 2D subspaces. This happens because
the conditions on the parameters under scrutiny generate
further symmetries on the Hamiltonian operator. Precisely, the
Hamiltonian commutes now with the operator ST = S‘f + 8,
implying a subspace spanned by |10) and |01) and the other
one by |[—10) and |0 — 1). Therefore, if the two-qutrit system
is initially prepared in |—10), then it can make a transition
only toward the state |0 — 1).

If, instead, besides the isotropic exchange interaction only
the d-d interaction is present (Y, = Vyx = r /2), then the
further symmetry related to the commutator [H, S7] =0 is
lost. In this case we get

P =1 —exp{—2nT?/ha},
P, =1 —exp{—2n?/ha}.

(222)
(22b)

Finally, if both the contributions are relevant, then we have
Py = 1 —exp{—2nT? /ha},
Py =1 —exp{—2n (7> + T'?)/ha}.

(23a)
(23b)

We see that also the two-qutrit system presents differ-
ent dynamical behaviors related to the presence or not of
second-order interaction terms like the DM and d-d couplings.
These different behaviors are visible in laboratory, that is,
measurable dynamical effects which can be brought to light
by applying an LMSZ ramp on the two spin-1’s and by
exploiting the coupling-based LMSZ transition effect. The
latter, therefore, reported and discussed in Refs. [25,39], turns
to be a useful instrument to generate both entangled states of
the two qubits and the two qutrits. This effect would in fact
enable us to investigate physical aspects and characteristics of
the system under scrutiny, like the type and the weight of the
interactions existing between the two spins, ultimately pro-
viding precious information to improve the same microscopic
Hamiltonian model.

C. Entanglement

In case of two qutrits the level of entanglement established
between the two subsystems can be studied through the con-
cept of negativity introduced by G. Vidal and R. F. Werner
[53]. Mathematically, it can be cast as follows [54]:

Tp -1
My = % (24)
where p is the two-qutrit density matrix, p® is its partial
transpose with respect to the subsystem B, and || - ||; de-

notes the trace norm. Therefore, for a Hermitian matrix, the
negativity turns out to be the sum of the absolute values of
the negative eigenvalues. As the concurrence for two qubits,
4, ranges from O to 1 [54]. The choice of a necessarily
factorized orthonormal basis does not affect the result as well
as the subsystem with respect to which the partial transpose
is calculated.

From Ref. [52] we know that the negativity in the four-
dimensional subspace is bounded from above and the limit
value is .4 = 1/2. In fact, for a generic pure state |W) =
c1110) + ¢2]01) + ¢3|0 — 1) + c4]—10), the negativity simply
reads [52]

A =/x(1 —x),

In Ref. [39], instead, the asymptotic expression of the
negativity is obtained in terms of the following asymptotic
parameter:

x = et + leal (25)

x(00) = PPy + (1 = P)(1 = Py), (26)

where P; and P, are the probability expressions of the two
fictitious qubits reported in Eq. (18). It is easy to verify
[25] that the asymptotic negativity plotted in terms of the
LMSZ parameter presents two maxima which correspond
to the values log(2)/2mw = 0.11 and log(2)/mw =~ 0.22 of the
LMSZ parameter, respectively. It means that when the LMSZ
parameter equals one of these two values the two qutrits
asymptotically reach a state with the possible maximum level
of entanglement allowed in the four-dimensional subspace.
Therefore, analogously to the reasoning made before for
the two-qubit system, it is easy to understand that for the two

033092-5



GRIMAUDO, NAKAZATO, MESSINA, AND VITANOV

PHYSICAL REVIEW RESEARCH 2, 033092 (2020)

qutrits, too, the presence of DM and/or d-d interaction can
result in an enhancement or reduction of the level of entan-
glement with respect to the dynamical situation wherein d-d
and DM interactions are ignored. It depends on the fact that
the DM and/or d-d contribution can either help to reach one
of the two magic values to generate entangled states or make
the LMSZ parameter far from the same values. We may say,
thus, that this sensitivity can be a useful tool for measuring the
DM coupling. A similar analysis with analogous results can
be developed for the three-dimensional subspace considered
above in five-dimensional subspace under specific conditions
on the relevant parameters.

IV. CONCLUSIVE REMARKS

In Refs. [25,39] the authors brought to light a physical
effect called coupling-based LMSZ transitions for two-qubit
and two-qutrit systems, respectively. By applying an LMSZ
ramp on the spin system we can speak of joint LMSZ tran-
sition probabilities, even though a constant transverse field is
absent. This is possible thanks to the coupling existing be-
tween the spins. An interesting aspect is that an exact analysis
can be developed and analytical results can be obtained. This
circumstance relies on the fact that the symmetry properties
possessed by the Hamiltonians allow us to identify dynami-
cally invariant Hilbert subspaces and consequently to reduce
the dynamical problem into relatively easier subdynamics. In
case of two qubits we end up with two 2D subspaces and
then we can solve the two-spin dynamics by solving sepa-
rately the two two-level dynamical problems. This dynamical
decomposition approach was used to find other remarkable
features of the two-qubit system [55] and to study the exact
dynamics of more complex systems like two qudits [56],
N-qubit chain [57], and pairs of interacting quantum harmonic
oscillators [58]. Moreover, it is important to underline that
the dynamical decomposition method is independent of the
specific time-dependent scenario we take into account. Its
more general validity, then, allows us to consider other exactly
solvable scenarios [59-65], leading us to new exactly solvable
dynamics of the spin systems.

On the basis of the previous results, in this work we
examined possible experimentally detectable effects on the
joint coupling-based LMSZ transitions stemming from the
presence of DM and/or d-d interactions. In Refs. [25,39], in
fact, only the anisotropic exchange interaction was consid-
ered. Here we demonstrate that the presence of DM and/or
d-d interactions affects the joint coupling-based LMSZ transi-
tions. Since the interaction terms added to the models studied
in Refs. [25,39] do not break the symmetry properties of
the Hamiltonians, we are able to treat exactly even the new
dynamical problem. Therefore also in this case we were able
to disclose the spin dynamics by solving lower-dimensional
dynamical problems.

We brought to light that, on the one hand, both interac-
tions lead to an enhancement of the joint LMSZ transition
probabilities, both for the spin-qubits and the spin-qutrits [see
Egs. (6) and (18), respectively]. On the other hand, DM (d-d)
coupling produces physical effects different from those rising
in the presence of d-d (DM) coupling. For the two-qubit case,
for example, when an isotropic exchange is considered, it

governs the LMSZ dynamics in one of two dynamically in-
variant subspaces, while the d-d interaction makes the LMSZ
transition possible in the other subspace [see Eq. (8)]. The
DM interaction, instead, contributes to enhance the LMSZ
transition probability ruled by the isotropic exchange inter-
action; in this case the LMSZ transition is hindered in the
other subspace [see Eq. (9)]. These results are important
since, by studying the LMSZ transitions in the two subspaces
(addressable by preparing the spin-system in the appropriate
initial condition), we can get information about what kind
of interaction characterizes the spin system and what are the
possible different relative weights of these interactions.

Another interesting aspect concerns the entanglement. In
Refs. [25,39] the authors showed that the coupling-based
LMSZ transitions can be exploited to generate entangled
states of the two-qudit systems (precisely, maximally en-
tangled states for the two qubits). This is possible when a
precise condition on the LMSZ parameter ruling the dynamics
is fulfilled. Here we demonstrated that the presence of DM
and/or d-d interaction can facilitate or impede the achieve-
ment of this condition for the entanglement. Therefore, the
two interactions considered in this work can generate either
positive or negative effects on the entangled-state generation.
A curious aspect to point out is that when both DM and d-d
are neglected, entanglement generation requires nonadiabatic
conditions, as already stressed in the previous works [25,39].
In this paper we instead make evident that the entanglement
generation can be realized under adiabatic and more “com-
fortable” conditions, too. This is possible thanks to the “half-
crossing” scenario [47], in which the linearly varying field is
turned on exactly at the crossing point. It ensures an asymp-
totic transition probability equal to 1/2 [28,48,49], which is
exactly the key point to realize entangled states. Nevertheless,
it turns out to be easier and more suitable to be implemented in
experiments [50,51] than the full crossing LMSZ model under
the specific necessary condition in Eq. (13).

Finally, a possible development of the present work could
be the study of other detectable effects on the joint coupling-
based LMSZ transitions. It could be surely interesting to ana-
lyze how the interaction of the spin system with a surrounding
environment affects the dynamics. This kind of problem can
be approached through at least three methods: the GKLS
theory based on master equations [66], the numerical ap-
proach based on the Wigner partial transpose [67—69], and the
effective description in terms of non-Hermitian Hamiltonians
[70-73].
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APPENDIX: PREVIOUS RESULTS

1. Qubits
In Ref. [25] the authors consider the following two-qubit
model:
H =l (1)8] + han(1)85 + v:6165 + 1,61 63 + y.6{67,
(AD)
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where 67, éiy , and 67 (i =1,2) are the Pauli matrices. A
symmetry-based analysis of the Hamiltonian model brings
the identification of two 2D dynamically invariant Hilbert
subspaces. One is spanned by the two standard basis states
{|4++), |——)} and its dynamics is governed by the following
effective two-level Hamiltonian:

Hy = EQu(t)6% + y.6" + y.1.. (A2)

The other subspace, instead, involves the two standard basis
states {|+—), |—+)} and the effective two-level Hamiltonian
ruling its dynamics may be cast as

H_ =hQ_(1)6°+y_6" —yl1_. (A3)

In the previous expressions 1. represent the identity operators
within the two distinct subspaces and we put Q. = w; £ w,
and y1+ = y, F ¥,. It is worth pointing out that, through this
symmetry-based analysis, the two-qubit dynamical problem
is reduced to the study and the solution of two independent
two-level dynamical problems.

Thanks to the subdivision of the Hilbert space and the
breaking down of the dynamical problem, it is possible to
construct the formal expression of the time evolution operator
U (¢) related to the two-qubit Hamiltonian, that is, the solution
of the Schrodinger equation ihU (t) = H()U (t). Depending
on the time dependence of the Hamiltonian parameter [in this
case w(t) and w,(¢)] it is possible to construct the specific
exact expression if we are able to solve analytically the two
single-qubit subdynamical problems.

For example, by considering an LMSZ-like scenario, that
is, a magnetic field ramp applied on the first spin, namely
wi(t) = at and w(¢) = 0, we can exploit the LMSZ result to
write down the two-qubit asymptotic transition probabilities

Py(00) = [(+ + [U1(00)] = =) = 1 — exp{—2ny] /hiat},

P_(00) = |{(+ — [U_(00)| = +)|* = 1 — exp{—27y? /ha},
(A4)

These expressions show that LMSZ-like transitions of the
two-qubit system are possible although a transverse constant
field is absent. The role of the latter is indispensable for the
occurrence of LMSZ transition in a single two-level system.
Nevertheless, such a role, in the case of the two interacting
qubits, is played by the presence of the coupling between the
spins and this is the reason why we can speak of coupling-
based two-qubit LMSZ transitions.

It is important to point out that Eqgs. (A4) are exact but
asymptotic expressions of the transition probabilities related
to the LMSZ ideal model consisting in an infinite procedure.
However, if we are interested in considering a finite time
window for the LMSZ procedure, then we can exploit the
exact solution of the dynamical problem reported in Ref. [28].
In this case we can write the analytical expressions and the
exact time behavior of the transition probabilities [25]. This
circumstance makes possible also the exact analysis of the
time dependence of the entanglement got established between

the two qubits [25]. Moreover, in Ref. [25] the authors brought
to light a possible application based on the coupling-assisted
LMSZ transitions. They showed, indeed, the possibility of
generating maximally entangled states of the two spin-qubits
by appropriately setting the ratio between the field’s slope and
the coupling parameter.

2. Qutrits

In Ref. [39] the authors considered the same model as in
Eq. (A1) for two-qutrit spins. The symmetries possessed by
the Hamiltonian model are independent of the value of the
two interacting spins. This fact implies that also for two qutrits
we can identify two dynamically invariant Hilbert subspaces
and describe the two-qutrit dynamics within each subspace
in terms of fictitious systems. Precisely, in the two-qutrit
case, the Hilbert space is decomposed in four-dimensional
and five-dimensional subspaces. The former is spanned by
{|10),101), |—10), |0 — 1)} and is characterized by a two-
qutrit dynamics which can be effectively described in terms of
two decoupled fictitious spin-1/2’s subjected to the following
two single-qubit Hamiltonians:

Ay | N hQ_ Y a

H] = TGIZ 4+ )/,Uf, H2 = Tazz + )/+O‘£C,
with #3 = y, & y,. This circumstance allows us to construct
easily the time evolution operator ruling the dynamics in such
a subspace and to study the exact two-qutrit behavior under
the LMSZ scenario. We can speak of coupling-based LMSZ
this time, too, and we have precisely

[(10]Us(c0)| — 10)|* = PP,
[(01|U(00)| — 10)|* = Pi(1 — P»),
[0 — 1|U(c0)| — 10)* = (1 — P))Py,

(A5)

(A6)

with

P =1 —exp{—27y2/ha}, P, =1—exp{—2n7}/la}.

(A7)

The second subspace, under specific conditions on the
coupling parameters (namely y, =y, = ¥/2) can be re-
duced into two unidimensional Hilbert subspaces and a
three-dimensional one. The latter is spanned by the states
{|]1 —1),]00), |—11)} and can be described in terms of a
single fictitious qutrit subjected to the following Hamiltonian:

H; =7 3 4+ hQ_%°. (A8)

Also in this case, thus, it is possible to obtain the exact
expressions for the LMSZ transitions, namely

Pl =pP}, P’ =2P;(1-Py), P} =(-P) (A9

where P; = 1 — exp{—4n7>/ha}. Finally, by studying the
exact time behavior of the negativity, the authors have shown
that, exploiting the coupling-based LMSZ transitions, it is
possible to generate entangled states of the two qutrits, too.
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