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Quantum phase transition in the Yukawa-SYK model
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We study the quantum phase transition upon varying the fermionic density ν in a solvable model with random
Yukawa interactions between N bosons and M fermions, dubbed the Yukawa-SYK model. We show that there
are two distinct phases in the model: an incompressible state with gapped excitations and an exotic quantum-
critical, non-Fermi liquid state with exponents varying with ν. We show analytically and numerically that the
quantum phase transition between these two states is first-order, as for some range of ν the NFL state has
a negative compressibility. In the limit N/M → ∞, the first-order transition gets weaker and asymptotically
becomes second-order, with an exotic quantum-critical behavior. We show that fermions and bosons display
highly unconventional spectral behavior in the transition region.
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I. INTRODUCTION

The non-Fermi liquid (NFL) is one of the most fascinating
phenomena in modern condensed matter physics. It violates
the fundamental Landau paradigm that quasiparticles must
become weakly damped at low enough energies. The key
feature of a NFL is a power-law form of the fermionic self-
energy, �(ω) ∝ ωx with x < 1, which leads to the vanishing
of the quasiparticle residue at ω = 0. The NFL behavior has
been observed in quite a few unconventional superconducting
materials [1–5]. It is widely believed to develop for itinerant
fermions near density-wave or q = 0 instabilities in either
spin or charge channels [6–17], and in systems with fermionic
excitations coupled to emergent gauge fields [18–22], such as
in quantum spin liquids and half-filled Landau levels.

The theoretical understanding of a NFL remains a chal-
lenge. Most of earlier studies of NFLs considered itinerant
fermions coupled to soft bosonic modes near a quantum-
critical point (QCP). These models show nontrivial NFL
behavior at the one-loop order, however in most cases the loop
expansion is not controlled because of logarithmic singulari-
ties, even in the large N limit, [12,15], and one has to introduce
additional modifications to the model [23–25], e.g., dimension
regularization or matrix large-N , to keep the calculations
under control. Another route to NFL, which has emerged re-
cently [26–30], explores Sachdev-Ye-Kitaev(SYK)-type mod-
els [31–37]. These models describe randomly interacting
fermions in a quantum dot. The advantage of SYK model is
that it is exactly solvable in the large-N limit and displays
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NFL behavior with a particular fractional exponent x = 1/2
for the self-energy. Besides, the SYK model has a hidden
holographic connection to quantum black holes [32,33,33,38]
and in this respect is a simple prototypical model for both NFL
and quantum gravity.

In this communication, we consider the generalization of
the SYK model, the Yukawa-SYK (Y-SYK) model [39–41],
in which M flavors of dispersion-less fermions in a quantum
dot randomly interact with N flavors of massive bosons, e.g.,
optical phonons or gapped collective spin or charge fluctu-
ations. The interest to this model has been triggered by its
rich and unconventional physics, and by recent experimen-
tal discoveries of strongly correlated behavior in flat band
systems like magic angle twisted bilayer graphene [42,43]
and dxy band in Fe-based superconductors [44]. The Y-SYK
model has been earlier studied at half-filling [39,40,45]. It was
shown that the interaction “self-tunes” the system into a NFL,
quantum-critical (QC) regime, despite that a bare bosonic
mass is finite.This QC regime may in turn become unstable
towards non-BCS superconductivity [39–41,46–49,28,50,51].
Like the SYK model, the Y-SYK model also saturates the up-
per bound for the onset rate of quantum chaos [52], indicating
the existence a classical holographic dual.

We report the results of on the Y-SYK model away from
half-filling, at fermionic density ν �= 1/2. For small deviations
from ν = 1/2, we analytically obtain low-energy forms of the
fermionic and bosonic Green’s functions with NFL exponents
and show that the fermionic self-energy and the spectral
function become asymmetric in frequency. At ν = 1, we
show that fermions form an incompressible state and bosons
remain gapped. We then focus on the quantum phase transition
between the compressible NFL state and the incompressible
state. We show both analytically and numerically that the
phase transition is generally first-order because the chemical
potential is a nonmonotonic function of ν, and the compress-
ibility dν/dμ < 0 for a range of ν. We argue that this is due
to robust low-energy properties of the Y-SYK model. In the
transition region, the fermionic and bosonic spectral functions
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displays a peculiar precursor behavior [53]. In the particular
limit, where the number of bosonic flavors well exceeds the
number of fermionic ones, nonmonotonicity disappears and
the transition becomes second-order. Even in this case, bosons
displays a highly nontrivial “gap filling” behavior: the bosonic
mass gap remains finite on both sides of the transition, but on
the NFL side of the transition the spectral weight develops
around zero energy, and the width of the range, where this
happens, increases as the system moves deeper into the NFL
region. Taken together, these results reveal rich and universal
behavior of zero-dimensional quantum-critical NFL systems.

Some features of the Y-SYK model, like the asymme-
try of fermionic self-energy �(iω), are similar to those of
the complex SYK model [37,54]. Recent numerical results
[55,56] for this model suggest that it may also undergo a
first-order quantum phase transition between a NFL state and
an insulating state. However, the analytical understanding of
that transition is still lacking. In particular it remains unclear
whether the first-order transition is a universal property of the
complex SYK model, or it depends on nonuniversal aspects
of the system behavior at larger frequencies.

II. THE MODEL

The Y-SYK model describes M flavors of dispersion-less
fermions, randomly coupled to N flavors of bosons, each with
a finite mass m0. The dynamics of the model on the Matsubara
axis is described by the Lagrangian

L =
M∑

i, j=1

[c†
i (∂τ − μ)ci] +

N∑
α=1

[
1

2
(∂τφα )2 + m2

0

2
φ2

α

]

+ i√
MN

∑
i jα

tα
i jc

†
i c jφα

(
tα
i j = −tα

ji

)
, (1)

where {i, j} are fermion flavor indices, {α} labels the bosons,
and μ is the chemical potential. We have kept the spin
indices implicit. In an open system μ is a free (input) pa-
rameter, while in a closed system its value is set by the
fermionic density per flavor ν ≡ 〈c†

i ci〉. The Yukawa fermion-
boson coupling is assumed to be random: 〈tα

i j〉 = 0, 〈tα
i jt

β

kl〉 =
(δikδ jl + δilδ jk )δαβω3

0. We assume ω0 to be positive. We have
chosen the Yukawa coupling to be imaginary, such that the ef-
fective interaction in the Cooper channel is repulsive [39,40].
The model has an exact particle-hole symmetry, under which
μ → −μ. For definiteness, we set μ > 0. Previous studies
have focused on the system at the half filling ν = 1/2, in
which case μ = 0.

The model has three energy scales: the bare mass of a
boson m0, the strength of the Yukawa coupling ω0, and the
chemical potential μ. We will focus on the “weak-coupling
limit” ω0 
 m0. We will see that in this limit there are only
two relevant energies, μ and ωF = ω3

0/m2
0. We emphasize that

already at weak coupling, the system behavior at low energies
is highly nonperturbative and includes self-tuned criticality
and NFL. We work at T = 0 and take both M and N as large
numbers, but keep the ratio N/M is a parameter.

At the bare level, bosons are gapped, and fermions are
free dispersionless quasiparticles. Our goal is to find the fully
dressed bosonic and fermionic propagators G−1(iω) = iω +
�(iω) + μ and D−1(i�) = �2 + �(i�) + m2

0. We extended

results of earlier analysis at half-filling [39–41] to μ �= 0
and found that for M, N � 1 the fermionic and bosonic self-
energies are expressed self-consistently via the Schwinger-
Dyson equations

�(i�) =2M

N
ω3

0

∫
ω

G(iω − i�/2)G(iω + i�/2),

�(iω) = − ω3
0

∫
ω

D(i�)G(iω − i�). (2)

where
∫
ω

≡ ∫
dω/(2π ).

We first show that the system behavior is qualitatively
different at larger μ and at smaller μ, and then consider the
phase transition between the two phases by tuning μ(ν) in an
open (closed) system.

III. INCOMPRESSIBLE GAPPED PHASE AT LARGE μ

The point of departure for the analysis at large μ is the
observation that within a direct perturbative expansion the
bosonic polarization

�(i�) ∼
∫

ω

1

i(ω + �/2) + μ

1

i(ω + �/2) + μ
= 0 (3)

because the poles of the integrand are in the same frequency
half-plane. Using bare D(i�) = 1/(�2 + m2

0 ), we obtain for
the fermionic self-energy

�(iω) = −
∫

�

ω3
0

�2 + m2
0

1

i(ω − �) + μ
≈ −ωF /2. (4)

Substituting this into (2), we find G(iω) = 1/(iω + (μ −
μ∗)), where μ∗ = ωF /2. The self-energy comes from low-
energy fermions and remains the same if we compute it self-
consistently. Similarly, �(i�) still vanishes if we re-evaluate
it with dressed fermionic Green’s functions [57]. This self-
consistent approach is valid as long as fermions are gapped,
i.e., μ > μ∗. At smaller μ, such solution does not exist, as one
can easily verify. Because fermionic energies are all negative,
the filling ν = 1 independent on μ > μ∗, hence this phase is
incompressible (the compressibility dν/dμ = 0).

IV. NFL PHASE AT SMALLER μ

At half-filling (ν = 1/2, μ = 0), previous studies have
found that �(i�) + m2

0 ∝ |�|1−2x0 and �(iω) + μ ∝
i|ω|x0 sgn ω, where x0 is a function of N/M, ranging
from x0 = 1/2 − (M/2πN )1/2 at N/M → ∞ to x0 = 0
at N/M → 0 (x0 = 0.16 for N = M, see Eq. (6) below). This
NFL behavior holds at small frequencies for any m0 and any
nonzero ωF . Note that �(0) = −m2

0, i.e., the dressed bosonic
mass vanishes. This implies that the system self-tunes to
quantum critical regime, despite that the bare mass is large
compared to the strength of the interaction (m0 � ω0).

For a nonzero μ, we find that bosons remain massless and
fermions retain NFL behavoir, but fermionic self-energy be-
comes an asymmetric function of ω. Specifically, for �,ω 

ωF ,

�(iω) + μ ≡ �̃(iω) = ω f

∣∣∣∣ ω

ω f

∣∣∣∣
x

(i sgn(ω) + α),

�(i�) + m2
0 ≡ �̃(i�) = βm2

0

∣∣∣∣ �

ω f

∣∣∣∣
1−2x

, (5)
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where α parametrizes spectral asymmetry [54] and ω f is the
NFL energy scale, below which |�(iω)| < ω. Altogether we
have four dimensionless parameters: x, α, β, and ω f /ωF .
Substituting these forms into Eq. (2) and matching the power-
law parts �̃ and �̃, we obtain two equations: (see Appendix
A)

(1 − α2)
1 + sec πx

1/x − 2
+ 2α2

1/x − 2
=(1 + α2)

N

2M
, (6)

ωF

4πβω f (1 + α2)

�2(−x)

�(−2x)
= − 1. (7)

These relations are exact as relevant fermionic and bosonic
frequencies in (2) are comparable to external ω and �, which
we set to be much smaller than ω f . Note that the matching the
real and the imaginary parts of �̃(iω) gives the same equation.
Physical values of the exponent x in (6) and (7) are x �
1/2. A larger x would lead to negative βω f , which violates
the unitarity of the theory. For x → 1/2, α → 1 (α − 1 ≈
π (1/2 − x)). At half-filling, α = 0 and x = x0 is a function
of M/N (x0 ≈ 0.16 at M/N = 1). The two other conditions
are �(0) = −μ and �(0) = −m2

0. Using Eq. (2), we obtain

μ

ωF
=

∫
ω

1

iω + �̃(ω)

1

ω2 + �̃(ω)
,

1

ωF
=

∫
ω

−2M/N

(iω + �̃(ω))2
.

(8)

Substituting �(iω) and �(i�) from (5), we obtain

β = F1(x), α = μ

ωF
F2(x). (9)

The functions F1,2(x) are regular O(1) functions of the
argument, and F1(1/2) = 1, F2(1/2) = 1/2. We present them
in Appendix A1. The relations (9) are not exact, because
relevant ω in (8) are of order ω f . For these ω, Eqs. (5)
are valid up to corrections O(1), as the forms of �(iω)
and �(i�) change at ω,� > ω f : the bosonic self-energy
gradually decreases and the fermionic �(ω) acquires a Fermi
liquid form [58]. Nevertheless, we find that the relations
F1(1/2) = 1 and F2(1/2) = 1/2 are actually exact (see
Appendix A1), i.e., at x = 1/2, μ = μ∗ = ωF /2.

While α cannot be universally expressed via the chemical
potential, it can be exactly expressed via the density ν. Using
the Luttinger relation between ν and properly regularized∫

G(iω)dω, we obtain (see Appendix B)

ν = 1

2
+ tan−1 α

π
+ x

2 sin(πx)

2α

1 + α2
. (10)

The same relation holds for the complex SYK model [37,54].
From Eqs. (10) and (7), we see that as x → 1/2 and α → 1,
the filling ν approaches 1 and ω f tends to zero. This implies
that the range of NFL behavior vanishes at ν → 1.

Combining Eqs. (6), (9), and (10), we obtain α and μ as
functions of the filling ν. We plot these two functions for
M = N in Fig. 1. We see that both α and μ are nonmono-
tonic functions of ν, and there is a range of ν where the
compressibility dν/dμ is negative. The relation α(ν) is exact,
the other one, μ(ν), is approximate, as to get it we used Eq.
(9). To verify that the nonmonotonic behavior of μ is not
the artifact of our approximation, we iteratively solved the
nonlinear integral equations (2) for �(iω) and �(i�) for all

FIG. 1. (Top) The dependence of the spectral asymmetry param-
eter α on the filling ν. (Bottom) The qualitative (solid line) and
numerical (red dots) dependence of the chemical potential μ on
the filling ν. The solid line was obtained by using the low-energy
form (5) for the self-energies for all frequencies. The vertical dashed
line in the lower panel represents the incompressible phase. We set
N = M, in which case x0 = 0.16. The solid line actually has a minute
dip at ν ≈ 0.98 (see Appendices A1 and B). It is not present in the
full numerical solution and likely is an artifact of using Eq. (5) at all
energies.

frequencies, using the analytical power-law forms in (5) as an
input. We show the numerical results [59] for μ(ν) for M = N
in Fig. 1. We see that the nonmonotonic behavior persists.

V. QUANTUM PHASE TRANSITION

The existence of a range of densities, where ∂ν/∂μ is
negative, implies that the NFL solution is unstable, and the
transition between the NFL and the insulating state must
be first-order. In an open system, there is a discontinuous
transition to the incompressible phase [60] at some critical
μc. In a closed system, there is a phase coexistence region,
in which the system displays simultaneously gap features
from the incompressible state and NFL features at small
frequencies [see Fig. 2(a)]. This resembles the “gap filling”
behavior near a Mott transition at T = 0 [53].

At N � M the range, where μ(ν) is nonmonotonic, shrinks
[this follows from Eq. (6)], and the transition becomes weakly
first-order. We show this behavior in Fig. 3 for N/M = 60.
We expect that at N/M → ∞ the transition becomes second
order at ν = 1 (and μ = ωF /2, x = 1/2, α = 1). In this
case, there exists a quantum-critical point that separates a
gapless NFL phase (which is by itself quantum critical) and
an incompressible, insulating phase. This transition has an
unconventional feature on its own: the peak in the bosonic
D(�) at � = m0 is present on both sides of the transition.
In addition, a nonzero bosonic spectral weight builds up at
small frequencies in the NFL phase and progressively takes
the spectral weight from the peak at m0. The behavior of
the fermionic spectral function is more conventional: the gap
in the fermionic spectral function μ − ωF /2 vanishes at the

033084-3



YUXUAN WANG AND ANDREY V. CHUBUKOV PHYSICAL REVIEW RESEARCH 2, 033084 (2020)

FIG. 2. Schematic bosonic and fermionic spectral functions,
ρF (ω) ≡ − Im G(ω + iη) and ρB(ω) ≡ Im D(ω + iη), at the first-
order transition for N ∼ M (a), and at the second-order transition
for N/M → ∞ (b). The vertical arrows represent δ-function peaks.
The blue and red peaks in (a) come from the coexisting phases: the
NFL phase (red) and the incompressible phase (blue).

transition and an asymmetric spectral weight builds in the
NFL phase. We show the behavior of the spectral functions
in Fig. 2(b) and present more details in Appendix C.

VI. SUMMARY

In this communication, we analyzed the behavior of M
flavors of fermions, randomly interacting with N flavors of
massive bosons (the Y-SYK model) away from half-filling.
We showed that the system can be in one of the two phases—a
NFL phase with asymmetrically broadened spectral weight,
and an incompressible gapped phase. We studied the quantum

FIG. 3. Same as in Fig. 1, but for N = 60M. In this case, x0 =
0.45.

phase transition between these two phases upon the variation
of fermionic density. We showed by analytical and numerical
calculations that the transition is in general first-order, but
becomes second-order in the limit N/M → ∞. In the case
of the first-order transition, there is a gap filling behavior in
the transition region in both fermionic and bosonic sectors.
For the second order transition, fermionic gap closes at the
transition, but the bosonic spectral function still displays a gap
filling behavior.

Recent numerical studies [55,56] of the complex SYK
model also indicated that the system undergoes a first-order
transition upon varying the density. In distinction to our
analysis, there the NFL exponent x is fixed, while in our case
it varies with the filling. The possibility of a second-order
transition at N/M → ∞ was not addressed in these numerical
studies.

We conclude by listing several open questions. First, in our
analysis we focused on the case T = 0. It is possible that at a
finite T the first-order transition extends to a line, which ter-
minates at a classical critical point, like in a water-vapor phase
diagram. Second, we analyzed the two-point Green’s func-
tions. It will be interesting to examine the behavior of four-
point functions, possibly using the conformal reparametriza-
tion symmetry of the low-energy theory. This will shed light
on the issue of the strength of superconducting and charge
fluctuations. Third, we focused on the weak-coupling case,
ω0 
 m0. At strong coupling, the analysis becomes more
involved, even though the large M, N limit still guarantees the
validity of the self-consistent Schwinger-Dyson equations. It
has been pointed out that purely bosonic SYK-like models
may exhibit glassy behavior at low temperatures [61,62]. It
would be interesting to see if that happens at strong coupling
in Y-SYK model. Finally, in terms of measurable quantities,
e.g., in transport experiments, we note that recently it has
been proposed that the thermoelectric power [63], measured
in quantum matter systems, can be a direct probe of the
Bekenstein-Hawking entropy of the SYK models. In SYK-
like models it has also been argued that the soft reparametriza-
tion modes lead to a universal linear-in-temperature resistivity
[64]. We also note that these transport quantities can be
studied using determinant quantum Monte Carlo methods,
since the Y-SYK model is free from the fermion sign problem
[45]. We leave the analysis of the transport properties in the
Y-SYK model to future work.
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Appendix is organized as follows. In Sec. A, we provide
details on the power-law solution of the bosonic and fermionic
self-energies at low frequencies. In Sec. A 1, we discuss the
analytical solution of the chemical potential μ by extending
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the low-energy power-law expression for the self-energies
to all frequencies. Despite not being self-consistent at high-
energies, we argue that it captures the correct qualitative
behavior. In Sec. A 2, we analyze the behavior of the self-
energies at high frequencies. In Sec. B, we derive an exact
relation between the fermionic filling number ν and the low
energy behavior of the fermionic Green’s function. In Sec. C,
we analyze the behavior of the bosonic and fermionic spectral
functions at the endpoint of the NFL state and prove that the
relation obtained in Sec. A 1 is exact.

APPENDIX A: DETAILS ON THE NFL SOLUTION

For the self-energies at low frequencies, we take the ansatz

�̃(iω) ≡�(iω) − �(0) = ω f

∣∣∣∣ ω

ω f

∣∣∣∣
x

(i sgn(ω) + α),

�̃(i�) ≡�(i�) − �(0) = βm2
0

∣∣∣∣ �

ω f

∣∣∣∣
1−2x

. (A1)

There are four dimensionless parameters to solve for α, β, x,
and ω f /ωF . There are also four equations:

�(0) = − μ = − ω3
0

2π

∫
dω

iω + �̃(ω)

1

�̃(ω)
, (A2)

�(0) = − m2
0 = 2M

N

ω3
0

2π

∫
dω

(iω + �̃(ω))2
, (A3)

βm2
0

∣∣∣∣ �

ω f

∣∣∣∣
1−2x

= Mω3
0

Nπ

∫
[�̃−1(iω)�̃−1(iω + i�)

− �̃−2(iω)]dω, (A4)

(i sgn(ω) + α)ω f

∣∣∣∣ ω

ω f

∣∣∣∣
x

= − ω3
0

2π

∫
[�̃−1(i�)�̃−1(i� − iω)

− �̃−1(i�)�̃−1(i�)]d�. (A5)

In this section, we self-consistently solve Eqs. (A4) and
(A5). Since the integrals are fully convergent using (A1),
the relations we obtain are independent of the high-energy
nonuniversal details. From Eq. (A4), we have

βm2
0

∣∣∣∣ �

ω f

∣∣∣∣
1−2x

= 2Mω3
0

Nω2
f

∫ [
(−i sgn(ω) + α)(−i sgn(ω + �) + α)ω2x

f

(1 + α2)2|ω|x|ω + �|x − (α2 − 1)ω2x
f

(1 + α2)2|ω|2x

]
dω

2π
, (A6)

from which we obtain

1 = − MωF

Nπβω f (1 + α2)2

[
(1 − α2)

�2(−x)

2�(−2x)

(1 + sec πx)

1/x − 2
+ 2α2 �2(−x)

2�(−2x)

1

1/x − 2

]
. (A7)

From Eq. (A5), we have

ω f [i sgn(ω) + α]|ω|x = − ω3
0

2πβm2
0

∫ [
α − i sgn(�)

α2 + 1
|�|−x|ω − �|2x−1 − α

α2 + 1
|�|x−1

]
d�. (A8)

The real and imaginary parts actually yield a single equation:
indeed, for real and imaginary parts, we get respectively

1 = − ωF

2πβω f (1 + α2)

∫ (
1

|y|x|1 − y|1−2x
− 1

|y|1−x

)
dy,

1 = ωF

2πβω f (1 + α2)

∫
sgn(y)dy

|y|x|1 − y|1−2x
. (A9)

It is straightforward to verify that they lead to a single con-
straint:

1 = − ωF

4πβω f (1 + α2)

�2(−x)

�(−2x)
. (A10)

Combining (A7) and (7), we get

(1 − α2)
(1 + sec πx)

1/x − 2
+ 2α2

1/x − 2
= N

2M
(1 + α2), (A11)

Equations (A10) and (A11) are Eqs. (6) and (7) in the main
text.

In evaluating the integrals above, we have made use of∫
sgn(y)dy

|y|x|1 − y|1−2x
= − �2(−x)

2�(−2x)
, (A12)

∫
dy

[
sgn(y + 1/2) sgn(y − 1/2)

|y + 1/2|x |y − 1/2|x − 1

|y|2x

]

= �2(−x)

2�(−2x)

(1 + sec πx)

1/x − 2
, (A13)∫ 1/2

−1/2

dy

|y + 1/2|x |y − 1/2|x = − �2(−x)

2�(−2x)

1

1/x − 2
. (A14)

1. The other two equations on the parameters

We now consider the other two equations, Eqs. (1) and (4).
One can easily verify that relevant frequencies in the integrals
over ω in the right-hand side of these two equations are of
order ω f . At such frequencies, the corrections to the power-
law forms in Eq. (A1) are of order one. To find the exact
values of the integrals in (1) and (4) one then needs to know
the full forms of �(iω) and �(iω). We found the full forms
numerically and combined the numerical results with the two
exact relations, Eqs. (7) and (6) to obtain the expressions for
x, α, β, and ω f /ωF as functions of μ. We then used the
additional exact relation between the filling μ and α and x
and expressed μ as a function of ν (the dotted lines in Figs. 1
and 2 in the main text.

033084-5



YUXUAN WANG AND ANDREY V. CHUBUKOV PHYSICAL REVIEW RESEARCH 2, 033084 (2020)

FIG. 4. The functions α(μ) and x(μ) for M = N obtained in Sec. A 1.

Here, we obtain the approximate analytical relations from
Eqs. (1) and (4) by keeping the power-law forms of the
bosonic and fermionic self-energies. The integrals on the right
hand side of (1) and (4) are ultraviolet convergent because
of the bare ω in the fermionic propagator. Evaluating the
integrals, we obtain

β = 1

4x−1

�3(x, α)

�1(x, α)
, α = μ

ωF

4x

8

�3(x, α)

�1(x, α)�2(x, α)
, (A15)

where

�1(x, α) = M

Nπ

∫ ∞

0

dy

y2x

(1 + y1−x )2 − α2

((1 + y1−x )2 + α2)2
,

�2(x, α) = 1

2π

∫ ∞

0

dy

y1−x

1

(1 + z1−x )2 + α2
,

�3(x, α) == − M

2Nπ

1

4x(1 + α2)

�2(−x)

�(−2x)
.

(A16)

In the last line in (A16), we used the exact relation (6). This
relation also allows one to express the spectral asymmetry pa-
rameter α via the exponent x (or vise versa), hence �1,2,3 are
in fact the functions of only one variable. As a consequence,
we can write

β = F1(x), α = μ

ωF
F2(x), (A17)

where F1(x) = 4x−1�3(x, α(x))/�1(x, α(x)) and F2(x) =
22x−3�3(x, α(x))/(�1(x, α(x))�2(x, α(x)).

We will see in Sec. B that x gradually increases with
increasing filling ν and reaches x = 1/2 at maximum possible
ν = 1. Equation (6) shows that for x → 1/2, α → 1, and α −
1 ≈ π (1/2 − x). Substituting this into Eq. (A16), we obtain
that �1(x, α) and �3(x, α) vanish in this limit, but the ratio
�1(x, α)/�3(x, α) tends to 1/2. The vanishing of �1 implies
that ω f (x) = 2ωF �1(x, α(x)) vanishes, i.e., for x → 1/2, the
width of the NFL region shrinks to zero. Simultaneously,
�2(1/2, 1) = 1/4, hence μ = ωF /2, the same as the bound-
ary of the incompressible phase. Using Eqs. (9), (A16), and
(7) and the properties of �1,2,3, it is straightforward to verify
that the functions F1,2(x) are regular O(1) functions of x, with

F1(1/2) = 1, F2(1/2) = 1/2. (A18)

Remarkably, both of these special values are exact, as we will
show in Sec. C.

In Fig. 4, we plot α and x as functions of μ for M = N .
We see that both become multivalued functions in some range
of μ. This is a clear indication that the transition between
the NFL phase and the incompressible phase may be first
order, although to fully address this issue we need to know
the relation between the filling ν and the chemical potential
μ.

2. Behavior of the NFL solution at high energies

In this section, we analyze the behavior of the fermionic
and bosonic self-energies in the NFL phase at frequencies
larger than the ω f . For simplicity, here we focus on the case
well inside the NFL phase, where ω f and ωF ≡ ω3

0/m2
0 are

of the same order, which we will use interchangeably for a
qualitative analysis.

At ω � ω f , the fermionic self-energy receives contribu-
tions from typical bosonic and fermionic frequencies smaller
and greater than ω f . We assume and verify that above the NFL
energy scale, ω,� � ω f , both the fermionic and bosonic
Green’s functions take their free forms. We then have

�(iω) ∼ −ω3
0

m2
0

∫ ω f

−ω f

d�

2π

1

|�/ω f |1−2x

1

iω
− ω3

0

ω2 + m2
0

×
∫ ω f

−ω f

dω′

2π

1

(i sgn(ω′) − α)ω f |ω′/ω f |x

− ω3
0

∫
{�0}

d�

2π

1

�2 + m2
0

1

i(ω − �)
, (A19)

where the integration domain {�0} excludes {−ω f , ω f } ∩
{ω − ω f , ω + ω f }. We have also dropped the chemical poten-
tial terms in the bare Green’s function, since in the NFL phase
μ � ω f and is subdominant at high frequencies.

The first two integrals are elementary. The third term, in the
ω f 
 m0 limit can be replaced with a principal value integral
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FIG. 5. The full solution �̃(iω) and �̃(iω) for the Schwinger-Dyson equations. We have taken m0 = 3000ωF .

circumventing ω = �. We have

�(iω) = ic1

ω2
f

ω
+ c2

ω3
0

ω2 + m2
0

α

1 + α2

− ω3
0

∫ ∞

−∞

d�

2π

1

�2 + m2
0

P

[
1

i(ω − �)

]

= ic1

ω2
f

ω
+ c2

ω3
0

ω2 + m2
0

α

1 + α2
+ i

ω3
0

m0

ω

ω2 + m2
0

.

(A20)

For ω f 
 ω 

√

ω3
0/m0, its asymptotic behavior is given by

�(iω) = ic1

ω2
f

ω
+ c2

αω f

1 + α2
= ic1

ω2
f

ω
+ c̃2μ, (A21)

where in the last step we have used μ ∼ αω f . Combined with
the result on �(iω) at ω 
 ω f , we see that the two asymptotic
behaviors do match at ω ∼ ω f .

For ω �
√

ω3
0/m0, the self-energy has a nonmonotonic

behavior, given by

�(iω) = c2
ω3

0

ω2 + m2
0

α

1 + α2
+ i

ω3
0

m0

ω

ω2 + m2
0

, (A22)

in which Im(�(iω)) remains a constant ∼μ at ω 
 m0 and
decays to zero at ω � m0. On the other hand �(�(iω)) first
increases linearly and then again decreases as 1/ω. However,
this nonmonotonic behavior in has little effect on the low-
energy behaviors of the system. For both regimes above, the
self-energy effects in the fermionic Green’s function is small,
since ω 
 |�(iω)|, thus justifying our assumption that the
fermions are essentially free.

For the bosons at � � ω f , the self-energy comes from
frequencies ω � ω f . We have qualitatively

�(i�) ∼ −
∫

�

ω3
0dω

ω2
∼ ω3

0

�

 m2

0, �̃(i�) ≈ m2
0. (A23)

We see that the bosons are essentially free in this frequency
range.

These results can be directly verified by numerically solv-
ing the Schwinger-Dyson equations, using the same iterative

technique sketched in the main text. In Fig. 5, we present
the numerical solution for �̃(iω) and �̃(iω), in which the
power-law behavior in different regimes can be easily seen.
The O(1) numerical constants c1 and c2 can be fitted from the
numerics.

APPENDIX B: LUTTINGER’S THEOREM
FOR THE NFL STATE

In this section, we focus on the analytical derivation of the
filling fraction ν. From the usual relation

ν =
∫ i∞

−i∞

dz

2π i
G(z)ez0+ , (B1)

where G(z) = 1/(z − �̃(z)), it may seem that its value de-
pends on details of the system behavior at high energies, but
due to a Luttinger-theorem-like relation it can be shown to
be completely determined by low-energy, or infrared (IR),
behaviors. This is an example of ultraviolet(UV)-IR mixing,
a feature shared in the original complex SYK model, and
its mathematical structure is similar to the chiral anomaly in
quantum electrodynamics. Our presentation closely parallels
that in Ref. [37].

Using the identity ∂z(G−1(z) − �̃(z)) = 1, we rewrite ν as

ν =
∫ i∞

−i∞

dz

2π i
G(z)ez0+

=
∫ i∞

−i∞

dz

2π i
G(z)ez0+∂z(G−1(z) − �̃) ≡ I1 − I2. (B2)

The first term I1 is expressed as

I1 =
∫ i∞

−i∞

dz

2π i
G(z)ezδ∂zG

−1(z)

=
∫ i∞

−i∞

d ln(G−1(z))

2π i
ezδ. (B3)

This integral is IR divergent. However, it is clear that in the
first equation of (B2) there is no IR divergence, which is
convergent at z = 0. Thus the IR divergence should cancel
when properly regularized. One way to properly regularize

033084-7



YUXUAN WANG AND ANDREY V. CHUBUKOV PHYSICAL REVIEW RESEARCH 2, 033084 (2020)

both integrals is to take principle values. For I1,

I1 = −P
∫ i∞

−i∞

d ln(G−1(z))

2π i
ezδ

=
(∫ −∞−iη

−iη
−

∫ −∞+iη

iη

)
d ln(G−1(z))

2π i

= arg(G−1(−iη)) − arg(G−1(−∞ + iη))

π

= arg(G−1(−iη))

π
− 1 (B4)

where in the second step, we have deformed the integration
contour allowed by the ezδ factor. Interestingly this only
depends on IR properties of the Green’s functions.

The evaluation of I2 is more tricky. If we simply use IR
expressions for G and �̃ in

I2 =
∫ i∞

−i∞

dz

2π i
G(z)∂z�̃(z)ezδ, (B5)

the I2 integral is formally logarithmically divergent. However,
the infinities at both the IR and UV ends are canceled by the
integration domain (the asymmetry cancels out between G and
�). All we need is to properly regularize the integral at both
ends.

In the standard treatment of Luttinger’s theorem [65,66],
the I2 term can be transformed to an integral over a total
derivative (of the Luttinger-Ward functional) and thus is zero.
In our case however, the integral is not along a continuous
path, since we are taking principal values. Across the branch
cuts of G(z) there are additional boundary terms, which are
divergent. They can be made to exactly cancel each other if we
take ezδ → 1 prior to the principal value limit, but physically

from the definition of the charge one should take the ezδ → 1
limit only after the principal value limit. In fact, according
to the Riemann rearrangement theorem they can be made to
take any value, so the correct order of limits is crucial. From
this analysis, we see that the nonzero contribution should
come from the IR end, since the boundary terms at infinity
is well-behaved and vanishes.

We deform the integration contour in the same way as in I1

and

I2 =
∫ −∞

0

dω

π
Im[G(iz)∂z�(iz)]|iz→ω+iηexδ. (B6)

It is important to not directly replace the integral ∂iz with
∂ω since the self-energy is nonanalytic along the real axis.
This integral is well behaved, so we can take the δ → 0 limit
first. As we will see, the integral converges even if we just
use the power-law form for the self-energy, since the UV
logarithmical divergence cancels when the integration domain
is folded to a half space.

For convenience, let us rewrite our self-energies at small
frequencies as

�̃(±iω) = ±ie∓iθ ω̄1−x
f ωx,

�̃(±i�) = β̄m2
0

(
�

ω̄ f

)1−2x

, (B7)

where we have defined θ = tan−1 α and β̄ω̄ f = (1 + α2)βω f .
The I1 integral in Eq. (B4) yields

I1 = 1

2
+ θ

π
. (B8)

It turns out that it is easiest to analyze the I2 integral using the
spectral representation, which gives

I2

ω3
0

=
∫ 0

−∞

dω

π
Im

[∫
dω1

π

ρF (ω1)

iz − ω1

∫
d�

2π

∫
dω2dω3

π2

−ρF (ω2)

(iz − i� − ω2)2

ρB(ω3)

i� − ω3

]∣∣∣∣
iz→ω+iη

=
∫ 0

−∞

dω

π
Im

[∫
dω3

π3

ρF (ω1)

ω − ω1 + iη

ρF (ω2)ρB(ω3)

(ω − ω2 − ω3 + iη)2
(sgn(ω2) + sgn(ω3))

]

= −
∫ ∞

0

dω

π
Im

[∫
dω3

π3

ρF (−ω1)

−ω + ω1 − iη

ρF (−ω2)ρB(−ω3)

(−ω + ω2 + ω3 − iη)2
(− sgn(ω2) − sgn(ω3))

]

= −
∫ ∞

0

dω

π
Im

[∫
dω3

π3

ρF (−ω1)

ω − ω1 + iη

ρF (−ω2)ρB(−ω3)

(ω − ω2 − ω3 + iη)2
(sgn(ω2) + sgn(ω3))

]

=
∫ ∞

0

dω

π
Im

[∫
dω3

π3

ρF (−ω1)

ω − ω1 + iη

ρF (−ω2)ρB(ω3)

(ω − ω2 − ω3 + iη)2
(sgn(ω2) + sgn(ω3))

]
. (B9)

Here the spectral functions are given by ρF (ω) = − Im G(ω + iη) and ρB(ω) = Im D(ω + iη). In our case we have for 0 < ω 

ω f ,

ρF (±ω) = − Im [G(±ω + iη)] = Im
[
ieiθ ω̄x−1

f (∓iω)−x
] = cos

(πx

2
± θ

)
ω̄x−1

f ω−x,

ρB(±ω) = Im [D(±ω + iη)] = Im

[
1

β̄m2
0

(∓iω

ω̄ f

)2x−1
]

= ±cos(πx)

β̄m2
0

(
ω

ω̄ f

)2x−1

. (B10)

In the last step of Eq. (B9), we have used the fact ρB(−ω) = −ρB(ω). On the other hand, ρF (ω) is asymmetric.
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Averaging the second and the fifth lines of Eq. (B9), we get by separating the ρF (ω1)ρF (ω2) into symmetric and antisymmetric
parts

I2

ω3
0

=
∫ ∞

−∞

dω

4π
Im

[∫
dω3

π3

[ρF (ω1)ρF (ω2) + ρF (−ω1)ρF (−ω2)]ρB(ω3)

(ω − ω1 + iη)(ω − ω2 − ω3 + iη)2
(sgn(ω2) + sgn(ω3))

]

+
∫ ∞

0

dω

2π
Im

[∫
dω3

π3

[ρF (ω1)ρF (ω2) − ρF (−ω1)ρF (−ω2)]ρB(ω3)

(ω − ω1 + iη)(ω − ω2 − ω3 + iη)2
(sgn(ω2) + sgn(ω3))

]
. (B11)

The contour integral over x in the first line vanishes since all
poles are on the same side. From Eq. (B10), the second line
vanishes unless ω1 and ω2 have the same sign. We have

I2 = − ωF

β̄ω̄ f

∫ ∞

0

dω

π
Im

∫ ∞

0

dω3

4π3

sin(2πx) sin(2θ )

ωx
1ω

x
2ω

1−2x
3

× 1

(ω − ω1 + iη)(ω − ω2 − ω3 + iη)2

= − x sin(2θ )

sin(πx)
lim
η→0

∫ ∞

0

dω

π
Im

1

ω + iη
= − x sin(2θ )

2 sin(πx)
.

(B12)

One may wonder if the different form of self-energy at high
frequencies will contribute to a correction to the result, but we
note that the contribution to the above result comes from ω ∼
η, thus the UV contribution is small O(η/ω0) = 0. Hence this
result is exact.

We have used the following identities:

β̄ω̄ f = βω f (1 + α2) = −ωF

2π

�2(−x)

2�(−2x)
. (B13)∫ ∞

0

dω3

ωx
1ω

x
2ω

1−2x
3

1

(y − ω1)(y − ω2 − ω3)2

= π5/24x csc(πx) csc(2πx)�(1 − x)

y�
(

1
2 − x

) (B14)

− (8π�(−2x))(22x−1�(1 − x))

x�(−x)2
(√

π�
(

1
2 − x

)) = 2. (B15)

Combining, we get

ν = 1

2
+ θ

π
+ x sin(2θ )

2 sin(πx)
= 1

2
+ tan−1 α

π

+ x

2 sin(πx)

2α

1 + α2
. (B16)

This is Eq. (10) of the main text.
Remarkably, this result is identical to the complex SYKq

model, but here our x is continuously tunable. It may not
immediately clear why I2 is the same as the SYK model,
which has very different structures. It turns out ν can also be
directly derived from I1 alone, by doing the calculations and
regularization in the time domain, in which case I2 = 0, as
shown in Ref. [37]. Since I1 only depends on fermion Green’s
function, our result should be the same as SYKq model with
the same scaling dimension for the fermions. The fact that
I1,2 separately depends on regularization scheme but their sum
does not is also reminiscent of features in chiral anomaly.

We note in passing that if we used the power-law
form for the self-energy, Eq. (A1) and computed ν =

∫ i∞
−i∞

dz
2π i G(z)ez0+ , we would obtain instead

ν = 1

2
+ 1

π

tan−1 α

1 − x
. (B17)

This relation is similar, but not identical to the exact one,
although both yield ν = 1 for α → 1 and x → 1/2.

We also note that if we combine (B17) with Eq. (A16)
and the exact relations (7) and (6), we find that very
near ν = 1, μ actually increases with ν: μ = (ωF /2)(1 −
3.2(M/N )

√
1 − ν), hence ∂ν/∂μ > 0. Taken at the face

value, this would imply that the transition between the incom-
pressible and the NFL phase is second order for any N/M,
and then there is a first-order transition within in NFL phase.
However, this is likely an artifact of the approximation as we
didn’t detect this behavior in numerical studies.

APPENDIX C: THE ENDPOINT OF THE NFL SOLUTION

In this section, we analyze how the NFL solution vanishes
at x = 1/2, in particular at which chemical potential μ it does
so. In general, unlike the filling ν, the chemical potential can-
not be analytically expressed by universal quantities. However
we find that it takes a universal value at the end of the NFL so-
lution, namely, as filling ν → 1. While the NFL phase as a sta-
ble state disappears through a first-order phase transition, the
saddle-point solution to the Schwinger-Dyson equation exists
beyond the first-order phase transition. In the limit where the
first-order transition becomes second-order, such an endpoint
of the NFL solution becomes a true quantum-critical point.

As was shown in the main text, at the endpoint of the
NFL solution, x → 1/2, α → 1, and βω f → 0. We know that
the bosonic self-energy �̃(i�) at � � ω f crosses over from
βm2

0|�/ω f |1−2x to the bare mass m2
0, which is only possible at

x → 1/2 for

β = 1, ω f → 0. (C1)

Notice that β = 1 is also obtained in Sec. A 1. In this lim-
iting case calculating �(0) from the imaginary-time Green’s
functions can be difficult since the bosonic Green’s function
involves a 00 limit. However the spectral functions, whose IR
behavior are shown in Eq. (B10), are free from this ambiguity.

The chemical potential is given in terms of spectral func-
tions by

μ = −�(0) = − ω3
0

∫
d�

2π

∫
dωdω′

π2

ρB(ω)ρF (ω′)
(i� − ω)(i� − ω′)

= − ω3
0

∫
dωdω′

2π2

ρB(ω)ρF (ω′)
ω − ω′

× [sgn(ω) − sgn(ω′)]. (C2)
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At x → 1/2, from Eq. (B10), we have at low energies (0 <

ω 
 ω̄ f )

ρF (±ω) = cos
(πx

2
± θ (x)

)
ω̄

−1/2
f ω−1/2,

ρB(±ω) = ± cos(πx)

β̄m2
0

(
ω

ω̄ f

)2x−1

. (C3)

Notice that in the x → 1/2 limit the low-energy bosonic spec-
tral weight gets progressively depleted. This indeed matches
the starting point of the gapped phase, in which bosons are
gapped at the bare mass and the chemical potential gets
renormalized to zero. In other words, upon entering the NFL
phase, the boson mass gap “fills in” rather than “closes in.”
We have showed the behavior of the spectral functions ρB in
Fig. 3 of the main text.

Going back to the NFL side, since all the bosonic spectral
weight is depleted at low frequencies, at x → 1/2, ρB is
peaked at high energies, and in this regime, the bosons behave
like free ones. We have

ρB(±ω) = ±πδ(ω − m0)/(2m0). (C4)

Thus

μ = − ω3
0

2m0

[∫ 0

−∞

dω′

π

ρF (ω′)
m0 − ω′ −

∫ ∞

0

dω′

π

ρF (ω′)
m0 + ω′

]
. (C5)

In the weak-coupling limit, the width of |ρF (ω)| in frequency
is the scale of interaction ω f 
 m0. Thus approximately we

obtain

μ = − ω3
0

2m2
0

∫ ∞

0

dω

π
[ρF (−ω) − ρF (ω)]

= ω3
0

2m2
0

(2ν − 1)
∣∣
x=1/2. (C6)

In the last step, we have used ν = ∫ ∞
0 dωρF (ω)/π and 1 −

ν = ∫ 0
−∞ dωρF (ω)/π , which can be easily seen by a spectral

decomposition of the fermionic Green’s function.
We have now converted the calculation of μ to that of ν, to

which one can apply the Luttinger theorem. From Eq. (B16)
we have ν = 1 at x = 1/2. Therefore we conclude as the NFL
solution approaches its endpoint, the chemical potential tends
to

μ

(
x = 1

2

)
= ω3

0

2m2
0

≡ ωF

2
, (C7)

which matches the starting point of the insulator phase. In-
terestingly, this result is also captured by using the power-
law forms of the self-energies. Indeed, we see that the key
ingredient for μ = ωF /2 is the mismatch of fermionic and
bosonic spectral weights at x = 1/2, which is also present
even if one uses power-law forms of the self-energies. Of
course, in the insulating phase the chemical potential can be
obtained by the same procedures described here. However,
this result does not hold for the strong-coupling case, where
ω0 � m0.
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