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Neural network wave functions and the sign problem
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Neural quantum states (NQS) are a promising approach to study many-body quantum physics. However,
they face a major challenge when applied to lattice models: convolutional networks struggle to converge to
ground states with a nontrivial sign structure. We tackle this problem by proposing a neural network architecture
with a simple, explicit, and interpretable phase Ansatz, which can robustly represent such states and achieve
state-of-the-art variational energies for both conventional and frustrated antiferromagnets. In the latter case, our
approach uncovers low-energy states that exhibit the Marshall sign rule and are therefore inconsistent with the
expected ground state. Such states are the likely cause of the obstruction for NQS-based variational Monte Carlo
to access the true ground states of these systems. We discuss the implications of this observation and suggest
potential strategies to overcome the problem.
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I. INTRODUCTION

Over the last decade, machine learning has had a profound
impact on nearly all aspects of life as well as the physical
sciences [1]. In condensed matter physics in particular, using
neural networks as Ansätze for quantum many-body wave
functions has emerged as an exciting application of machine
learning techniques to solve challenging problems. Since the
first demonstration [2] of the restricted Boltzmann machine
(RBM) [3] as a practical wave-function Ansatz for obtain-
ing ground states of many-body Hamiltonians using varia-
tional Monte Carlo (VMC) techniques, such neural quantum
states (NQS), including deep convolutional networks [4–7],
have become an important branch of many-body numerical
techniques, competitive with, and sometimes even outper-
forming, state-of-the-art tensor network (TN) methods. NQS
approaches are fundamentally appealing because both RBMs
[8] and deep neural networks [9] can represent almost any
function accurately, without a priori limitations like the Monte
Carlo sign problem [10] or the area-law entanglement of TNs
[11–13]. RBM states have also been used successfully in
higher dimensions [2,4] and for chiral topological states [14],
both of which pose well-known difficulties to TN techniques.

All promising properties notwithstanding, NQS ap-
proaches are not without their own difficulties. In particular,
while NQS Ansätze can in principle represent nontrivial sign
structures, actually learning them appears to pose significant
challenges, especially in frustrated systems. This appears
less pointedly in RBMs and other shallow, fully connected
architectures, which are able to reach low variational energies
even for Hamiltonians with a severe sign problem [3,15–20].
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By contrast, deep convolutional networks (which are desirable
for cutting-edge applications due to their better scalability
and explicit translational invariance [21]) quite often fail to
converge to ground states with near-zero average signs (e.g.,
of antiferromagnetic or fermionic systems) [4]. Attempting
to learn such states can generate unphysically rough ampli-
tude profiles, resulting in poor convergence or even complete
breakdown of the protocol. Successful variational learning of
NQS ground states in these cases requires transforming the
Hamiltonian to remove its sign problem, severely limiting the
usefulness of the method [4,10].1

The origins of this “sign problem” remain poorly under-
stood, and its existence is counterintuitive given the success
of convolutional networks in a range of machine learning
applications [24]. Some insight has recently been offered
in Ref. [19], which studied the ability of NQS Ansätze to
reconstruct the exact ground state from partial data in a
supervised learning scenario. In certain frustrated phases, a
range of architectures show poor generalization properties, es-
pecially when it comes to representing their highly nontrivial
sign structures. This also impedes the convergence of VMC
algorithms, which rely on reconstructing quantum expectation
values based on a small sample of the Hilbert space [25].
Further work to understand these phenomena and develop
more robust NQS Ansätze is therefore crucial to deploy neural
network-based VMC algorithms to study many interesting and
challenging problems in condensed matter physics.

1For instance, the sign problem of unfrustrated antiferromagnets
can be cured by imposing the Marshall sign rule [22]; the same was
used successfully to stabilize the learning of frustrated ground states
[4]. To the best of our knowledge, the only convolutional NQS that
successfully approached an antiferromagnetic ground state without
such preconditioning is that of Ref. [23], which, however, produces
variational energies quite far from the state of the art even with a
large number of adjustable parameters.
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In this paper, we make a contribution to this quest by
introducing an NQS architecture, and a corresponding vari-
ational optimization protocol, which can reliably find low-
energy variational states of antiferromagnetic Hamiltonians
without any prior knowledge of the sign structure of the
ground-state wave function. Our Ansatz has a simple, explicit,
and interpretable phase representation, whose convergence
properties improve even upon deep convolutional networks.
We benchmark our approach on the spin- 1

2 J1-J2 Heisenberg
antiferromagnet (HAFM) on the square lattice, and achieve
variational energies comparable to the state of the art [4,26,27]
both at the unfrustrated point J2 = 0 and in the fully frustrated
quantum spin-liquid phase at J2/J1 = 0.5.

In the unfrustrated case, our approach is able to learn the
expected Marshall sign rule (MSR) with excellent accuracy.
This is a crucial improvement over previous VMC protocols
based on convolutional NQS, which suffer from the sign
problem even in this simpler case [4]. Our approach, there-
fore, paves the way for systematically studying conventional
phases, including critical ones [28], where the area-law entan-
glement of TNs is a serious impediment [12].

In the frustrated case, we again achieve an excellent vari-
ational energy; however, we find a state that obeys the same
MSR, even though the true ground state is expected to deviate
from it significantly. The existence of such “MSR-like” low-
energy variational states, and the ease and stability with which
the VMC algorithm homes in on them, highlight the risks
of using the energy as the only criterion for assessing the
accuracy of variational wave functions and may explain the
poor generalisation properties of supervised NQS learning
in frustrated regimes [16,19]. We suggest potential improve-
ments toward the end of this work.2

II. OUR APPROACH

We start by separating the amplitudes and phases of the
wave function into two neural networks.3 For convenience
[4,25,30], we take the networks to represent the logarithm of
the wave function |ψ〉:

log〈σ|ψ〉 = A(σ) + i�(σ), (1)

where |σ〉 are σ z basis states, and A(σ) and �(σ) are two func-
tions (represented as real-valued neural networks) mapping
the basis state to the log modulus and phase of its complex
amplitude, respectively.

This Ansatz is then optimized in two stages. First, the
phases are optimized to minimize the variational energy while

2Beyond NQS, Ref. [29] proposed a new “long-range entangled-
plaquette state” variational Ansatz that appears to achieve both ex-
cellent variational energies and the correct phase structure in strongly
frustrated one-dimensional systems. It will be interesting to see in the
future whether this method remains successful for two-dimensional
spin liquids (e.g., the model considered in our work) as well, and
what insights its structure may provide for designing better NQS
architectures.

3We note that this idea is in line with the observation made in
Ref. [19] that the amplitudes and phases of the wave function
coefficients in NQS have very different generalization properties,
with the former being far easier to generalize than the latter.

FIG. 1. Single-layer convolutional network used to represent the
phase � of the wave function. The spins σ are mapped through con-
volutional kernels spanning the entire lattice (with periodic boundary
conditions). Each entry in the images is then taken as the argument
of a unit complex number; � is given by the argument of their sum.

keeping the amplitudes of all σ z basis states equal. This
allows moving away from the initial guess for � (which
resembles the ground state of a ferromagnetic Hamiltonian)
and approaching the correct phases without scrambling the
corresponding amplitude profile. Optimal sign structures de-
pend weakly on the imposed amplitudes, a prime example
being the MSR for antiferromagnets on bipartite lattices [22],
which minimizes the variational energy for any given set of
amplitudes. Therefore, a well-converged result of this first
stage is expected to be a good initial guess in the second one,
where A and � are optimized simultaneously to approach the
true ground state.

To make use of this protocol, however, the phases � have
to be represented in a way that can approach the true ground-
state sign structure starting from an initial guess very far
from it. We propose a single-layer convolutional architecture,
visualized in Fig. 1, where the activation layer is replaced by
summing the convolutional output as phasors:

�(σ) = arg

[ ∑
n,r

exp

(
ibn +

∑
r′

iwn,r−r′σ z
r′

)]
, (2)

where wn,r and bn are the real-valued weights and uniform
biases of the convolutional filters, respectively.

Once an appropriate phase structure is found, good vari-
ational energies can readily be obtained using any typical
neural network architecture to represent A(σ ). Similar to most
machine learning tasks [24], we found that deeper, wider net-
works generally perform better. In our numerical experiments,
a six-layer convolutional network was used, details of which
are given in Appendix B 1.

We performed the optimization using stochastic reconfigu-
ration (SR), which approximates the imaginary-time evolution
of the initial state [25]. For neural network quantum states,
this protocol has been shown to be superior to stochastic
gradient descent and other commonly used algorithms in deep
learning [31]. SR is described in Appendix A and details of
the optimization are given in Appendix B 2. The simulations
were implemented using the NETKET library [30].

III. NUMERICAL EXPERIMENTS

We deployed our method to the spin- 1
2 HAFM on the

square lattice with nearest- and next-nearest-neighbor inter-
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FIG. 2. Cumulative distribution function of Marshall-adjusted
phases � − �MSR for the unfrustrated case J2 = 0, learned before
(red) and after (blue) optimizing the amplitudes, and for the final
state of the frustrated case J2/J1 = 0.5 (green). All distributions are
very sharply peaked, indicating that � is a good approximation of the
MSR (5). The standard deviations of the distributions are, in order,
3.3 × 10−3, 4.0 × 10−4, and 2.8 × 10−3.

actions:

H = J1

∑
〈i j〉

�σi · �σ j + J2

∑
〈〈i j〉〉

�σi · �σ j, (3)

where J1, J2 � 0 and 〈i j〉 and 〈〈i j〉〉 refer to nearest- and
second-neighbor sites, respectively. We considered a 10 ×
10 lattice with periodic boundary conditions and set J1 = 1
without loss of generality.

Our first benchmark was the nearest-neighbor Hamiltonian
J2 = 0. In this case, the sign problem can be cured by rotating
all spins on a checkerboard sublattice A of the square lattice
by π around the σ z axis:

σ x → −σ x, σ y → −σ y, σ z → σ z, (4)

as this makes the coefficients of all off-diagonal terms σ+
i σ−

j

negative. As a result, 〈σ|∏i∈A σ z
i |GS〉 is positive (up to an

overall phase) for all σ z basis states |σ〉. In terms of the phase
structure �(σ), the resulting Marshall sign rule (MSR) can be
written as

�MSR(σ) = π
∑
i∈A

1 − σ z
i

2
. (5)

We find that our phase structure Ansatz (2) converges reliably
to (5) in the first stage of the optimization, as shown in Fig. 2.
This is to be expected as the same sign structure attains
optimal variational energy for any set of amplitudes [22],
including the uniform one used here. Other convolutional
networks, by contrast, fail to approach the MSR, which in turn
leads to instabilities in the amplitude optimization, as shown
in Appendix C.

In the subsequent optimization of amplitudes and phases,
we achieved a variational energy of −0.671 275 per spin,
2.7 × 10−4 higher than the numerically exact energy given

TABLE I. Variational energies (in units of J1 per spin) attained
in this work compared to other state-of-the-art energies on the same
system. Our approach consistently outperforms plain Gutzwiller pro-
jected fermionic wave functions (GWF) [26], and achieves similar
accuracy to the RBM-enhanced GWF of Ref. [33] and the convo-
lutional networks of Ref. [4] (CNN). The “best” energy is obtained
using numerically exact stochastic series expansion for J2 = 0 [32]
and Lanczos-corrected GWF for J2/J1 = 0.5 [26].

J2 = 0 J2/J1 = 0.5

Our work −0.671275(5) −0.494757(12)

GWF [26] −0.66935(1) −0.49439(1)
GWF + RBM [33] −0.67111(2) −0.49575(3)
CNN [4] −0.67135(1) −0.49516(1)
Best [26,32] −0.671549(4) −0.49755(1)

by stochastic series expansion [32]. This energy is only
slightly above the one attained by the convolutional network
of Ref. [4], even though the latter has substantially more
variational parameters (7676 compared to our 5145) and is
preconditioned with the exact MSR.

We then used our approach to study the fully frustrated
phase of the model at J2/J1 = 0.5 [26,27]. We achieved
a variational energy of −0.494 757 per spin, 2.8 × 10−3

higher than the best energies obtained by Lanczos iterating a
Gutzwiller projected fermionic wave function [26]. Our result
again compares favorably with the best NQS-based variational
energy in the literature [33], where the corresponding error is
1.8 × 10−3. The variational energies obtained in both cases,
together with relevant benchmarks, are summarized in Table I.

Surprisingly, however, we find that the converged phase
structure �(σ) in the frustrated case recovers the MSR to a
high accuracy, and no bimodality consistent with having both
positive and negative amplitudes can be seen (see Fig. 2).
This is at odds with the fact that the frustrated Hamil-
tonian (3) remains nonstoquastic even after the Marshall
transformation (4), and as such its average sign should fall
below 1 [34]. However, the MSR is expected to remain a
relatively good approximation of the exact ground-state sign
structure (see Appendix D) and for smaller but finite values of
J2, it remains exact [35].

To further quantify the quality of the variational wave func-
tions given by our approach, we evaluated their total spin 〈�S2〉,
the expectation value of the parity operator P = ∏

σ x, as well
as the statistical weight of the five irreducible representations
(irreps) of the point group D4 of the square lattice in the
wave function. Since �S2, P , and the point-group symmetry
operators all commute with the Hamiltonian (3), the true
ground state is an eigenstate of the former two, and transforms
according to precisely one irrep of the latter; furthermore,
ground states of HAFMs are normally singlets (�S2 = 0) and
thus have even parity: Deviations from these expectations can
be used as a quantitative test of the converged wave functions.
These results are shown in Table II; computational details are
given in Appendix B 3. We achieve similar figures of 〈�S2〉 to
those of Ref. [4] in both cases, which, together with the very
low weight of parity odd states, suggests a small admixture
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TABLE II. Average parity 〈P〉, total spin 〈�S2〉, and antiferro-
magnetic order parameters of, and statistical weight of irreps of
the point group D4 in, the fully converged NQS wave functions
in the unfrustrated limit J2 = 0 and for J2/J1 = 0.5. Both wave
functions are predominantly parity even and transform according to
the trivial representation A1 (bold); the weights of states with odd
parity and/or different spatial symmetry are ≈0.001 and ≈0.01 in
the two cases. The converged 〈�S2〉 is similarly larger in the frustrated
case, consistent with its worse energy convergence.

J2 = 0 J2/J1 = 0.5

Parity 〈P〉 0.998373(29) 0.990426(69)

Weight of irrep A1 0.998645(18) 0.989363(51)
A2 0.000142(6) 0.000928(15)
B1 0.000283(8) 0.003335(29)
B2 0.000167(6) 0.001169(17)
E 0.000763(14) 0.005205(36)

Total spin 〈�S2〉 0.065(21) 0.581(43)

Stripy o.p. S2(π, 0) 0.00498(5) 0.00521(7)
Néel o.p. S2(π, π ) 0.1571(2) 0.0633(2)

of states with high spin quantum numbers.4 We also note
that discrepancies from the ideal ground state are an order of
magnitude larger in the frustrated case by all three measures:
this is consistent with the worse energy convergence and sign
structure discrepancies of the same. Finally, we evaluated the
antiferromagnetic order parameter

S2(�q) = 1

N (N + 2)

∑
i, j

〈�σi · �σ j〉ei �q·(�ri−�r j ) (6)

for �q = (π, 0) and (π, π ), which correspond to stripy and
Néel orders, respectively: The results are consistent with those
plotted in Ref. [4].

IV. DISCUSSION

We developed a robust and efficient protocol for finding
low-energy states with a nontrivial sign structure using convo-
lutional neural quantum states without any prior knowledge on
the sign problem of the Hamiltonian. We used an Ansatz with
two neural networks that represent the amplitudes and phases
separately, and optimized it in two stages, first generating
an approximate phase structure, from which the entire wave
function can readily converge without encountering severe
instabilities. We demonstrated our approach by attempting
to learn the ground states of the square lattice spin- 1

2 J1-J2

HAFM both at the unfrustrated point J2 = 0 and at J2/J1 =
0.5, inside the fully frustrated spin-liquid phase. In both cases,
we reached variational energies comparable to the best NQS
energies reported in the literature [4]; the difference might be
attributed to the smaller number of variational parameters in

4〈�S2〉 ≈ 0.6 in the frustrated case could be consistent with a 70-30
mixture of singlet and triplet states; however, this would yield an av-
erage parity of 0.4. While one cannot rule out a large s = 2 admixture
on these grounds, it is more natural to assume contributions with a
range of higher spin quantum numbers.

FIG. 3. Weights wr of a typical convolutional kernel converged
for J2 = 0 (left) and J2/J1 = 0.5 (right). The checkerboard pattern
of the former is a direct consequence of the Marshall sign rule (see
Appendix E); the latter shows an admixture of a stripy antiferromag-
netic pattern, consistent with the MSR for the opposite limit, J1 = 0.
(Perceptionally uniform color map chosen following Ref. [38].)

our Ansatz. Importantly, we used a fully convolutional archi-
tecture: This automatically imposes translational invariance,
a useful inductive bias that speeds up the convergence to a
robust state representation [21] and allows for resolving the
lowest-energy states in different symmetry sectors [15]. Fur-
thermore, the convolutional structure reduces the number of
variational parameters from the O(N2) typical for RBMs and
other fully connected architectures [20,36] to O(N ), which
keeps VMC algorithms viable for larger system sizes.

At J2 = 0, our phase structure Ansatz (2) learns the Mar-
shall sign rule with better generalization properties than other
convolutional networks, both deep and shallow, which is
crucial for finding ground states reliably [19]. A possible
origin of the underlying inductive bias is the following: σ+

i σ−
j

exchanges a positive and a negative value of σr in (1), leading
to each phasor changing its phase by �φn,r = 2(wn,r−ri −
wn,r−r j ), where the dummy variable r covers the entire
lattice. The change of the overall phase � is an “average” of
these. While the energy of an antiferromagnetic interaction
is optimized if �� = π , this can be realized by a range of
distributions of the �φ centered on π , suggesting that the
MSR can be encoded in a robust way by such an architecture.
Indeed, the weights wr produced by VMC in the unfrustrated
case show a distinct checkerboard pattern that produces �φ ≈
π for all nearest-neighbor pairs, consistent with the MSR (see
Fig. 3). By contrast, deep neural networks have an inductive
bias for functions that only change significantly upon large-
scale changes of the input [24,37]. While this is desirable
for most machine learning applications, it is detrimental for
learning a nontrivial quantum phase structure.

In the frustrated case, the same approach fails to find the
appropriate ground-state sign structure, homing in instead on
the MSR. The existence of low-lying variational states with
“simple” sign structures deep within frustrated phases paral-
lels the poor generalization of the corresponding ground states
in supervised learning scenarios [19], hinting at a possible
bias of NQS Ansätze toward such states and the correspond-
ing ubiquity of this “residual sign problem.” This issue is
compounded with the gradual nature of VMC optimization,
which makes it prone to get stuck in such minima. By contrast,
tensor network wave functions are typically optimized using
singular value decompositions [12], which allows large yet
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controlled changes in the wave function, yielding high-quality
ground-state estimates for a range of challenging frustrated
systems [39]. Developing similar methods for NQS states may
thus help overcome this problem.

Beyond the explicit sign structure, the converged varia-
tional state in the frustrated case obeys the spin rotation and
spatial symmetries of the Hamiltonian (3) substantially less
accurately than for the nearest-neighbor model: 〈�S2〉 as well as
the statistical weights of parity-odd states and those that do not
transform according to the dominant irrep of the point group
are all an order of magnitude higher for the former. While
this may be a straightforward consequence of the gapless
spin-liquid ground state [26], it might also be necessary to
reconcile low variational energies with the MSR and serve
as a signature of the residual sign problem. If this is the
case, the performance of our approach might be improved
substantially by imposing symmetries, either through making
the wave function explicitly symmetric [4,15,20,40], or us-
ing the variational protocol to project out states that do not
have the right symmetry (e.g., ones for which 〈�S2〉 	= 0).

We also note that the representation of the MSR learned in
the two cases is starkly different (see Fig. 3 and Appendix E
for a detailed analysis): While the unfrustrated sign structure
attains the simplest possible representation of the MSR, stripe
features consistent with the MSR of the opposite unfrustrated
limit, J1 = 0, appear in the frustrated case. This hints at an (ul-
timately failed) attempt at learning a “compromise” between
the two limits, consistent with our qualitative understanding of
frustrated phases. More detailed insight into this learning dy-
namics may open up the possibility of finding similarly simple
Ansätze with significantly better generalization abilities.

Finally, we believe that the simplicity, interpretability, and
robustness of our phase representation, as well as the insight
it affords us about the sign problem of NQS Ansätze, make
it a useful resource to guide efforts to design novel network
architectures and training protocols that will one day reliably
learn frustrated ground states with complex phase structures.
Successfully learning the MSR also suggests that our method
can readily be used for large-scale simulations of conventional
phases, including excited states [15,17,20] and gapless or
critical systems [28], without the entanglement limitations of
tensor networks [13].
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APPENDIX A: STOCHASTIC RECONFIGURATION

Stochastic reconfiguration (SR) is a generic method for
optimizing parametrized trial wave functions |�({αk})〉 so
as to minimize their energy with respect to a Hamiltonian
H [25,41]. It is commonly used in variational Monte Carlo
studies owing to its more reliable convergence compared

to other common optimization protocols, such as stochastic
gradient descent [31,41].

The method proceeds by approximating the imaginary-
time evolution of the trial wave function using Monte Carlo
sampling. Namely, given |�({αk})〉, we want to find a new
set of the real parameters5 α′

k = αk + δαk such that |� ′〉 =
|�({α′

k})〉 is a good approximation to

|� ′
exact〉 = e−ηH |�({αk})〉 ≈ (1 − ηH )|�({αk})〉, (A1)

where η is a small positive number playing the role of the
learning rate in machine learning language. Since we only
want to project out all excited states, the Trotterization error
in (A1) is irrelevant. |� ′〉 is optimized by maximizing the
overlap of the (unnormalized) wave functions |� ′

exact〉 and
|� ′〉:

|C|2 = 〈� ′
exact|� ′〉〈� ′|� ′

exact〉
〈� ′

exact|� ′
exact〉〈� ′|� ′〉 . (A2)

To linear order in both η and δαk , the condition ∂αk |C|2 = 0
leads to

∑
j

δα j Re

[〈
∂α j �

∣∣∂αk �
〉

〈�|�〉 −
〈
∂α j �

∣∣�〉
〈�|�〉

〈
�

∣∣∂αk �
〉

〈�|�〉

]

= η Re

[〈
�

∣∣H ∣∣∂αk �
〉

〈�|�〉 − 〈�|H |�〉
〈�|�〉

〈
�

∣∣∂αk �
〉

〈�|�〉

]
. (A3)

In order to find δαk numerically, we want to rewrite the expec-
tation values in (A3) as Monte Carlo averages with respect to
the quantum probability distribution p(σ ) = |〈σ|�〉|2/〈�|�〉.
This can readily be done by inserting a resolution of the
identity; for example, we have〈

�
∣∣H ∣∣∂αk �

〉
〈�|�〉 =

∑
σ

〈�|H |σ〉〈σ∣∣∂αk �
〉

〈�|�〉

=
∑

σ

|〈σ|�〉|2
〈�|�〉

〈�|H |σ〉
〈�|σ〉

〈
σ
∣∣∂αk �

〉
〈σ|�〉

=
∑

σ

p(σ)E∗
loc(σ)Ok (σ), (A4)

where we introduce

Ok (σ) =
〈
σ
∣∣∂αk �

〉
〈σ|�〉 = ∂αk log〈σ|�〉 (A5)

and the local energy

Eloc(σ) = 〈σ|H |�〉
〈σ|�〉 . (A6)

The expectation value (A4) can now be estimated as the
Monte Carlo average of E∗

locOk for samples distributed accord-
ing to p(σ ); the others follow from analogous considerations,

5Equivalent expressions can be derived for trial wave functions that
are (piecewise) analytic functions of complex parameters [2,25]. The
result is identical to (A7), omitting the real-part signs.
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resulting in∑
j

Re cov(Oj, Ok )︸ ︷︷ ︸
Sk j

δα j = −η Re cov(Eloc, Ok )︸ ︷︷ ︸
fk

. (A7)

Since the covariance matrix S depends entirely on the
parametrization of the wave function rather than its energy
under the Hamiltonian, it can be thought of as a metric tensor
on the parametrized Hilbert space [25]. Equation (A7) is thus
analogous to the natural gradient approaches used to stabilize
gradient descent in other machine learning contexts [31]. To
improve numerical stability, the covariance is calculated as

cov(X,Y ) = 〈X ∗Y 〉 − 〈X ∗〉〈Y 〉 = 〈(X − 〈X 〉)∗(Y − 〈Y 〉)〉.
In our setup, log〈σ|�〉 = A(σ, {κ}) + i�(σ, {λ}), where

both A and � are real-valued functions of real parameters. It
follows that Oκ is real for all κ and Oλ is imaginary for all λ,
and so all entries of the covariance matrix S connecting a κ

and a λ vanish. This allows us to solve (A7) for the δκ and the
δλ separately, speeding up the algorithm.

Solving (A7) for δαk requires inverting the covariance
matrix S, which, while positive semidefinite, tends to be ill
conditioned even for a large number of Monte Carlo samples
[25]. This can be resolved either by using the pseudoinverse
or, more commonly, by adding a small positive constant to the
diagonal entries in order to make the matrix invertible. In our
case, however, the entries of the S matrix corresponding to the
parameters of the amplitude and phase have vastly different
values (separated by up to eight orders of magnitude). To keep
the optimization of both parts viable, we add 10−5 times the
average diagonal entry (i.e., the trace divided by the number
of parameters) to both blocks of the matrix:

S̃κ = Sκ + 10−5 tr Sκ

dim Sκ

1,

and likewise for Sλ.

APPENDIX B: DETAILS OF NUMERICAL EXPERIMENTS

1. Neural network architectures

The amplitude structure A(σ) was represented using a six-
layer convolutional neural network in all numerical experi-
ments. The layers consist of 8, 7, 6, 5, 4, and 3 10 × 10 lattice
replicas, respectively, which are connected by convolutional
filters with real-valued kernels spanning 4 × 4 sites in peri-
odic boundary conditions, and (real-valued) ReLU activation
functions:

f1...5(x) =
{

x, x � 0
0, x < 0.

The amplitude is given by the modulus of the product of
all entries in the last convolutional layer. Since the NQS
networks implemented in NETKET represent the logarithm of
wave functions [30], this is achieved using a final activation
function f6(x) = ln |x|, followed by summing all entries. All
convolutional layers before the last one are initialized with
Gaussian distributed random numbers of zero mean, and stan-
dard deviation chosen so as to preserve the typical magnitude
of backpropagated derivatives [42]. The last set of kernels are
initialized with a uniform bias of 1.0 and Gaussian distributed

kernel entries with standard deviation 2 × 10−4. This results
in amplitudes uniformly close to 1 upon initialization.

For all data discussed in the main text, the phases �(σ)
were represented by the phasor sum Ansatz (2). We employed
24 lattice replicas (cf. Fig. 1). Similarly good results are
achieved using fewer replicas, but the wider network allows
for faster and more reliable convergence. The convolutional
filters are initialized with Gaussian distributed random num-
bers of standard deviation 0.043.

2. Optimization protocol

We optimized each wave-function ansatz via stochastic
reconfiguration in two stages. First, the phases are optimized
with a uniform amplitude distribution (i.e., setting A ≡ 0):
10 000 such SR steps with learning rate η = 0.01 were fol-
lowed by 10 000 steps with η = 0.05. Next, both A and �

were optimized starting from the phase distribution achieved
in the first stage: for this, we used 5000 steps with η = 0.001,
5000 steps with η = 0.01, and, finally, 50 000 steps with η =
0.05. The learning rate was increased during the optimization
because the imaginary-time evolution emulated by SR results
in infinitesimal temperature (and thus energy) reduction close
to the ground state. In both stages, the Monte Carlo aver-
ages in (A7) were evaluated using 5000 samples obtained
via the Metropolis–Hastings algorithm as implemented by
NETKET [30].

The convergence of the phasor sum Ansatz to the ground
state is shown by the blue curves in Fig. 4. The first stage
quickly attains an approximately constant minimum of varia-
tional energy. We find, however, that any residual optimization
speeds up the next stage significantly, which is desirable as
a single, simple neural network can be evaluated an order
of magnitude faster than the full Ansatz. The second stage
also reaches a nearly converged variational energy in about
20 000 steps; however, the variational energy is further re-
duced slightly throughout the procedure.

3. Observable estimation

Once the wave function had converged, the estimates of
cumulative distribution functions plotted in Figs. 2 and 5
were generated by drawing 100 000 samples out of the prob-
ability distribution p(σ ) = |〈σ|�〉|2/〈�|�〉 and sorting their
phases.

Analogous to the estimation of variational energies, (A6),
the expectation value of any operator A can be evaluated as
the Monte Carlo average of the local estimates

Aloc(σ) = 〈σ|A|�〉
〈σ|�〉 (B1)

with respect to the quantum probability distribution p(σ) =
|〈σ|�〉|2/〈�|�〉. NETKET provides a facility for evaluating
such expectation values within the SR protocol: This was
used to estimate the variational energy 〈�S2〉 and the spin
correlators (6) using 106 Monte Carlo samples. We exploited
the translational invariance of the wave function to rewrite the
latter two as

S2(�q) = 1

N + 2

∑
i

〈�σi · �σ0〉ei �q·�ri ; (B2)
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FIG. 4. Convergence of our optimization scheme with various neural network Ansätze (described in Appendices B 1 and C) for the nearest-
neighbor (top panel) and the J2/J1 = 0.5 (bottom panel) square-lattice HAFM. The shaded area shows the full spread of energy estimates used
by the SR algorithm, the thicker lines show 100-step moving averages. In the frustrated case, the best of four runs (dark blue) is shown in
detail together with the moving averages of the others (shades of turquoise). The background shading indicates the learning rate η (white:
0.001, yellow: 0.01, purple: 0.05). The phasor sum Ansatz (2) (blue curve) converges reliably to energies close to the true ground state; other
Ansätze (red and green curves; see Appendix C for details), both shallow and deep, fail to reach either a consistent variational energy, or one
close to the ground state. Energies are compared to exact stochastic series expansion for J2 = 0 [32] or Lanczos-corrected Gutzwiller projected
fermionic wave functions (GWF) for J2/J1 = 0.5 [26]. For reference, variational energies are also shown for the convolutional network of
Ref. [4] (CNN), plain [26] and RBM-improved [33] GWF, as well as DMRG [27] for the frustrated case.

〈�S2〉 = N
∑

i

〈�σi · �σ0〉, (B3)

where both sums include i = 0 (note, however, that
�σ0 · �σ0 ≡ 3

4 ).
We checked furthermore whether the converged wave func-

tions obey parity and point-group symmetries. The parity op-
erator P = ∏

i σ
x
i commutes with all point-group symmetries

as well as the Hamiltonian: Therefore, the parity of a wave
function is fully characterized by the expectation value 〈P〉,
without any possibility of symmetry-protected degeneracies.
By contrast, the non-Abelian point group D4 gives rise to such
degeneracies, limiting the usefulness of plain symmetry oper-
ator expectation values. Instead, we evaluated the statistical
weight of eigenstates transforming according to the different

irreps α of D4, using the projection operators [43]

P̂α = dα

|D4|
∑
g∈D4

χα (g)ĝ, (B4)

where dα and χα are the dimension and characters of the
irrep, respectively, and |D4| = 8. The weight of each irrep is
given by

wα = 〈ψ |P̂†
α P̂α |ψ〉

〈ψ |ψ〉 = 〈ψ |P̂α|ψ〉
〈ψ |ψ〉 = 〈P̂α〉,

where we used the fact that the projector (B4) is Hermitian
and squares to itself. Both wα and 〈P〉 were evaluated using
4 × 106 Monte Carlo samples again using (B1). [We used
different samples here, as NETKET does not offer a simple
implementation of these symmetry operators, so it proved
more expedient to sample p(σ ) directly.]
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FIG. 5. Cumulative distribution function of the Marshall-
adjusted phases � − �MSR learned by the three phase structure
Ansätze in the first stage of the optimization in the unfrustrated
case J2 = 0. The phasor sum Ansatz (2) develops a very narrow
distribution, that is, it reproduces the MSR to a good approximation;
the other Ansätze show an approximately uniform distribution, i.e., a
complete failure to learn the sign rule.

Converged variational energies and all other observables
are reported in Tables I and II, respectively.

APPENDIX C: COMPARISON OF PHASE
STRUCTURE ANSÄTZE

To demonstrate the advantage of our phase structure Ansatz
over other convolutional networks, we considered two alterna-
tive architectures:

(1) 24 convolutional filters spanning the entire lattice,
followed by a ReLU activation layer and summation.

(2) The architecture used for the amplitudes, except for the
last layer, where the ln |x| activation is also replaced by ReLU.

Amplitudes are encoded using the same Ansatz as de-
scribed in Appendix B 1. The performance of these architec-
tures under the protocol described in Appendix B 2 is shown
by the green and red curves in Fig. 4, respectively. In the
first stage, neither of them approach the optimal variational
energy found with the phasor sum Ansatz; subsequently, the
amplitude network also fails to approach the ground state,
even though it is capable of representing it closely, as found
previously. We also point out that as the Monte Carlo sampling
is restarted after changing the learning rate η, the estimates
of the variational energy change substantially, leading to
discontinuities in Fig. 4. This indicates that the amplitude
structure had developed several unphysically strong peaks,
which make subsequent Monte Carlo sampling unable to
recover the correct wave function.

In the unfrustrated case, we also probe the phase structures
learned by the various Ansätze by comparing them directly
to the exact Marshall sign rule. The distribution of the differ-
ences � − �MSR is shown in Fig. 5. While the architecture
used in the main paper learns the MSR to a high accuracy
(up to an irrelevant overall phase), the alternatives produce
essentially random phases.

TABLE III. Average sign 〈s〉 and Marshall-adjusted sign 〈s〉MSR

of the ground state of the J2/J1 = 0.5 square-lattice HAFM for
4 × 4 and 4 × 6 lattices, calculated by exact diagonalization. The
10 × 10 lattice is extrapolated from these, assuming that 〈s〉 decays
exponentially in the number of spins [34].

〈s〉 〈s〉MSR

4 × 4 3.53 × 10−2 0.9745
4 × 6 3.87 × 10−3 0.9650

10 × 10 ≈3 × 10−12 ≈0.88

APPENDIX D: AVERAGE SIGNS
IN EXACT DIAGONALIZATION

To estimate the average Marshall-adjusted sign of the true
ground state of the 10 × 10 frustrated model, we obtained
the exact ground states for 4 × 4 and 4 × 6 lattices using
the Lanczos algorithm as implemented in SCIPY [44], and
calculated the average sign

〈s〉ψ =
∣∣∣∣∣∑

σ

pψ (σ)
〈σ|ψ〉
|〈σ|ψ〉|

∣∣∣∣∣ =
∣∣∣∣
∑

σ |〈σ|ψ〉|〈σ|ψ〉∑
σ |〈σ|ψ〉|2

∣∣∣∣ (D1)

for both the original and the Marshall-adjusted ground states
|GS〉 and

∏
i∈A σ z

i |GS〉. These average signs are given in
Table III, together with an extrapolation to the 10 × 10 lattice,
assuming an exponential decay of both 〈s〉 [34]. The average
sign of the original wave function decays extremely fast and
becomes negligibly small for our lattice size. By contrast,
the average Marshall-adjusted sign remains close, but clearly
distinct from, 1. For a 10 × 10 lattice, the expected average
sign is ≈0.88: Since this is the difference of the statistical
weights of positive and negative amplitude states, we expect
those to be about 94% and 6%, respectively.

APPENDIX E: KERNELS OF THE GROUND-STATE
PHASE STRUCTURES

As discussed in Sec. IV, the change in the phase Ansatz
(2) upon exchanging an up and a down spin separated by R
is a kind of average of the change �φ = 2(wn,r+R − wn,r )
in each elementary phase that enters it. (The factor of 2 is
due to representing up and down spins as ±1 rather than ± 1

2 .)
Since the energy +Jσ+

i σ−
j of an antiferromagnetic interaction

is optimized if �� = π upon exchanging spins i and j, we
expect the corresponding set of �φ to have a distribution
centered upon π , especially in the unfrustrated case, where
all interactions in the Hamiltonian can be optimized simulta-
neously.

In particular, one can represent the Marshall sign rule
corresponding to the unfrustrated limit J2 = 0 exactly by
requiring that all �φ ≡ π (mod 2π ), i.e., wr+R − wr ≡ π/2
(mod π ) for all nearest-neighbor pairs, or R = x̂, ŷ. This
is readily achieved by a checkerboard pattern of weights w

and w + π/2, provided both sides of the lattice are of even
length. Indeed, the phase of each elementary phasor in this
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FIG. 6. Weights wn,r of all convolutional kernels n converged for J2 = 0 (top three rows), and the differences wn,r+x̂ − wn,r and wn,r+ŷ −
wn,r (middle and bottom three rows, respectively). All kernels but one show a clear checkerboard pattern, which results in �φ ≈ π upon
exchanging a neighboring up and down spin, consistent with the Marshall sign rule. In the only exception (fifth kernel of the third row), a
“topological fault” spanning three columns appears, causing some �φ to wind from 0 to 2π : these have little effect on the overall ��, and
might persist due to a topologically invariant winding number. The kernel shown in Fig. 3 is the first one in the second row. (Perceptionally
uniform color maps chosen following Ref. [38]).
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FIG. 7. Weights wn,r of all convolutional kernels n converged for J2/J1 = 0.5 (top three rows), and the differences wn,r+x̂ − wn,r and
wn,r+ŷ − wn,r (middle and bottom three rows, respectively). The kernels are altogether much less regular than in the unfrustrated case, several
of them appearing completely scrambled, and many showing various winding patterns. Nonetheless, the checkerboard pattern corresponding
to the MSR is still common. In addition, a stripy pattern with successive rows differing by π/2 appears, leading to �φ ≈ 0 upon exchanging
nearest-neighbor up and down spins horizontally but �φ ≈ π vertically, in an apparent breaking of rotational symmetry. The kernel shown in
Fig. 3 is the sixth one in the second row. (Perceptionally uniform color maps chosen following Ref. [38].)
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setup is

φr =
∑

r′
wn,r−r′σ z

r′ = w
∑

r′
σ z

r′ + π

2

∑
r′∈A(B)

σ z
r′

= −πN

4
+ π

∑
r′∈B(A)

1 − σ z
r′

2

≡ πN

4
+ π

∑
r′∈A

1 − σ z
r′

2
(mod 2π ), (E1)

where N is the number of lattice sites, A and B are the two
checkerboard sublattices of the lattice, and we repeatedly use
the fact that

∑
σ z = 0. In the last line, we also note that the

total number of down spins (which is measured by the sums
for each sublattice) is N/2, which is even; therefore, the parity
of the sum for the two sublattices is the same. That is, all terms
in (2) have the same phase, which is also consistent with the
MSR (5) up to an overall phase πN/4. It follows that � equals
this phase, and thus recovers the MSR.

Beyond the nearest-neighbor case, there is a Marshall sign
rule corresponding to the other unfrustrated limit J1 = 0,
arising from the requirement that �� = π upon exchanging
next-nearest-neighbor up and down spins. At this point, the
two checkerboard sublattices decouple, each being effectively
a square lattice with diagonal axes. Using the above construc-
tion, appropriate kernels wr can be found for both of them;
however, the offset between the two sublattices is arbitrary,
as it only contributes to an unimportant overall phase. Upon
reintroducing a weak nearest-neighbor coupling, however,
the model develops a stripy antiferromagnetic order [26,27].
Consistently, the sublattices in the convolutional weights w

are expected to lock so as to form rows or columns with equal
w, shifted from one another by π/2 (mod π ).

We now consider the convolutional kernels generated by
the variational Monte Carlo protocol both in the unfrustrated
limit and at J2/J1 = 0.5. The weights wn,r are plotted for
each kernel in Figs. 6 and 7, respectively. In both cases, we
also plot the differences between horizontally and vertically
nearest-neighbor kernel entries.

At J2 = 0, the checkerboard pattern derived for the exact
MSR can be seen in almost all kernels to a very good ap-
proximation; consistently, �φ ≈ π upon exchanging nearest-

neighbor spins, both horizontally and vertically. This suggests
that this representation of the MSR is especially stable; pre-
sumably, it sits at the bottom of a wide basin of the learning
landscape, making it easy to find for optimization algorithms
[24,45]. The only surprising feature in Fig. 6 is a kernel that
develops a three-column-wide “topological fault,” in which
the Marshall-adjusted convolutional weights wind around the
vertical direction. This results in a number of �φ far from
the desired π . The large number of kernels, however, allows
these to be corrected through slight deviations of the other
kernels from the exact MSR. Furthermore, the additional ker-
nels probably play a key role in eliminating such detrimental
structures: Unwinding a “topological fault” requires large-
scale changes in the individual phasors, which substantially
increase the variational energy, unless corrected for by the
other kernels. Indeed, our attempts to use a single convo-
lutional kernel in (2) were plagued by robust “topological
faults” spanning the entire kernel, leading to convergence far
above the ground-state energy.

The kernels obtained in the frustrated case are substantially
more complex, with many “topological faults” and some ker-
nels that show no discernible pattern. Many kernels, however,
retain the checkerboard pattern consistent with the MSR, and
the �φ upon exchanging nearest-neighbor spins vertically are
clearly dominated by values close to π . Both of these are
consistent with the fact that the kernels represent the MSR
rather than the true frustrated sign structure. Nevertheless,
we observe several columns of the stripy pattern consistent
with the MSR of the J1 = 0 limit, as discussed above. These
result in �φ ≈ 0 for horizontal nearest-neighbor exchanges,
leading to a much more varied pattern in these differences.
It is surprising that this more diverse distribution has no
apparent effect on the overall sign structure learned by the
network.

Furthermore, the striking difference between �φ along
the horizontal and the vertical directions is not warranted
either by any fundamental property of the Ansatz, or by
the final converged wave function that obeys all point-group
symmetries to a high accuracy (see Table II). Nevertheless, it
might hint at spontaneous point-group symmetry breaking at
higher variational energies that ultimately leads to learning an
incorrect sign structure. A more detailed analysis of the learn-
ing dynamics is necessary to better understand and overcome
any such problems.
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