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Band topology, Hubbard model, Heisenberg model, and Dzyaloshinskii-Moriya
interaction in twisted bilayer WSe2
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We present a theoretical study of single-particle and many-body properties of twisted bilayer WSe2. For
single-particle physics, we calculate the band topological phase diagram and electron local density of states
(LDOS), which are found to be correlated. By comparing our theoretical LDOS with those measured by
scanning tunneling microscopy, we comment on the possible topological nature of the first moiré valence
band. For many-body physics, we construct a generalized Hubbard model on a triangular lattice based on the
calculated single-particle moiré bands. We show that a layer potential difference, arising, for example, from an
applied electric field, can drastically change the noninteracting moiré bands, tune the spin-orbit coupling in the
Hubbard model, control the charge excitation gap of the Mott insulator at half-filling, and generate an effective
Dzyaloshinskii-Moriya interaction in the effective Heisenberg model for the Mott insulator. Our theoretical
results agree with transport experiments on the same system in several key aspects, and establish twisted bilayer
WSe2 as a highly tunable system for studying and simulating strongly correlated phenomena in the Hubbard
model.
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I. INTRODUCTION

Twisted bilayers with a long-range moiré pattern provide
highly tunable platforms to study fundamental physics for
both single-particle and many-body phenomena. An important
breakthrough was the experimental discovery of supercon-
ducting and correlated insulating states [1,2] in magic-angle
twisted bilayer graphene (TBG) [3]. While magic-angle TBG
is under active study and hosts a rich variety of phenomena
[4–7], it poses challenges for both experiment and theory. In
experiment, superconducting and correlated insulating states
in TBG are fragile and appear only within a narrow range of
twist angle around the magic angle (∼1.1◦), requiring great
experimental efforts to fine tune the twist angle. In theory, the
low-energy moiré bands in TBG defy the construction of fully
symmetric Wannier states because of intrinsic obstructions
[8], which complicates theoretical analysis.

It was theoretically proposed that twisted bilayer transition
metal dichalcogenides (TMDs) represent a simpler system
compared to TBG and can provide a platform to simulate
model Hamiltonians such as Hubbard model and Kane-Mele
model [9,10]. Here, TMDs refer to group-VI semiconducting
transition metal dichalcogenides such as WSe2 [11]. The
simplicity of TMDs compared to graphene originates from
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the fact that the former is a semiconductor with a large
band gap as well as a large spin-orbit coupling, while the
latter is a semimetal with Dirac cones and spin SU(2) sym-
metry. Because of the reduced symmetries in TMDs, the
low-energy degrees of freedom in twisted bilayer TMDs are
fewer than TBG, which leads to theoretical simplification,
allowing effective realizations of simple yet important model
Hamiltonians [9,10]. Another noticeable difference between
twisted bilayer TMD and TBG is that the nearly flat moiré
bands appear in a large range of twist angles in the former
system, but only occur within a small window (±0.1◦) around
the magic angle in the latter system. This difference could lead
to practical advantages, as there is no longer an acute need to
carefully fine tune the twist angle in order to achieve the flat-
band situation. Single-particle flat bands strongly enhance the
relative interaction strength since the noninteracting kinetic
energy is suppressed under the flat-band condition, potentially
leading to many interesting correlated quantum phases.

There are two types of twisted TMD bilayers, namely,
heterobilayers and homobilayers. In heterobilayers, the two
layers are, respectively, two different TMD materials, for
example WSe2/MoSe2, which automatically lift the layer
degeneracy. This moiré system can realize a generalized Hub-
bard model on a triangular lattice formed by effective moiré
sites [9]. Such a Hubbard model simulator based on TMD
heterobilayers has recently been experimentally realized in
Refs. [12,13], which report evidence for Mott insulators and
Wigner crystals.

In this paper we focus on twisted TMD homobilayers,
where the two layers are formed from the same material.
Because of stronger interlayer coupling, homobilayers can
potentially be more interesting as well as more tunable
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compared to heterobilayers. Our work is motivated by two
experimental studies on twisted bilayer WSe2 (tWSe2), where
one experiment is based on scanning tunneling microscope
(STM) [14], and the other is on transport measurement [15].
Both experimental papers [14,15] report signatures of narrow
moiré bands in tWSe2, and the transport experiment [15]
also identifies half-filled correlated insulators that can be
sensitively tuned using an external displacement field.

The purpose of this work is mainly twofold. First, we study
the nature of the low-energy noninteracting moiré bands,
including their topological character and their mapping to
effective lattice models. We present systematic topological
phase diagrams characterized by valley Chern numbers as a
function of system parameters. We find that the topology of
the first moiré valence band is closely connected with the
pattern of electron density distribution in moiré superlattices.
By comparing our theoretical local density of states with
those measured by STM [14], we find that the first moiré
valence band in tWSe2 is likely to be topologically trivial,
and can be described by a one-orbital tight-binding model on
a triangular lattice. The tight-binding model combined with
Coulomb repulsion leads to the realization of an effective
Hubbard model for the corresponding interacting system.
Second, we demonstrate the convenient tunability provided
by an external out-of-plane displacement field in controlling
both single-particle as well as many-body properties of TMD
homobilayers. For single-particle physics, we show that Vz, a
layer potential difference generated by the displacement field,
drastically changes the moiré band structure, tunes van Hove
singularities, and controls the effective spin-orbit coupling in
the tight-binding model. For many-body physics, we predict
that Vz generates an effective Dzyaloshinskii-Moriya (DM)
interaction in the effective Heisenberg model (the spin model
for Mott insulator at half-filling) associated with the Hubbard
model, and acts as a tunable experimental knob that can turn
on and off the corresponding correlated (Mott) insulators at
half-filling. Our theoretical results are consistent with a recent
transport experiment in tWSe2 [15].

We highlight two specific important predictions of our the-
ory. (1) Even in the parameter space where the first moiré va-
lence band is topologically trivial, other moiré bands can still
be topologically nontrivial. This should motivate transport
study on the (topologically nontrivial) second and even third
moiré valence bands by increasing the hole carrier density.
(2) The DM interaction breaks spin SU(2) symmetry down to
U(1) symmetry, and leads to in plane spin ordering with vector
spin chirality in the 120◦ antiferromagnetic ground state of the
Heisenberg model on a triangular lattice. This field-tunable
DM interaction in the moiré system is an interesting phe-
nomenon, which may find applications in spintronics.

The remainder of this paper is organized as follows. In
Sec. II, we present a thorough study of moiré band structure
in tWSe2 with a focus on the topological character and the
electron density distribution in real space. In Sec. III, we
construct a tight-binding model for the first moiré valence
band in the topologically trivial regime and in the presence
of a finite Vz. In Sec. IV, we construct a Hubbard model
for the first moiré band by including Coulomb repulsion. We
study the Hubbard model at half-filling by mapping it to the
corresponding Heisenberg model as well as directly by using a

FIG. 1. (a) Moiré superlattices formed in the twisted bilayer. The
dots with cyan, red, and orange colors indicate, respectively, RM

M ,
RX

M , and RM
X positions with local stacking configurations shown in

the insets. The cyan lines mark a moiré unit cell. (b) Brillouin zones
associated with the bottom (blue) and top (red) layers, and the moiré
Brillouin zone (black). (c) Schematic illustration of band structure in
the twisted bilayer.

mean-field theory. The effects of Vz as well as an out-of-plane
magnetic field on many-body physics are also calculated. In
Sec. V, we provide a summary and discuss future research
directions.

II. MOIRÉ BAND STRUCTURE

A. Moiré Hamiltonian

Twisted TMD homobilayers with a long-range moiré pe-
riod have two distinct stacking configurations [10], of which
the twist angle θ between the two layers are, respectively,
near 0◦ and 180◦. These two configurations are different be-
cause each monolayer TMD has a D3h point-group symmetry
without C2z symmetry (i.e., twofold rotation around out-of-
plane ẑ axis). The twisted bilayer with θ close to 180◦ can
realize a two-orbital Hubbard model on a triangular lattice
(see Supplemental Material in Ref. [10]).

In this work, we focus on valence band states in tWSe2

with a small twist angle θ near 0◦, motivated by recent
experimental studies [14,15]. This situation has been studied
in Ref. [10] for the single-particle moiré bands. Here, we
present a more systematic investigation including a complete
topological phase diagram and a microscopic many-body
theory. As shown in Fig. 1(a), the moiré pattern formed in the
twisted bilayer has a period aM ≈ a0/|θ |, where a0 ≈ 3.28 Å
is the monolayer lattice constant. In each moiré unit cell
(MUC), there are three high-symmetry positions: RM

M , RX
M ,

and RM
X , where M and X , respectively, represent metal and

chalcogen atoms, and Rβ
α marks a local position where the
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α atom in the bottom layer is vertically aligned with the β

atom in the top layer. The twisted bilayer has D3 point-group
symmetry generated by a threefold rotation C3z around the ẑ
axis and a twofold rotation C2y around the in-plane ŷ axis that
swaps the two layers. The D3 point group is reduced to C3

when an external out-of-plane displacement field is applied to
the system.

In semiconducting TMDs, the topmost valence band states
at ±K valleys and � valley can be close in energy [16]. For
small-angle tWSe2, STM measurement shows that its topmost
moiré valence bands originate from ±K valleys instead of �

valley [14]. Therefore, we focus on ±K valleys states.
There is a large valley-dependent spin splitting in the

valence bands at ±K valley, which leads to an effective spin-
valley locking [11] and reduces the degrees of freedom in the
low-energy theory. Therefore, we only consider the spin-up
(-down) valence band in +K (−K) valley, as schematically
shown in Fig. 1(c). Furthermore, we treat +K and −K valleys
separately in the single-particle Hamiltonian because the two
valleys are separated by a large momentum when θ is small
[Fig. 1(b)]. Since the two valleys are related by time-reversal
symmetry T , we can focus on +K valley, of which the moiré
Hamiltonian is given by [10]

H↑ =
(

− h̄2(k−κ+ )2

2m∗ + �+(r) �T(r)

�
†
T(r) − h̄2(k−κ− )2

2m∗ + �−(r)

)
, (1)

where the 2 × 2 matrix is in the layer pseudospin space, the
diagonal terms are associated with each layer, and the off-
diagonal terms describe the interlayer tunneling. In Eq. (1),
m∗ is the valence band effective mass, the layer-dependent
momentum offset κ± = [4π/(3aM )](−√

3/2,∓1/2) capture
the rotation in the momentum space [Fig. 1(b)], and �±(r) is
the layer-dependent moiré potential given by

�±(r) = 2V
∑

j=1,3,5

cos(b j · r ± ψ ), (2)

where V and ψ , respectively, characterize the amplitude
and spatial pattern of the moiré potential, and b j is the
moiré reciprocal lattice vectors in the first shell. Here, b1 =
[4π/(

√
3aM )](1, 0) and b j with j = 2, 3 . . . 6 are related to

b1 by ( j − 1)π/3 rotation. The interlayer tunneling �T(r) is
parametrized by

�T(r) = w(1 + e−ib2·r + e−ib3·r), (3)

where w is the interlayer tunneling strength.
We take the effective mass m∗ to be 0.45m0 following

the experimental value [17] of monolayer WSe2, where m0

is the electron rest mass. Other parameters (V, ψ,w) could
in principle be estimated using first-principles calculations
[9,10,18,19]. However, such estimations may suffer from
large uncertainties as these parameters are very sensitive to
the layer separation that varies spatially in the moiré pattern.
Therefore, we treat (V, ψ,w) as phenomenological parame-
ters, and present a systematic study of the moiré band structure
as a function of these parameters. At this early stage of the
development of the subject, first-principles band structure
calculations, with their inherent quantitative uncertainties,
should be used with caution in developing low-energy effec-
tive theories with small energy scales, where the relevant band

FIG. 2. (a) The spatial variation of the layer pseudospin magnetic
field �(r) in the moiré pattern. The arrows represent the x and y
components of �(r) and the color map shows the z component.
The cyan, red, and orange dots mark high-symmetry positions as
in Fig. 1(a). (b) The effective magnetic field bz(r) that corresponds
to the skyrmion field in (a). Parameter values are (θ,V, ψ, w) =
(3◦, 5 meV, 0.5π, 20 meV).

parameters can be obtained from experimental measurements
(or can be taken as unknown phenomenological parameters of
the effective theory).

B. Layer pseudospin skyrmion

From the continuum Hamiltonian H↑ in the layer pseu-
dospin space, we can define a scalar potential �0 and a layer
pseudospin magnetic field � as follows:

�0(r) = �+ + �−
2

,

�(r) =
(

Re�†
T, Im�

†
T,

�+ − �−
2

)
.

(4)

We plot the layer pseudospin magnetic field � in Fig. 2(a).
The in-plane vector (�x,�y), which accounts for interlayer
tunneling, forms vortices and antivortices around RX

M and RM
X

positions, while �z, the z component of �, takes maximum
and minimum values at these two high-symmetry positions.
This spatial profile indicates that � forms a skyrmion lattice,
which is characterized by the following winding number Nw

[20]:

Nw ≡ 1

4π

∫
MUC

dr
� · (∂x� × ∂y�)

|�|3

=
{+1, V sin ψ > 0
−1, V sin ψ < 0.

(5)
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Here, Nw is quantized to +1 or −1 depending on the sign of
V sin ψ .

In the adiabatic limit where the electron’s pseudospin
follows the skyrmion texture locally, electron’s wave function
acquires a real-space Berry phase [20], which can be attributed
to an emergent (fictitious) orbital magnetic field bz which is
pointing out of plane:

bz(r) = h̄

2e

� · (∂x� × ∂y�)

|�|3 . (6)

The effective magnetic flux produced by bz over one MUC
is quantized to ±h/e, following Eq. (5). Figure 2(b) plots the
spatial variation of bz in the moiré pattern, and shows that bz

has a strong spatial variation with a large peak value on the
order of a few hundreds of teslas, much higher than any real
available laboratory magnetic fields.

The skyrmion lattice and the emergent bz field open up the
possibility for topological moiré bands. However, we note that
the adiabatic limit is not always satisfied in our system, and we
find that the skyrmion winding number and the band topology
do not have a one-to-one correspondence.

We also define an effective total potential �̃ = �0 + |�|.
Because the kinetic energy in Eq. (1) has a hole-type disper-
sion, low-energy states in our theory are those that are close to
the valence band edge. In a semiclassical picture, low-energy
states near the band edge tend to be confined near positions
where �̃ reaches its maximum value. The maximum positions
of �̃ can be at RM

M or RX
M/RM

X depending on the exact values
of (V, ψ,w), which can have important implications on the
band topology, as discussed in the following.

C. Topological phase diagram

We diagonalize the moiré Hamiltonian in Eq. (1) using
plane-wave expansion based on Bloch’s theorem, and show
representative moiré band structure in Fig. 3. To discuss band
topology, we use C±K,n to denote the Chern number of the
nth moiré valence band in ±K valleys. Here, we label the
moiré valence bands in a descending order of energy, and
the topmost moiré valence band in each valley is labeled as
the first one. We focus our discussion on +K valley since
C−K,n = −C+K,n because of time-reversal symmetry.

We find that the topological character of the moiré bands
depends on the precise values of the band parameters. In
Fig. 3(a), the first moiré band is topologically trivial with a
zero Chern number. By contrast, in Fig. 3(b) with a different
set of parameter values, the first moiré band is topologically
nontrivial with a finite Chern number. The fact that the
topology of the moiré bands depends on the details of the
parameter values is not surprising since the relevant band
Chern number depends on the details of the wave function and
is not determined uniquely by any symmetry. For the two sets
of parameter values used, respectively, in Figs. 3(a) and 3(b),
the corresponding skyrmion winding numbers Nw are both
quantized to +1, which shows that the moiré band topology
is not uniquely determined by Nw as the adiabatic limit is not
always satisfied.

The band topology turns out to have a close connection
with the spatial pattern of the effective total potential �̃. For
Fig. 3(a), the corresponding �̃ reaches its potential maximum

FIG. 3. (a), (b) Moiré band structure for different values of
(V, ψ ). θ is 3◦ and w is 20 meV. (c) Local density of states (LDOS)
for the moiré bands in (a). The horizontal axis is along a high-
symmetry line in the moiré pattern. (d) Similar as (c) but for moiré
bands in (b). (e) An effective triangular lattice model for the first
moiré band in (a). (f) An effective honeycomb lattice model for the
first and second moiré bands in (b). In (e) and (f), the cyan, red, and
orange dots mark RM

M , RX
M , and RM

X positions in the moiré pattern.

at RM
M positions. Therefore, electrons in the first moiré band

of Fig. 3(a) are confined to RM
M positions, which is verified

by the local density of states (LDOS) plotted in Fig. 3(c). It
follows that the first band in Fig. 3(a) can be described using a
tight-binding model on a triangular lattice formed by RM

M sites
[Fig. 3(e)].

As a comparison, the first and second moiré bands in
Fig. 3(b) are topological with Chern numbers of −1 and +1,
respectively. Electron density in both bands is peaked near
RX

M and RM
X positions [Fig. 3(d)], following the potential

maximum positions of the corresponding �̃. As shown in
Ref. [10], these two topological bands with opposite Chern
numbers as a whole can be described by the Haldane model
[21] on a honeycomb lattice formed by RX

M and RM
X sites

[Fig. 3(f)]. Therefore, the full system that consists of ±K
valleys can realize the Kane-Mele model [22] that includes
two time-reversed partner copies of the Haldane model.

To obtain a systematical characterization of the band topol-
ogy, we present a phase diagram in Fig. 4(a) which plots
the Chern number C+K,1 of the first moiré valence band as
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FIG. 4. (a) Topological phase diagram characterized by the
Chern number C+K,1 of the first moiré valence band. (b) The white
(green) regime represents parameter space where the potential max-
imum positions of �̃ are at RM

M (RX
M/RM

X ). The phase boundary
between topological (C+K,1 
= 0) and trivial (C+K,1 = 0) phases in
(a) closely follows the boundary between white and green regimes
in (b).

a function of V and ψ for a fixed value of w. There are
three phases: the topological phases with C+K,1 = +1 or −1,
and the trivial phase with C+K,1 = 0. The trivial (topological)
regime closely tracks the parameter space where the potential
maximum positions of �̃ are at RM

M (RX
M/RM

X ), as shown by
Figs. 4(a) and 4(b).

The topological phase diagram for the second and third
moiré valence bands are, respectively, plotted in Figs. 5(a)
and 5(b). The Chern number C+K,n for n = 2 and 3 has
a complicated dependence on the model parameters, which
gives rise to the colorful phase diagrams in Fig. 5. By com-
paring Figs. 4(a) and 5, we can conclude that the second and
third moiré bands can be topological even in the parameter
space where the first moiré valence band is topologically
trivial. This has important experimental consequences since,
in principle, these higher topological moiré bands can be
studied experimentally if the chemical potential resides in the
higher bands.

D. Comparison with STM experiment

To determine which phase has actually been realized in
tWSe2, we now turn to STM experiments on this system very
recently reported in Ref. [14]. In this experiment [14], the first
LDOS peak at the valence band side (i.e., holes) is found to
be primarily localized at RM

M positions and the second peak
is localized at RX

M and RM
X positions [Fig. 2(d) in Ref. [14]],

which is consistent with the LDOS structure [Fig. 6(a)] in the

FIG. 5. (a) Topological phase diagram characterized by the
Chern number C+K,2 of the second moiré valence band. The colors
encode different integer values of C+K,2. (b) Similar as (a) but for the
Chern number of the third moiré valence band.

trivial regime of Fig. 4(a). With this comparison between the
experiment [14] and our theory, we find that the first moiré
valence bands in tWSe2 are likely topologically trivial.

The energy separation �E between the first and second
LDOS peaks is found to be ∼40 meV for tWSe2 with θ ≈ 3◦
in Ref. [14]. We plot our theoretical value of �E as a function
of V and ψ at a fixed value of w in Fig. 6(b). The experimental
value �E ≈ 40 meV constrains (V, ψ,w) to a finite parame-
ter space that belongs to the topologically trivial regime of
Fig. 4(a), but does not lead to a unique determination of
(V, ψ,w). We choose a typical set of parameters (V, ψ,w) =
(4.4, 5.9, and 20 meV), which reproduces the experimental

FIG. 6. (a) Local density of states at RM
M (blue curve) and RX

M

(red curve) positions. The first (second) peak marked by blue (red)
dashed line is mainly at RM

M (RX
M ) positions. Parameter values are

the same as those for Fig. 3(a). We use �E to denote the energy
separation between the first and second peaks. (b) �E as a function
of V and ψ with w = 20 meV and θ = 3◦. The color map shows the
value of �E in the topologically trivial regime of Fig. 4(a). The white
region corresponds to the topological phases of Fig. 4(a), where we
do not present the value of �E .
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FIG. 7. (a)–(e) The first moiré valence band in +K valley for different values of Vz. The dashed lines mark the Fermi contour at the
van Hove energy. Parameter values are (θ,V, ψ, w) = (4◦, and 4.4, 5.9, and 20 meV). The plotted band is topologically trivial. (f)–(j) The
corresponding density of states for the band shown in (a)–(e). The horizontal axis represents the hole-filling factor n/ns. The first moiré valence
bands are fully filled (empty) at n/ns = 0 (1).

LDOS structure both qualitatively and quantitatively, and use
them in all the following calculations.

We make two additional remarks. (1) The experimental
LDOS peak energies are subjected to uncertainties because
the experimental LDOS curves are currently broad in energy
[14]. Future STM measurement with high resolution is re-
quired to fully determine the moiré band energetics and local
density distribution. (2) Lattice relaxation effects, which we
do not study explicitly in this work, can become important for
small twist angles (θ < 2.5◦) [23]. Therefore, we restrict our
study mainly to θ � 3◦.

III. FIELD-TUNABLE LATTICE MODEL

We focus on the first moiré valence band in the topolog-
ically trivial regime, and construct an effective tight-binding
model for this band in the presence of a layer potential
difference Vz. We note that Vz can also drive moiré bands that
are initially in the topological phase to become topologically
trivial [10]. With the experimentally tunable parameter Vz,
topologically trivial moiré bands can always be realized in
tWSe2.

The potential Vz is generated by an external out-of-plane
displacement field, and is a tuning knob in controlling the
band structure as well as many-body physics. With a finite
Vz, we replace �± in the moiré Hamiltonian of Eq. (1) by
�± ± Vz/2. At Vz = 0, the wave function of the first moiré
band in +K valley at the two corners of the moiré Brillouin
zone, κ+ and κ−, are primarily located in the bottom and
top layers, respectively. A finite layer potential difference Vz

shifts the band energies at κ+ and κ− in opposite ways, and
therefore, can lead to a drastic change in the band structure
as demonstrated in Figs. 7(a)–7(e). A noticeable effect is
that the van Hove saddle points in the band structure can be
effectively moved in the moiré Brillouin zone by tuning Vz.
There is a critical value of Vz, at which three van Hove saddle
points merge to a single higher-order saddle point [24–26] at
one of the corners of the moiré Brillouin zone [Fig. 7(d)].
As a result, the van Hove singularities in the density of
states (DOS) can be tuned from below to above half-filling
by changing Vz as shown in Figs. 7(f)–7(j). This can have
important implications on many-body physics, as discussed in
Sec. IV.

To build up a tight-binding model for this topologically
trivial band, we construct localized Wannier states. For this
purpose, we choose a gauge such that the bottom-layer com-
ponent of the Bloch wave function at each momentum is
real and positive at the origin in real space. A linear super-
position of such Bloch states leads to the Wannier state in
Fig. 8, which is exponentially localized around the origin
(one of the RM

M sites) and threefold rotational symmetric.
Appendix A provides the detailed procedure to construct
Wannier states.

The corresponding tight-binding model on the triangular
lattice formed by RM

M sites can be parametrized as

HTB =
∑

s

∑
i, j

ts(Ri − R j )c
†
i,sc j,s, (7)

where s =↑,↓ represents spin ↑ and ↓ states associated,
respectively, with +K and −K valleys, Ri represents a
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FIG. 8. (a), (b) Amplitude of Wb(r) and Wt (r), which are, re-
spectively, the bottom- and top-layer components of the Wannier
state. (c), (d) Phase of Wb(r) exp(−iκ+ · r) and Wt(r) exp(−iκ− · r),
where the additional phase factors exp(−iκ± · r) make the threefold
rotational symmetry transparent. The black lines mark the effective
triangular lattice. Parameter values are the same as those used for
Fig. 7(a).

site in the triangular lattice, and c j,s (c†
j,s) is electron an-

nihilation (creation) operator. ts(Ri − R j ) is the hopping
parameter, which is constrained by the following relations: (1)
Hermiticity of Hamiltonian (7) requires that ts(R) = t∗

s (−R);
(2) threefold rotational symmetry (C3) requires that ts(R) =
ts(R̂(2π/3)R), where R̂(2π/3) is a 2π/3 rotation matrix; (3)
time-reversal symmetry (T ) requires that ts(R) = t∗

−s(R). In
Fig. 9, we use |tn| and φ↑

n to denote the magnitude and phase
for representative hopping parameters between nth nearest

FIG. 9. Illustration of representative hopping parameters in spin-
↑ channel.

FIG. 10. (a) |tn| and (b) εUn as a function of the twist angle θ . ε

is the effective dielectric constant. Vz is 0 in (a) and (b). (c) |tn| and
(d) φ↑

n as a function of Vz. θ is 4◦ in (c) and (d).

neighbors in the spin-↑ channel. Since all the hopping terms
within the nth hopping shell are related by the aforementioned
three relations, they can be determined once |tn| and φ↑

n are
determined.

In Fig. 10, we present numerical values of |tn| and φ↑
n for

n up to 3. Figure 10(a) shows that |tn| decays exponentially
as the moiré periodicity increases (equivalently, the twist
angle θ decreases) since the Wannier states at different sites
become further apart. |tn| and φ↑

n can also be controlled
by Vz, as illustrated in Figs. 10(c) and 10(d). An important
effect is that the phase φ

↑
1 can be drastically changed by

Vz. φ
↑
1 is π at Vz = 0, and evolves to 4π/3 (2π/3) when

|Vz| becomes large enough so that the two layers in the
system become effectively decoupled. The dependence of φ

↑
1

on Vz follows the change in the band structure shown in
Fig. 7. When the hopping parameters take complex values
(i.e., φ↑

n deviates from 0 or π ), they become spin dependent,
which leads to effective spin-orbit couplings in the tight-
binding model. As a very common feature, moiré systems
have valley-dependent band structures [3,8,27], which, in our
case, lead to the spin-orbit coupling because of spin-valley
locking.

IV. HUBBARD MODEL

Many-body interactions are effectively enhanced for elec-
trons in the moiré band with a narrow bandwidth because
of the strongly suppressed kinetic energy. By combining the
tight-binding Hamiltonian in Eq. (7) with electron-electron
Coulomb repulsion, we can construct a generalized Hubbard
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model:

H =
∑

s

∑
i, j

ts(Ri − R j )c
†
i,sc j,s

+ 1

2

∑
s,s′

∑
i, j

U (Ri − R j )c
†
i,sc

†
j,s′c j,s′ci,s, (8)

where the repulsion U (Ri − R j ) between sites i and j is
calculated by projecting the Coulomb repulsion Ũ (r) =
e2/(εr) onto the Wannier states. Here, ε is the effective
background dielectric constant that can be controlled by the
three-dimensional dielectric environment. We take ε as a free
parameter in our theory since its precise value is tunable (and
not always precisely known). Numerical values of U0 (onsite
repulsion) and Un (n = 1, 2, 3 for repulsion between nth
nearest neighbors) are presented in Fig. 10(b). For a typical
value of ε about 10, the onsite interaction U0 can be at least
one order-of-magnitude greater than the hopping parameters
for twist angle θ below 5◦. Therefore, tWSe2 provides a
platform to simulate the generalized Hubbard model on a
triangular lattice. Moreover, the hopping parameters can be
in situ controlled by an external displacement field. The effec-
tive interacting model is a generalized Hubbard model since
both interaction and hopping in Eq. (8) are not necessarily
restricted to being onsite or nearest-neighbor, respectively, as
the whole many-body Hamiltonian matrix of Eq. (8) can be
calculated from our moiré band calculations for a given ε.

A. Heisenberg model

We consider carrier density at half-filling, where there is
one electron per moiré unit cell in the first moiré valence
bands (equivalently, one hole per moiré unit cell when count-
ing from the charge neutrality point of the twisted bilayer).
The strong onsite repulsion U0 suppresses double occupation
at the same moiré site and gives rise to a Mott insulator. In
this Mott limit (where U0 is very large, much larger than
the hopping parameters), the low-energy degrees of freedom
are the electron spins at different sites. By retaining only
nearest-neighbor hopping in the tight-binding model and on-
site repulsion U0, we can map the Hubbard model in Eq. (8)
to spin Heisenberg model [28]:

H = 4|t1|2
U0

′∑
〈i, j〉

(
Sz

i Sz
j + cos(2φ

↑
i, j )

∑
α=x,y

Sα
i Sα

j

+ sin(2φ
↑
i, j )(Si × S j ) · ẑ

)
, (9)

where the sum over 〈i, j〉 is restricted to nearest neighbors,
the prime on the sum indicates that each pair of sites is
counted only once, and Si is the spin- 1

2 operator at site i.
Note that this mapping of the Hubbard model in Eq. (8)
to the Heisenberg model in Eq. (9) involves keeping only
the onsite interaction and nearest-neighbor hopping as in the
original minimal (rather than the generalized) Hubbard model.
In general, a more complete mapping of the full fermion
model of Eq. (8), i.e., the generalized Hubbard model, to
the spin model of Eq. (9) is, in principle, possible, but this
involves complicated multispin terms beyond the Heisenberg

model. This is unnecessary in the current problem since U0

and t1 indeed dominate the quantitative physics, thus allowing
a mapping from an effective Hubbard model to an effective
Heisenberg model of Eq. (9). The first two terms in Eq. (9)
are spin-exchange interactions as in a standard anisotropic
Heisenberg model, while the last term (Si × S j ) · ẑ describes
as an effective Dzyaloshinskii-Moriya (DM) interaction that
is generated by the spin-orbit coupling inherent in the tight-
binding model of Eq. (7). In Eq. (9), φs

i, j is the phase of
the hopping parameter ts(Ri − R j ) between nearest-neighbor
sites, and ẑ is the unit vector along out-of-plane direction. The
relation φ

↓
i, j = −φ

↑
i, j is used in the simplification that leads

to Eq. (9). One of the nearest-neighbor hopping phases in
the spin-up channel is shown in Fig. 10 as φ

↑
1 , and phases

for other nearest-neighbor hopping parameters are related to
φ

↑
1 by the three relations given below Eq. (7). Therefore, the

single parameter φ
↑
1 , which is tunable by the layer potential

difference Vz, determines the ground state of the spin effective
Heisenberg model in Eq. (9).

For Vz = 0, φ
↑
1 is π , the DM interaction vanishes, and

the model in Eq. (9) becomes the standard Heisenberg
model with spin SU(2) symmetry on a triangular lattice.
This isotropic Heisenberg model with only nearest-neighbor
exchange coupling has a family of degenerate ground states
with three-sublattice 120◦ long-range antiferromagnetic (AF)
order, which we refer to as 120◦ AF states.

For a finite Vz, φ
↑
1 deviates from π , and the finite DM inter-

action in the spin model (9) reduces the spin SU(2) symmetry
down to U(1) symmetry, which originates from the valley
U(1) symmetry in the Hubbard model of Eq. (8). In Fig. 11,
we show the calculated classical magnetic phase diagram of
Eq. (9) as a function of φ

↑
1 . This diagram is obtained by

approximating the spin operator Si as a classical vector with a
fixed length and minimizing the energy with Luttinger-Tisza
method [29]. In our system, φ

↑
1 takes values between 2π/3

and 4π/3, and crosses π when Vz crosses 0, resulting in a
sign change in the DM interaction. The DM interaction acts
as an anisotropy that favors in-plane spin ordering, and selects
a subset of the 120◦ AF states to be the ground state. In
particular, the spin ground states for Vz < 0 and Vz > 0 are,
respectively, the 120◦ AF− and 120◦ AF+ phases, which are
demonstrated in Figs. 11(b) and 11(c). To distinguish these
two phases, we choose three sites (A, B, C) along a vertical
line in the triangular lattice, as marked in Fig. 11. The spins
along the path A → B → C rotate clockwise (anticlockwise)
in the 120◦ AF− (AF+) phase. Therefore, these two phases
have opposite vector-spin-chirality orders that can be charac-
terized by SA × SB.

B. Mean-field theory

We also perform a Hartree-Fock mean-field study of the
generalized Hubbard model defined by Eq. (8) at half-filling.
The mean-field calculation is not subject to the limit that
U0 � |t1| and provides an estimation of the charge excitation
gap for the interaction-driven correlated insulator at half-
filling. We use the mean-field Ansatz from the spin configu-
ration in the ground state of the Heisenberg model of Eq. (9),
i.e., the 120◦ AF+ (AF−) states for positive (negative) Vz.
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FIG. 11. (a) Phase diagram of the Heisenberg model in Eq. (9)
as a function of φ

↑
1 . 120◦ AF± refer to in-plane antiferromagnetic

phases shown in (b) and (c), while FM represents an in-plane
ferromagnetic phase. In tWSe2, φ

↑
1 is constrained between 2π/3 and

4π/3, so only the 120◦ AF± phases are possible.

These two different Ansätze for Vz > 0 and Vz < 0 can also
be understood from Fermi-surface instability. As shown in
Fig. 12, the spin-↑ and -↓ Fermi surfaces in the noninteracting
limit have an approximate nesting, with the opposite nesting
vector in the momentum space for opposite signed Vz. This
approximate nesting can lead to interaction-driven instability
in the spin-density-wave (SDW) channel. The SDW order
parameter can be taken as 〈c†

k+Q,↓ck,↑〉 and 〈c†
k−Q,↓ck,↑〉, re-

spectively, for Vz > 0 and Vz < 0. Here, we approximate Q by
the commensurate wave vector κ+ − κ− that connects the two
corners of the moiré Brillouin zone. The spin ordering wave
vectors ±Q are opposite for opposite signed Vz, following
the Fermi-surface configurations shown in Fig. 12. The order
parameters 〈c†

k±Q,↓ck,↑〉 in momentum space correspond to
the 120◦ AF± state in real space. Therefore, the Heisenberg
model in the strong coupling limit and the Fermi-surface
instability in the weak coupling limit are consistent with each
other.

FIG. 12. Noninteracting Fermi surfaces at half-filling for spin
↑ (blue) and ↓ (red). The dashed vectors indicate an approximate
nesting between spin-↑ and -↓ Fermi surfaces. Vz is negative in
(a) and positive in (b).

With the above mean-field Ansätze, we perform a self-
consistent mean-field calculation for the Hubbard model (8)
that takes into account hopping up to the third-nearest neigh-
bors and the onsite Coulomb repulsion U0. Including off-site
Coulomb repulsion, which is much smaller than the onsite
term U0, where i and j are different in the second term of
the right-hand side of Eq. (8) is straightforward, but does not
lead to any qualitatively different results (see Appendix B),
essentially implying a small renormalization of the value of
the Hubbard interaction U0. The calculated charge gap EG at
half-filling is shown in Fig. 13. EG is finite for a large range

FIG. 13. (a) The noninteracting density of states at half-filling as
a function of θ and |Vz|. On the dashed line, van Hove singularities
are at half-filling. (b) The interaction-driven insulating gap as a
function of θ and |Vz|. At a given θ , the gap has a dome-shape
dependence on |Vz|, which is illustrated in (c) and (d).
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of twist angle θ . Therefore, there is no need to fine tune θ in
tWSe2 in order to realize correlated insulators as is absolutely
necessary for twisted bilayer graphene, where the correlated
insulator phase is very fragile. We find that EG has a strong
dependence on Vz particularly for weak interactions (large
dielectric constant ε). This follows the strong dependence of
the noninteracting DOS as well as the nesting degree of Fermi
surfaces at half-filling on Vz, as demonstrated in Fig. 7 and also
in Fig. 13(a). A larger noninteracting DOS and a better nesting
degree at half-filling implies a stronger interaction-driven
instability toward symmetry-breaking states. As a result, EG

can have a dome-shape dependence on Vz, and the interaction-
driven insulator at half-filling can be turned on and off by Vz

[Figs. 13(b)–13(d)]. We note that the calculated charge gap in
Fig. 13 for reasonable values of ε are of the order of tens of
meVs implying rather robust correlated insulating phases in
twisted WSe2.

We further study the effect of an out-of-plane magnetic
field Bẑ on the half-filled correlated insulator, and consider
the following Zeeman term:

HZ = gvμBB
∑

i

(c†
i,↑ci,↑ − c†

i,↓ci,↓)/2, (10)

where μB is the Bohr magneton. The effective g factor gv has
three contributions, gv = gs + ga + gb, where gs, ga, and gb,
respectively, capture the spin, atomic orbital, and Bloch band
contributions. The spin g factor gs is 2. The atomic orbital
characters of states at the ±K valley valence band maximum
are mainly dx2−y2 ± idxy, and the atomic g factor is therefore
ga = 2 − (−2) = 4. Electrons in Bloch bands carry an addi-
tional orbital magnetic moment [30], which contributes to gb.
Since gb depends on the details of the moiré band structure,
we do not present a quantitative estimation of it. In the Mott
limit where electrons are strongly localized, gb should only
lead to a small correction. We take gv as a phenomenological
parameter, and expect it to be of the same order of magnitude
as gs + ga = 6.

In the presence of the Bẑ field, the 120◦ AF± states
turn into canted antiferromagnets (CAF). We calculate the
charge gap EG at half-filling as a function of B, and show
representative results in Fig. 14. With other parameters fixed,
there is a critical field Bc. For |B| < Bc, the ground state is
in the CAF phase with spins canted toward the out-of-plane
direction, and EG decreases with increasing |B| field due to
a loss of exchange energy. For |B| > Bc, the ground state
is in a ferromagnetic state (FMz) with all spins aligned in
the out-of-plane direction, and EG increases with increasing
|B| field due to the Zeeman energy. The FMz phase is also
a valley-polarized state. This valley-polarized state carries
zero (finite) Chern number when the first moiré valence
bands are in the topologically trivial (nontrivial) phase, and
supports vanishing (quantized) anomalous Hall effect, which
provides a mechanism to identify the band topology using
transport measurement. Here, we focus on the topologically
trivial moiré bands, and the corresponding FMz phase has no
anomalous Hall effect.

We can also estimate the critical field Bc from the Heisen-
berg model in Eq. (9), and Bc estimated in this way is
proportional to the spin-exchange interaction J1 = 4|t1|2/U0.

(a)

0
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4

0 25 50

(b)

0 25 50

(c)

0

20

40

0 2 4
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15

20

0 2 4
0

1

FIG. 14. (a) The charge gap EG at half-filling as a function Vz

and B. The dashed line marks Bc, above (below) which EG increases
(decreases) with increasing B field. (b) Similar plot as (a) but for
a different set of parameter values. (c) and (d) are line-cut plots
for (a) and (b), respectively. The red lines in (c) and (d) plot sz,
which is the spin polarization (per site) along the ẑ direction. |sz| = 1
represents full spin polarization.

Therefore, Bc is expected to decrease with decreasing twist
angle θ , following the weakening of J1 at smaller θ . The
mean-field results shown in Fig. 14 are indeed consistent with
this θ dependence of Bc.

C. Comparison with transport experiment

We compare our theoretical studies with the transport
experiment on tWSe2 in Ref. [15]. This experimental paper
[15] presents transport study on multiple devices of tWSe2

with the twist angle θ in the range between 4◦ and 5◦, and
reports correlated insulators at half-filling of the first moiré
valence bands. Our theory is consistent with this experiment
[15] in key aspects as discussed in the following.

The measured van Hove singularities determined from Hall
effect have a strong dependence on displacement field [15].
This behavior is captured by our band structure calculation
shown in Fig. 7, which shows that the van Hove singularities
can be tuned from below to above half-filling by Vz.

The correlated insulators at half-filling develop for a large
range of twist angle up to about 5◦, and is controllable via
displacement field [15]. Our mean-field calculation shown in
Fig. 13 provides a qualitative description of this observation.
In particular, we also find a dome-shape dependence of the
insulating gap at half-filling on the layer potential difference,
as in the experiment [15]. This dome-shaped experimental
insulating gap is a few (∼2–4) meV typically in Ref. [15]
rather than being >10–40 meV or so as we find mostly for
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the excitation gap in our theory. We note, however, that the
measured insulating gap in Ref. [15] is even quantitatively
consistent with our theoretical charge gap in Fig. 13 for a large
value of ε (40 or above). This quantitative agreement for large
dielectric constant should not be taken too seriously because
our mean-field theory is bound to overestimate the magnitude
of the gap and the experiment measures a transport activation
gap which is typically much smaller than the theoretical
excitation gap.

The correlated insulating gap at half-filling is experimen-
tally found to decrease with increasing out-of-plane magnetic
field when the field is weak [15]. Our theoretical results shown
in Fig. 14 agree with this observation for weak B fields. When
the B field is strong enough, it can drive a spin- (equivalent
to valley-) polarized insulating state, of which the charge gap
becomes an increasing function of B. Therefore, the charge
gap at half-filling can have a nonmonotonic dependence on
B, which has also been experimentally observed [31]. The
absence or presence of anomalous Hall effect in the spin-
(valley-) polarized insulator at half-filling provides a transport
signature to determine the topological nature of the moiré
bands.

V. CONCLUSION

In summary, we present a systematic theoretical study of
tWSe2, and demonstrate the perspective of using this moiré
system as a platform to realize interesting single-particle
physics as well as many-body physics. For the single-particle
moiré bands, we calculate the topological phase diagrams
characterized by the valley-contrast Chern numbers. By com-
paring the theoretical LDOS with STM measurements [14],
we conclude that the first moiré valence band is likely to
be topologically trivial, whereas the second and third moiré
valence bands are likely to be topological. By increasing the
hole density in the system, it should be possible to study
the topological moiré bands experimentally if one can push
the Fermi level into the higher moiré bands.

For the interacting physics, we focus on the first moiré
band, and construct a generalized Hubbard model. We show
that tWSe2 can act as a highly tunable Hubbard model
simulator. In particular, the layer potential difference Vz can
drastically change the noninteracting moiré bands, control
the charge excitation gap of the correlated insulators at half-
filling, and generate an effective DM interaction in the cor-
responding spin Heisenberg model at half-filling. The moiré
bands in tWSe2 are relatively flat over a large range of twist
angles θ . Therefore, observation of correlation effects does
not require fine tuning of θ in this system, which represents
an advantage compared to TBG.

We envision that several directions can be explored fol-
lowing our theory. The transport experiment in Ref. [15] has
been limited to filling factors within the first moiré valence
bands, which are likely to be topologically trivial. It would
be interesting to increase the hole-doping level, and perform
transport study in the second and even third moiré valence
bands which likely carry finite valley-contrast Chern numbers.
The spin-dependent Berry curvatures in these bands can lead
to large spin Hall effect. The enhanced Coulomb interactions
may drive valley polarization, which, combined with the finite

valley Chern number, can lead to quantum anomalous Hall
effects.

We show that a field-tunable DM interaction can be real-
ized in the spin Heisenberg model. This DM interaction pins
vector spin chirality of the antiferromagnetic ground state. It
is desirable to explore effects of DM interaction on spin and
magnon transport, and find experimental probes that can dis-
tinguish opposite vector spin chiralities. The 120◦ AF± states
spontaneously break the U(1) symmetry of the Heisenberg
model in Eq. (9), which can then support spin superfluidity.

We construct a generalized Hubbard model on triangular
lattice with a field-tunable spin-orbit coupling, and study this
model at half-filling by mapping it to the Heisenberg model
as well as using a mean-field theory. It is conceivable to
investigate this model using other techniques and also at other
filling factors. The Hubbard model on triangular lattice can
potentially host a variety of intriguing phases, for example,
quantum anomalous Hall insulators [32], chiral superconduc-
tors [33], and even spin liquids [34]. The inclusion of spin-
orbit coupling should enrich the physics. Possible signatures
of superconductivity in tWSe2 have been reported in Ref. [15].
Our theoretical model can be a starting point to address
exotic many-body physics including superconductivity in this
system.

While our theory focuses on ground-state physics, collec-
tive excitations, for example, excitons, in moiré pattern can
also be very interesting [35–37]. The realization of correlated
insulators in tWSe2 combined with the strong light-matter
interaction already present in TMDs opens up the possibility
to study optical physics in the strongly correlated regime.
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APPENDIX A: WANNIER STATES AND HUBBARD
MODEL PARAMETERS

When the first moiré valence band is topologically trivial,
the corresponding Wannier state W (r) located at the site
R = 0 and associated with +K valley can be constructed as
follows:

W (r) = 1√
N

∑
k∈BZ

ψk(r), (A1)

where the momentum k is summed over the first moiré
Brillouin zone (BZ), and N is the number of k points in the
summation. ψk(r) is the Bloch wave function of the moiré
Hamiltonian H↑ in Eq. (1) and can be represented by a two-
component spinor [ψk,b(r), ψk,t (r)] in the layer pseudospin
space. Correspondingly, W (r) is also a two-component spinor.
We choose the phase of ψk(r) such that its bottom layer com-
ponent is real and positive at the origin in real space, namely,
ψk,b(r = 0) > 0 for every k. With this gauge, we obtain a
symmetric Wannier state located at R = 0, as illustrated in
Fig. 8. Wannier states located at a generic lattice site R are
obtained through lattice translation, WR(r) = W (r − R).
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The hopping integral in the tight-binding model is calcu-
lated by

t↑(Ri − R j ) =
∫

W ∗
Ri

(r)H↑WR j (r)d2r

= 1

N

∑
k∈BZ

eik·(Ri−R j )εk,↑, (A2)

where εk,↑ is the band energy of the first moiré valence band in
+K valley. We find that εk,↑ can be accurately reconstructed
by including hoppings up to the third-nearest neighbors in the
tight-binding model. By time-reversal symmetry, the Wannier
state at site R associated with −K valley can be defined to be
W ∗

R (r).
The density-density Coulomb interaction U between two

sites Ri and R j is given by

U (Ri − R j )

=
∫

d2r1d2r2V (r1 − r2)
∣∣WRi (r1)

∣∣2∣∣WR j (r2)
∣∣2

=
∫

d2q
(2π )2

V (q)|M(q)|2eiq·(Ri−R j ), (A3)

where V (r) = e2/(ε|r|) is the Coulomb interaction, V (q) =
2πe2/(ε|q|) is its Fourier transform, and M(q) is defined by

M(q) =
∫

d2r|W (r)|2eiq·r. (A4)

We take the dielectric constant ε to be a constant that is
determined by the environmental screening. This is an approx-
imation that neglects the frequency and position dependence
of ε. Higher-energy moiré bands, which are neglected in the
construction of the interacting model, can generate frequency-
dependent interactions (equivalently, ε becomes frequency
dependent) [38]. In addition, environmental screening from
the encapsulating material can be highly nonlocal, which
effectively makes ε to be position dependent [39]. We expect
that these complications do not change our qualitative results,
and leave them to future study.
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FIG. 15. (a) The interaction-driven insulating gap EG at half-
filling as a function of θ and |Vz|. The mean-field calculation is
done by including interaction terms with (U0,U1,U2,U3). (b) A
line-cut plot of (a) at θ = 4◦. The gap EG only differs from Fig. 13
quantitatively while the dome feature as a function of |Vz| does not
change.

APPENDIX B: MEAN-FIELD RESULTS WITH
REMOTE INTERACTIONS

We perform the mean-field calculation of the Hubbard
model by performing Hartree-Fock decomposition of the in-
teraction terms, following procedures discussed in Ref. [40].
The mean-field equation is solved through iterations, with
initial Ansatz from the magnetic phase of the Heisenberg
model. We have also used random spin configurations within
a
√

3 × √
3 magnetic supercell as initial inputs, and found that

the final self-consistent mean-field solution does not change.
In the main text, mean-field results shown in Fig. 13 are

obtained by including only the onsite Coulomb interaction U0

in the Hamiltonian. We have also performed the mean-field
calculation by taking into account remote interactions up to
U3; the corresponding results presented in Fig. 15 demonstrate
that interactions beyond the onsite repulsion U0 do not lead
to a qualitative change of the correlated insulating gap at
half-filling. This provides a justification on why we can only
consider the onsite repulsion when studying interaction effects
at half-filling. Physically, the correlated insulating state at
half-filling has the nature of a Mott insulator, and is driven
primarily by the onsite repulsion U0.
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