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Quantum-enhanced finite-time Otto cycle
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We use fast periodic control to realize finite-time Otto cycles exhibiting quantum advantage. Such periodic
modulation of the working medium-bath interaction Hamiltonian during the thermalization strokes can give
rise to non-Markovian anti-Zeno dynamics and corresponding reduction in the thermalization times. Faster
thermalization can in turn significantly enhance the power output in engines or, equivalently, the rate of
refrigeration in refrigerators. This improvement in performance of dynamically controlled Otto thermal machines
arises due to the time-energy uncertainty relation of quantum mechanics.
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I. INTRODUCTION

The recent experimental advances in control of systems
in the quantum regime [1–4] have in part led to the current
extensive interest in theoretical [5,6] and experimental [7–11]
studies of quantum technologies. One of the fundamental
aspects of quantum technologies involves thermodynamics in
the quantum regime [12–16] and the related studies of engines
and refrigerators [7,10,11,17–29], quantum batteries [30–33],
and quantum probes [34–38]. A major challenge in the field of
quantum thermodynamics is to design optimally performing
quantum thermal machines, which can operate with max-
imum efficiency, power, or refrigeration [39]. Naturally, a
question arises: Can quantum effects boost the performance
of these quantum machines [40]? Recent studies have indeed
shown the possibility of harnessing quantum effects to achieve
quantum enhancement in quantum devices, for example, in
the context of quantum computing [41], in quantum thermal
machines over many cycles [42], in interacting many-body
quantum thermal machines in the presence of nonadiabatic
dynamics [43], and through collective coherent coupling to
baths [44,45], as well as experimentally, in the presence of
coherence [10].

A relatively less explored area, which can prove to be
highly beneficial for improving the performance of quantum
technologies, is quantum machines exhibiting non-Markovian
dynamics [46–48]. Studies of quantum thermal machines in
general involve analysis of quantum systems coupled to dis-
sipative environments. Quantum technologies based on open
quantum systems, undergoing Markovian dynamics [49], have
been studied extensively in the literature [16,21,44,50]. Yet
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Markovian approximation may become invalid, for example,
in the presence of strong system-bath coupling or small bath-
correlation times, in which case going beyond the Marko-
vian approximation becomes essential [51–55]. However, sev-
eral open questions remain regarding the thermodynamics of
quantum systems undergoing non-Markovian dynamics and
the conditions under which non-Markovianity can prove to be
advantageous for engineering quantum technologies [56–59].

Here we show the possibility of achieving quantum ad-
vantage in quantum machines undergoing non-Markovian dy-
namics; we consider an Otto cycle, in the presence of a work-
ing medium (WM) subjected to fast periodic modulations, in
the form of rapid coupling/decoupling of the WM with the
thermal baths during the thermalizing strokes. Modulations
of the WM-bath interaction Hamiltonian at a timescale faster
than the bath-correlation time result in non-Markovian anti-
Zeno dynamics (AZD) [60–64], which allows the WM to
exchange energy with a bath even out of resonance, thereby
enhancing the heat currents significantly. Such periodic mod-
ulation has been realized experimentally [65] and previously
been shown to enhance power in continuous thermal machines
[47]. However, the application of AZD to enhance the per-
formance of stroke thermal machines is still an unexplored
subject. Here we realize an Otto cycle undergoing AZD; we
show that the power in the AZD regime shows steplike be-
havior. AZD may enhance as well as reduce the output power,
with respect to that obtained in the Markovian dynamics limit.
However, judicious choice of modulation timescales allows us
to operate a thermal machine exhibiting significant quantum
advantage, through generation of quantum enhanced power
or refrigeration, without loss of efficiency or coefficient of
performance, respectively.

The paper is organized as follows: in Sec. II we discuss
the dynamics of a fast-driven Otto cycle modeled by a generic
WM. We focus on a minimal Otto cycle modeled by a two-
level system in Sec. III A, discuss the dynamics of the thermal-
izing strokes in Sec. III B, and analyze the Markov dynamics
limit in Sec. III C, the anti-Zeno dynamics in Sec. III D, and
quantum refrigeration in Sec. III E. Finally, we conclude in
Sec. IV.
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FIG. 1. Schematic diagram of an Otto cycle in the entropy S-μ
plane. The cycle consists of two unitary strokes A to B and C to D,
with energy flows EAB and ECD, respectively, and two thermalization
strokes B to C and D to A, with heat flows Qh and QC , respectively.

II. A GENERIC QUANTUM-ENHANCED OTTO CYCLE

We consider an Otto cycle, modeled by a generic WM, and
powered by a hot and a cold thermal bath with temperatures Th

and Tc < Th respectively. One can describe the setup through
the Hamiltonian H :

H = HS + HBh + HBc + HSB,

HSB = λh(t )S ⊗ Bh + λc(t )S ⊗ Bc.
(1)

Here HS, HBh, HBc, and HSB denote the Hamiltonians describ-
ing the system (WM), hot bath, cold bath, and interaction
between the WM and the two thermal baths, respectively. The
Hermitian operator S causes transitions between the energy
levels of the WM, while Bh and Bc act on the hot and the
cold bath, respectively; λ j (t ), j = {h, c}, are time-dependent
scalars, denoting the interaction strength between the WM
and the hot (h) and cold (c) baths. For an Otto cycle in the
absence of control, λh,c = 0 during the unitary strokes, while
a nonzero λ j leads to thermalization of the WM with the jth
bath during a nonunitary stroke (see below). On a related note,
a continuous thermal machine is in general accompanied by
λh,c(t ) �= 0 for all time t [12,13].

Below we describe one cycle of the Otto thermal machine
considered here (see Fig. 1) [21]:

(1) First stroke: We start with the WM in state ρS,A,
in equilibrium with the cold bath. The interaction strengths
λh,c(t ) = 0 in this unitary stroke, such that the WM is decou-
pled from both the baths. The system Hamiltonian Hs(μ(t ))
is changed from HS(μ = μA) at A to HS(μ = μB) at B (see
Fig. 1) in a time interval τu1, where μ is a time-dependent
parameter describing the Hamiltonian of the system. The state
ρS(t ) of the WM evolves in time following the von Neumann
equation

ρ̇S(t ) = −i[HS(t ), ρS(t )]. (2)

Here for simplicity, unless otherwise stated, we consider h̄ =
kB = 1.

(2) Second stroke: In this nonunitary stroke of duration τh,
the WM Hamiltonian is kept constant at HS = HS(μB) at B,
λc = 0, while the WM interacts with the hot bath through a
nonzero λh(t ). τh is in general assumed to be large enough

such that the WM thermalizes with the hot bath at the end of
this stroke at C. The dynamics of the WM during this stroke
can be described by the master equation

ρ̇S(t ) = −i[HS(μB), ρS(t )] + Dh(t )[ρS(t )]. (3)

Here Dh(t ) is a dissipative superoperator acting on the WM at
time t [49]. In general, for a WM evolving in the presence of
a thermal bath, and in the absence of any time-dependent con-
trol Hamiltonian and constant λh, Dh is independent of time
and describes a Markovian dynamics. However, as we show
below, fast periodic control, in the form of rapid intermittent
coupling/decoupling of the WM with the hot bath, can lead to
anti-Zeno non-Markovian dynamics, with time-dependent Lh

[47,60,62,63].
(3) Third stroke: Once again, we set λh,c(t ) = 0, while

HS(t ) is changed from HS(μB) at C back to HS(μA) at D,
in a time interval τu2. The WM evolves following the von
Neumann equation (2) during this unitary stroke.

(4) Fourth stroke: In this stroke of time duration τc, the
WM Hamiltonian is kept constant at HS = HS(μA) at D,
λh = 0, while a nonzero λc(t ) allows the system to thermalize
with the cold bath. Analogous to the second stroke, the WM
evolves following Eq. (3), with μB and Dh replaced by μA and
Dc, respectively. At the end of this stroke, the WM returns to
its initial state ρS,A at A, thereby completing the cycle.

The cycle period is given by τ = τu1 + τh + τu2 + τc. We
operate the thermal machine in the limit cycle, such that
the WM reaches thermal equilibrium with the bath at the
end of each nonunitary stroke. The average energy 〈Eα〉 =
Tr[ρS,αHS,α] of the WM at the αth point (α = A, B,C, D)
allows us to obtain the heat Qh and Qc, exchanged with the
hot and the cold bath, respectively, as

Qh = (〈EC〉 − 〈EB〉), Qc = (〈EA〉 − 〈ED〉), (4)

while the energy flows EAB and ECD during the first and third
strokes are given by (cf. Fig. 1)

EAB = (〈EB〉 − 〈EA〉), ECD = (〈ED〉 − 〈EC〉). (5)

Energy conservation gives the total work W output and the
cycle-averaged power output as

P = W
τ

= EAB + ECD

τ
= −Qh + Qc

τ
, (6)

and the efficiency as

η = −W
Qh

. (7)

Here we have used the sign convention that energy flow
(heat, work) is positive (negative) if it enters (leaves) the
WM. A heat engine is characterized by Qh > 0, Qc < 0,W <

0, while Qh < 0, Qc > 0,W > 0 denotes the refrigerator
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FIG. 2. (a) The interaction strength λh(t ) between the WM and
the hot bath and (b) the corresponding time-dependent occupation
probability p1(t ) for a two-level system WM [see Eq. (12)], during a
thermalization stroke with the hot bath. λc(t ) shows similar variation
with time, during the thermalization stroke with the cold bath (not
shown here). A Lorentzian bath spectrum has been used with δ =
2 and � = 0.4. The initial state of the WM is the thermal state
corresponding to the cold bath with βc = 0.01 and ωc = 80. Here
βh = 0.0005, ωh = 100, τcp = 1.5, and τdc = 4.

regime, and we get the heat distributor regime for Qc <

0,W > 0 [16,66].
As mentioned above, in general, for a setup subjected

to time-independent Hamiltonian H during the nonunitary
strokes, one can use Born, Markov, and secular approxima-
tions to arrive at a time-independent dissipative Lindblad
superoperator L j ( j = {h, c}) describing the dynamics of
the WM [49]. However, a H (t ) changing rapidly with time
may invalidate the Markov approximation, thereby leading
to a time-dependent L j (t ) and a possibly non-Markovian
dynamics [49,53,67]. Below we harness this breakdown of
Markovianity to achieve quantum advantage; we introduce a
modification in the conventional Otto cycle [21], in the form
of fast periodic coupling and decoupling of the WM with
the thermal baths during the nonunitary strokes, implemented
through step function forms of λ j (t ). At the beginning of
a nonunitary stroke, we couple the WM with a bath j and
allow it to thermalize for a time interval τcp, during which
time λ j (t ) assumes a constant value λ̄ j > 0. The coupling
time interval is followed by decoupling of the WM and
the bath, for a time interval τdc, realized through λ j (t ) = 0.
Following the decoupling interval, we once more couple the
WM with the bath for a time interval τcp [λ j (t ) = λ̄ j], and
repeat the above process till the WM thermalizes with the bath
(see Fig. 2).

One can show that rapid coupling/decoupling of the WM
with a bath results in the WM evolving in time following the
master equation (see Appendix A):

ρ̇S(t ) = D j[ρS(t )] =
∑

ω

R̃ j (ω, t )L j,ω[ρS(t )] + H.c.,

R̃ j (ω, t ) ≡
∫ ∞

−∞
dνGj (ν)

(
sin [(ν − ω)t]

ν − ω

± i

{
cos [(ν − ω)t] − 1

ν − ω

})
. (8)

Here the dissipative superoperator D j can be written in terms
of its ω-spectral components of Lindblad dissipators L j,ω

(see below) and R̃ j (ω, t ) [see Eq. (8)]. In the case of ρS(t )
that is diagonal in the energy basis, as can be expected for
Otto cycles powered by thermal baths, and in the presence
of system Hamiltonians satisfying [HS(t ), HS(t ′)] = 0 for all
times t, t ′, one can show that the dynamics is dictated by
the coefficients R j (ω, t ) ≡ Re[R̃ j (ω, t )] [47,68]. The scalar
R j (ω, t ) is given by the convolution of the bath spectral
response function Gj (ν), with spectral width ∼�B ∼ 1/τB,
and the function sin [(ν−ω)t]

ν−ω
= t sinc[(ν − ω)t]. Here we will

consider the Kubo-Martin-Schwinger (KMS) condition [49]:

Gj (−ν) = exp[−νβ j]Gj (ν). (9)

As we discuss below, the dynamics of the thermal machine
crucially depends on R j (ω, t ), through the time-energy un-
certainty relation of quantum mechanics.

We show that choosing a τcp � τB may lead to the anti-
Zeno dynamics, i.e., to a significant enhancement in the over-
lap between the sinc functions and the bath spectral functions
or, equivalently, in the convolution R j (ω, t ). This in turn
boosts the rate of heat flow between the WM and the jth
bath [47,60,63]. On the other hand, the effect of an anti-Zeno
boost in the rate of heat flow may be counteracted by the
time intervals τdc during which the WM is kept decoupled
from the thermal baths and consequently associated with zero
heat flow. However, as we show below, judicious choice of
parameters can allow us to engineer an Otto machine exhibit-
ing significant quantum advantage, through a net reduction of
thermalization time τth for approximately the same amount
of output work and a resultant enhancement in output power
[see Figs. 3(a) and 3(b)] or in refrigeration [see Figs. 4(a)
and 4(b)].

On the other hand, long WM-baths coupling durations (i.e.,
τcp 
 τB) result in the sinc functions assuming the form of δ

functions. Consequently, we arrive at the standard Markovian
form of the master equation (8) describing the dynamics
of conventional Otto thermal machines in the absence of
control, with time-independent R j (ω, t ), given by R j (ω, t ) =
πGj (ω) > 0.

III. A FAST-MODULATED MINIMAL OTTO CYCLE

A. Model

Here we exemplify the generic results discussed above, by
focusing on the specific example of an Otto cycle involving a
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FIG. 3. Quantum advantage ratio for the cycle-averaged output
power of heat engine [see Eq. (19)] with (a) Lorentzian bath spectral
function [see Eq. (C1)] for δ = 2, � = 0.4, and γ0 = 1, and with
(b) super-Ohmic bath spectral function [see Eq. (D1)] for δ = 0.1,
ν̄ = 0.5, and γ0 = 1. We get quantum advantage for QAP > 1,
shown here by the shaded region. Here βh = 0.0005, βc = 0.01,
ωc = 80, ωh = 100, ε < 0.0015, τu1 = τu3 = 0.4/� = 0.5/ν̄, τdc =
1.6/� = 2/ν̄. The horizontal line indicates QAP = 1.

two-level system WM, described by the Hamiltonian

HS(t ) = ω(t )

2
σz,

HSh = λh(t )σx ⊗ Bh, HSc = λc(t )σx ⊗ Bc. (10)

Here σα denotes the Pauli matrix acting on the WM, along the
α = x, y, z axis.

As detailed above for the general case, we consider the
WM to be prepared in the state ρS,D, in thermal equilibrium
with the cold bath, at the start of the first stroke of a cycle. The
frequency ω(t ) > 0 is modulated from ωc to ωh > ωc, while
λh,c = 0 during the first stroke, during which time the state
of the WM remains unchanged, so that ρS,B = ρS,A, as can be
seen from Eqs. (2) and (10). The WM is allowed to thermalize
with the hot bath at constant ω(t ) = ωh and λc = 0, during
the second nonunitary stroke. We consider a step function
λh(t ) during this stroke, as shown in Fig. 2(a). The frequency
is again reduced to ωh to ωc during the third unitary stroke,
during which time the state of the WM remains unchanged.
Finally, the WM is allowed to thermalize with the cold bath
following a step function λc and λh = 0 during the fourth
thermalization stroke, such that the cycle is completed. For
simplicity, here we take λ̄h,c to be unity.
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FIG. 4. Quantum advantage ratio for the cycle-averaged cooling
rate [see Eq. (23)] of a refrigerator with (a) Lorentzian bath spectral
function [see Eq. (C1)], for δ = 2, � = 0.4, and γ0 = 1, and with
(b) super-Ohmic bath spectral function [see Eq. (D1)] for δ = 0.1,
ν̄ = 0.5, and γ0 = 1. We get quantum advantage for QAκ > 1,
shown here by the shaded region. Here βh = 0.007, βc = 0.01, ωc =
10, ωh = 120, ε < 0.0030, τu1 = τu3 = 0.4/� = 0.5/ν̄, and τdc =
1.6/� = 2/ν̄, βh = 0.007. The horizontal line indicates QAκ = 1.

B. Thermalization strokes

We now analyze the dynamics of the WM during a nonuni-
tary stroke, in the presence of a step function λ j (t ), as
shown in Fig. 2. One can use the time-dependent occupation
probabilities p1(t ) and p2(t ), of the states |0〉 〈0| and |1〉 〈1|,
respectively, to write (see Appendix B)

ρS(t ) = p1(t ) |0〉 〈0| + p2(t ) |1〉 〈1| ,
ṗ1(t ) = 2λ j (t )2[R j (ω j, t )p2(t ) − R j (−ω j, t )p1(t )],

ṗ2(t ) = −ṗ1(t ). (11)

A R j (±ω j, t ) > 0 for all times t signifies Markovian dynam-
ics. On the other hand, non-Markovian dynamics ensues for
R j (±ω j, t ) assuming negatives values for some time intervals
(see Fig. 5) [51,53].

During the coupling time intervals [λ j (t ) = λ̄ j = 1], the
above rate equations (11) result in the occupation probabilities

p1(t ) = e−(J+
j +J−

j )[J−
j p̄1 − J+

j p̄2] + J+
j

(J+
j + J−

j )
,

p2(t ) = e−(J+
j +J−

j )[−J−
j p̄1 + J+

j p̄2] + J−
j

(J+
j + J−

j )
, (12)
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FIG. 5. Rapid intermittent coupling and decoupling between the
WM and the thermal baths lead to Rh(ωh, t ) (red solid curve) and
Rc(ωc, t ) (blue dashed curve) becoming negative for intermediate
times, thus resulting in non-Markovian dynamics of the WM. In this
plot Lorentzian bath spectral function, Eq. (C1) has been used with
δ = 2, � = 0.4, and γ0 = 1. Here ω j = 100, β j = 0.0005 for the hot
(h) bath and ω j = 80, β j = 0.01 for the cold (c) bath.

where ρS(t0) = p̄1 |0〉 〈0| + p̄2 |1〉 〈1| corresponds to the ini-
tial state at the beginning of a coupling time interval τcp, when
the WM starts interacting with the jth bath. Here

J±
j (t0, t ) = 2

∫ t

t0

R j (±ω j, t ′) dt ′,

R j (±ω j, t ) = Re[R̃ j (±ω j, t )]

=
∫ +∞

−∞
dνGj (ν)

sin(ν ∓ ω j )t

ν ∓ ω j

=
∫ +∞

−∞
dνGj (ν)t sinc[(ν ∓ ω j )t]. (13)

As seen from Eq. (11), the condition

p1(t )

p2(t )
= R j (ω j, t )

R j (−ω j, t )
(14)

leads to the steady state with ṗ1(t ) = ṗ2(t ) = 0, for the jth
bath. The general expressions for heat [Eq. (5)] get reduced to

Qh = ωh(p1,1 − p1,2), Qc = ωc(p1,3 − p1,4), (15)

where p1,α denotes the occupation probability of the state
|0〉 〈0|, after the end of the stroke α of a cycle.

We note that Eqs. (12)–(14) describe the dynamics of the
WM only during the time intervals τcp, when the WM is
coupled to a bath. In contrast, during the decoupling time
intervals τdc with λ j (t ) = 0, ρS does not evolve with time, and
we have ṗ1(t ) = ṗ2(t ) = 0 [see Eq. (11) and Fig. 2].

We note that in general a system coupled to a thermal bath
equilibrates with the bath asymptotically, reaching the corre-
sponding exact thermal (Gibbs) state only at infinite time [49].
Therefore, in order to realize a practical thermal machine, we
consider the WM to be thermalized with a bath j at tempera-
ture Tj (=1/β j), as long as it is within a small ε distance from
the thermal (Gibbs) state ρth, j = exp [−β jHS,α]/Zj , Zj being
the corresponding partition function [69]. Here we quantify
the distance between two states ρ = p1 |0〉 〈0| + p2 |1〉 〈1| and
ρ ′ = p′

1 |0〉 〈0| + p′
2 |1〉 〈1| as ε = |p1 − p′

1| = |p2 − p′
2|.

C. Markov limit

The dynamics of the WM depends on the interplay be-
tween the bath correlation time τB, the thermalization time,
and the coupling time interval τcp. Markov approximation is
valid in the limit τcp 
 τB, when the sinc functions inside
the integrals in Eq. (13) reduce to δ functions, leading to
R j (±ω j ) = πGj (±ω j ). Consequently, the heat flows and the
power [see Eqs. (5) and (6)] assume finite values only for
finite Gj (ω j ), i.e., for thermal baths which are at resonance
with the WM. On the other hand, for a generic thermal bath
sufficiently detuned from WM, such that Gj (ω j ) ≈ 0, we get
ṗ1(t ), ṗ2(t ) ≈ 0 [see Eqs. (11) and (13)], and consequently
vanishingly small heat flows Qh, Qc [cf. Eq. (15)] and the
output power P = −(Qh + Qc) [see Figs. 3(a) and 3(b)].

On a related note, the KMS condition (9) determines the
steady-state Eq. (14), given by

p1(t )

p2(t )
= exp[ω jβ j]. (16)

D. Anti-Zeno limit

We now focus on the regime τcp � τB, such that timescales
shorter than the bath-correlation time become relevant. In
this limit, the sinc functions in Eq. (13) cease to be δ func-
tions anymore; instead, they assume finite widths �ν ∼ 1/t
centered around ν = ω j , thus giving rise to time-dependent
R j (ω j, t ) and R j (−ω j, t ) (see Fig. 5). This broadening of
the sinc functions is a direct consequence of time-energy
uncertainty relation of quantum mechanics, arising due to
small τcp. Incredibly, this fast coupling/decoupling of the WM
and the baths lead to AZD, such that the WM may thermalize
with the jth bath at a finite rate, even for the corresponding
bath spectral function (see Figs. 6–9) peaking at a frequency
ω j + δ �= ω j , and Gj (ω j ) ≈ 0, due to significant enhancement
in values of the integrals in Eq. (13). The finite thermalization
times in turn boost the cycle-averaged heat currents, power,
and refrigeration, as compared to the Markovian limit of
τcp 
 τB.

One may engineer AZD by implementing the following
protocol during the thermalization strokes: the WM is to be
coupled with the thermal bath for a time interval τcp � τB.
Following this coupling period, the WM is decoupled from
the bath for a time interval τdc 
 τB, such that all system-bath
correlations are destroyed. The WM is then recoupled with the
bath, and the above process is repeated, till the WM reaches
the desired thermal state.

We note that a fair comparison between the Markovian and
the AZD regime demands the corresponding steady states [see
Eq. (14)] to be approximately same. This is indeed the case for

βh,c  τcp and τ−1
cp < ω j, (17)

such that

R j (−ω j, t )

R j (ω j, t )
≈ e−β jω j = Gj (−ω j )

Gj (ω j )
. (18)

We compare the cycle-averaged power P (τcp) [see Eq. (6)]
for τcp < τth and PM in the Markovian regime, for heat
engines operated in the presence of thermal baths with
Lorentzian [cf. Fig. 3(a)] and super-Ohmic [cf. Fig. 3(b)] bath
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(a)
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FIG. 6. The blue filled curve shows the Lorentzian hot bath
spectral function given by Eq. (C1), and the red one shows the
function sin([ν − ωh]t )/(ν − ωh ) = sinc((ν − ωh )t )t , for � = 0.2,
γ0 = 1, with δ = 2, ωh = 100, βh = 0.0005. (a) Markovian limit:
t = 24/�. (b) Anti-Zeno limit: t = 0.8/�.

spectral functions (see Appendixes C and D). To this end, we
define the quantum advantage ratio

QAP = P (τcp)

PM
. (19)

A QAP > 1 indicates a quantum advantage through AZD-
induced enhancement of cycle-averaged output power, as
compared to the Markovian limit. On the other hand, QAP <

1 implies the time-energy uncertainty relation during the AZD
fails to yield any quantum advantage. One can understand
the behavior of QAP in Figs. 3(a) and 3(b) by noting that
small τcp enhances the rate of heat flow between the WM
and a thermal bath, through broadening of the corresponding

FIG. 7. Thermalization time for the first thermalization stroke of
heat engine with Lorentzian bath spectral function, Eq. (C1), having
δ = 2, � = 0.4, and γ0 = 1. Here βh = 0.0005, βc = 0.01, ωc = 80,
ωh = 100, ε < 0.0015. τth in the Markovian limit is shown by the
black horizontal line.

(a)

(b)

FIG. 8. The blue filled curve shows the super-Ohmic hot bath
spectral function given by Eq. (C1), and the red one shows the
function sin([ν − ωh]t )/(ν − ωh ) = sinc[(ν − ωh )t]t , for ν̄ = 0.5,
γ0 = 1, with δ = 0.1, ωh = 100, βh = 0.0005. (a) Markovian limit:
t = 30/ν̄. (b) Anti-Zeno limit: t = 1/ν̄.

sinc function. On the other hand, every τcp is followed by a
decoupling time interval τdc, till the WM thermalizes with the
bath, during which times heat flow ceases between the WM
and the bath. Consequently, the power, which is a function of
τcp, τdc and the total number of coupling and decoupling time
intervals, does not vary monotonically with decreasing τcp.
Rather, the duration τdc of each decoupling time interval and
the total number Ndc of decoupling time intervals remaining
constant, power increases initially as τcp is decreased, owing
to the enhancement in heat flow during the coupling time
intervals. However, smaller τcp, at a constant τdc, may demand
a higher number of coupling/decoupling time intervals in
order for the system to thermalize. Consequently, the power

FIG. 9. Thermalization time for the first thermalization stroke of
a heat engine with super-Ohmic bath spectral function, Eq. (D1),
having δ = 0.1, ν̄ = 0.5, and γ0 = 1. Here βh = 0.0005, βc = 0.01,
ωc = 80, ωh = 100, ε < 0.0015. τth in the Markovian limit is shown
by the black horizontal line.

033083-6



QUANTUM-ENHANCED FINITE-TIME OTTO CYCLE PHYSICAL REVIEW RESEARCH 2, 033083 (2020)

increases with decreasing τcp as long as Ndc (and hence the
total decoupling time duration Ndcτdc) remain constant, while
they may show sharp drops for increasing Ndc. However, as
seen from Figs. 3(a) and 3(b), one can achieve significant
quantum advantage through proper choice of small τcp.

The exact values of τcp where QAP show spikes depend
nontrivially on the setup and control parameters, through
Eq. (6) and Eqs. (11)–(15). However, as one can see from
Fig. 5, R j (ω j, t ) varies weakly with time at large t . Conse-
quently the thermalization times (see Figs. 7 and 9), and hence
QAP [Figs. 3(a) and 3(b)], show smoother variations with
τcp at larger τcp, assuming spikes at approximately regular
intervals, which scale as γ −1. On the other hand, the strong
time dependence of R j (ω j, t ) for small t translates to more
irregular behavior of QAP at shorter τcp, albeit with larger
values of the quantum advantage ratios.

For the parameter values chosen in Fig. 3(a) (Lorentzian
bath spectral function) Ndc assumes a maximum value of
14 for the minimum duration of τcp considered here (τcp =
0.2/�), while the same for Fig. 3(b) (super-Ohmic bath
spectral function) is Ndc = 26 for τcp = 0.25/ν̄. On the other
hand, Ndc reduces to zero in the Markovian limit of τcp of the
order of the thermalization time, such that the WM is always
coupled with the corresponding bath during the thermalization
strokes.

The efficiency η = 1 − ωc/ωh, is independent of the de-
tails of the strokes and rather depends only on the steady
states. Consequently, the efficiencies are approximately iden-
tical for heat engines operating in the Markovian and the
AZD regimes, as long as the conditions (17) are satisfied.
As a result, the control protocol presented here allows us to
realize a heat engine which delivers quantum enhanced power,
without any loss of efficiency.

It is worth mentioning that in contrast to AZD, Zeno
dynamics ensues for very small τcp (τcp  τB), when the ex-
cessive broadening of the sinc functions results in a decrease
of power with decreasing τcp [47,60,70,71].

E. Quantum Otto refrigerator

One can operate the Otto cycle in the refrigerator regime
as well, by choosing [18,38,72]

ωh

ωc
>

Th

Tc
. (20)

The operation can be quantified through the cycle-averaged
cooling rate κ:

κ = Qc

τ
, (21)

and the coefficient of performance CoP:

CoP = Qc

(EAB + ECD)
. (22)

As seen in the heat engine regime, a quantum refrigerator
operating with AZD ensues for (20) and λh,c(t ) of the form
shown in Fig. 2. Consequently, one can achieve quantum
advantage in the form of enhanced κ in the limit τcp � τB,
at approximately the same CoP, as compared to an equivalent
traditional Markovian Otto refrigerator, as long as Eq. (17)

is satisfied. Analogous to the heat engine regime, one can
quantify the quantum advantage QAκ through the ratio

QAκ = κ (τcp)

κM
, (23)

where κ (τcp) and κM denote the cooling rates for τcp < τth

and the Markovian regime, respectively. As before, QAκ > 1
implies quantum advantage arising due to the time-energy
relation of quantum mechanics [see Figs. 4(a) and 4(b)]. In
the case of the refrigerator, we get a maximum Ndc = 13 for
the minimum τcp = 0.2/� considered in Fig. 4(a) (Lorentzian
bath spectral function), while Ndc assumes a maximum value
of 27 for a minimum minimum τcp = 0.25/ν̄ considered in
Fig. 4(b) (super-Ohmic bath spectral function).

IV. CONCLUSION

We have studied anti-Zeno dynamics in fast driven quan-
tum Otto cycles. We have shown how repeated decoupling and
coupling of the WM and the thermal baths during the nonuni-
tary strokes can lead to non-Markovian anti-Zeno dynamics
with a significant enhancement in output power, in the case
of a heat engine, and cooling rate, in case of a refrigerator.
Yet this quantum advantage, quantified by the ratios QAP
[see Eq. (19) and Figs. 3(a) and 3(b)] and QAκ [see Eq. (23)
and Figs. 4(a) Fig. 4(b)], is nonmonotonic with increasing
frequency of modulation. The energy flow between a bath and
the WM is enhanced during the short coupling periods. On the
other hand, the decoupling time intervals are associated with
zero heat flow. However, through proper choice of parameters,
one can operate the cycle such that the AZD leads to an overall
enhancement in the cycle-averaged power or cooling rate at
the same efficiency or coefficient of performance, respec-
tively. We emphasize that this improvement in performance
is inherently quantum in nature; the small timescale, obtained
in the form of fast modulation during the nonunitary strokes,
translates to increased energy flow between the WM and the
bath, even when they are not in resonance, owing to the
time-energy uncertainty relation of quantum mechanics.

We note that the control protocol presented above can
be expected to significantly enhance the performance of a
thermal machine only if the working medium is sufficiently
detuned from the baths. On the other hand, for the special case
of the working medium being at resonance with the baths, in
general the heat currents are large even in the absence of any
control. Furthermore, under such a resonant condition, fast
periodic coupling/decoupling of the WM and the baths can
lead to the Zeno effect, with subsequent reduction in output
power or refrigeration [70,71].

It is also worth mention that as discussed in Sec. III D, in
order to have a fair comparison between the AZD limit and
traditional Otto cycles operating in the Markovian limit, here
we have allowed the WM to thermalize with the bath at the
end of a nonunitary stroke. However, one can also operate
the machine without imposing this condition of WM-bath
thermalization. For example, one can terminate the nonunitary
stroke at the end of the first coupling time interval, such that
the duration of the nonunitary stroke is τcp. Such a protocol
would reduce the loss incurred during the decoupling times,
which might in turn enhance the output power (refrigeration
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rate) even further [39], at the cost of low output work (refrig-
eration) per cycle of the heat engine (refrigerator). However, a
detailed analysis of such an operation protocol is beyond the
scope of the current paper.

One can envisage experimental realizations through work-
ing mediums modeled by nano-mechanical oscillators [73],
single atoms [74], or NV centers in diamonds [10]. The rapid
coupling/decoupling of the WM and a thermal bath during the
nonunitary strokes can be implemented by suddenly changing
the energy level spacing of the WM, such that it becomes
highly nonresonant with the thermal bath, thereby effectively
stopping any energy flow between the two. Thereafter one can
again revert back the energy-level spacing to its initial value,
thus effectively recoupling the WM with the thermal bath.

We expect the control protocol presented here to find appli-
cations in modeling of quantum thermal machines exhibiting
significant quantum advantage, and also to lead to further
studies of similar control schemes in many-body quantum
thermal machines [23–26] and related technologies based on
open quantum systems.
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APPENDIX A: GENERAL MASTER EQUATION

We start with the time convolution-less master equation in
the interaction picture,

ρ̇S(t ) = −λ j (t )2
∫ t

0
TrBj [S(t ) ⊗ Bj (t ),

[S(s) ⊗ Bj (s), ρS(t ) ⊗ ρBj ]], (A1)

where S(t ) ⊗ Bj (t ) = eiHSt Se−iHSt ⊗ eiHBjt B je−iHBjt ( j =
h, c), with HSB = λ j (t )S ⊗ Bj , S and Bj being the system and
bath operators, respectively. Expanding Eq. (A1), we get

ρ̇S(t ) = λ j (t )2

{
−

∫ t

0
ds[S(t )S(s)ρS(t )�(t − s)]

+
∫ t

0
ds[S(s)ρS(t )S(t )�(t − s)]

+
∫ t

0
ds[S(t )ρS(t )S(s)�(s − t )]

−
∫ t

0
ds[ρS(t )S(s)S(t )�(s − t )]

}
,

(A2)

where �(t − s) = Tr[ρBj Bj (t )Bj (s)] is the bath correlation
function, and

S(t ) = S†(t ), Bj (t ) = Bj
†(t ).

Additionally, replacing (t − s) by τ , one can write the first
term inside the curly braces of Eq. (A2) as

−
∑

ω

S†(ω)S(ω)ρS(t )
∫ t

0
e−i(ν−ω)τ dτ

∫ ∞

−∞
Gj (ν) dν, (A3)

where

�(t − s) = �(τ ) =
∫ +∞

−∞
Gj (ν)e−iντ dν and

S(t ) =
∑

ω

S(ω)e−iωt . (A4)

We have also used the rotating wave approximation (RWA)
[49] and the Hermiticity property S(t ) = S†(t ), implying∑

ω S(ω)e−iωt = ∑
ω S†(ω)eiωt . Similarly, the second term

inside the curly braces of Eq. (A2) is

∑
ω

S(ω)ρS(t )S†(ω)
∫ t

0
e−i(ν−ω)τ dτ

∫ ∞

−∞
Gj (ν) dν. (A5)

Finally, using Eqs. (A3) and (A5) one arrives at the master
equation,

ρ̇S(t ) = L j[ρS(t )]

=
∑

ω

R̃ j (ω, t )L j,ω[ρS(t )] + H.c.,

R̃ j (ω, t ) ≡
∫ ∞

−∞
dνGj (ν)

(
sin [(ν − ω)t]

ν − ω

± i

{
cos [(ν − ω)t] − 1

ν − ω

})
, (A6)

L j,ω[ρS(t )]≡λ j (t )2[S†(ω)S(ω)ρS(t ) + S†(ω)ρS (t )S(ω)], and
H.c. denotes the Hermitian conjugate.

APPENDIX B: MASTER EQUATION FOR A TWO-LEVEL
SYSTEM WORKING MEDIUM

Now we focus on the thermalization strokes by considering
the dynamics of a two-level system coupled with a bath,
via an interaction Hamiltonian HSB with S = σx. During the
first thermalization stroke HS(t ) = ωh

2 σz, while HS(t ) = ωc
2 σz,

during the second thermalization stroke. Hence, in general, in
the interaction picture we can write

σx(t ) = eiω j tσ+ + e−iω j tσ−, (B1)

where j = {h, c}, σ+ = 1
2 (σx + iσy), and σ− = 1

2 (σx − iσy).
Proceeding as before, we get the first term of the master

equation (A2) as

λ j (t )2[−R̃ j (+ω j, t )σ−σ+ρS(t ) − R̃ j (−ω j, t )σ+σ−ρS(t )],
(B2)

where (see Fig. 5)

R̃ j (±ω j, t ) =
∫ ∞

−∞
G(ν)

∫ t

0
ei(ν∓ω j )τ dν dτ. (B3)

Similarly, evaluating the other terms, and considering a di-
agonal initial state, one arrives at the master equation [see
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Eqs. (11)–(13)],

ρ̇S(t )

= 2λ j (t )2[R j (+ω j, t )σ+ρS(t )σ− + R j (−ω j, t )σ−ρS(t )σ+

−R j (+ω j, t )σ−σ+ρS(t ) − R j (−ω j, t )σ+σ−ρS(t )],

(B4)

which finally leads us to the rate equations (11).

APPENDIX C: LORENTZIAN BATH
SPECTRAL FUNCTIONS

We consider thermal baths with Lorentzian spectral func-
tions, given by

Gj (ν � 0) = γ0�
2

(ν − ω j − δ)2 + �2
,

Gj (ν < 0) = Gj (ν � 0)e−β jν, (C1)

where γ0 is the system-bath coupling strength, � ∼ 1/τB is the
width of the spectrum, and the bath spectral function shows a
maximum at frequency ωh,c + δ. As shown in Fig. 6(a), the
sinc function assumes the form of a δ function in the Markov

limit τcp 
 τB, thus resulting in a vanishing overlap with
the bath spectral function. On the other hand, larger overlap
between the sinc function and the bath spectral functions in
the anti-Zeno dynamics limit leads to enhanced heat flows [see
Fig. 6(b)] and and faster thermalization (see Fig. 7).

APPENDIX D: SUPER-OHMIC BATH
SPECTRAL FUNCTIONS

We consider super-Ohmic bath spectral functions, given by

Gj (ν � 0) = γ0
�(ν − ω j + δ)(ν − ω j + δ)s

(ν̄)s−1 e
−(ν−ω j +δ)

ν̄ ,

Gj (ν < 0) = Gj (ν � 0)e−β jν . (D1)

Here ν̄ ∼ 1/τB, and as before, γ0 is the system-bath cou-
pling strength. A small nonzero δ ensures that the bath spectral
function and the sinc function attain maxima at different
frequencies. We plot the bath spectral function and the sinc
function for both the Markov and the anti-Zeno dynamics
limits.

As for the Lorentzian bath spectral functions, Figs. 8(a)
and 8(b) show significant overlap between the bath spectral
function and the sinc function, only in the limit of anti-Zeno
dynamics and a consequent faster thermalization (see Fig. 9).
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