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Kane-Mele with a twist: Quasicrystalline higher-order topological insulators
with fractional mass kinks
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We establish an analytic low-energy theory describing higher-order topological insulator (HOTI) phases in
quasicrystalline systems. We apply this to a model consisting of two stacked Haldane models with oppositely
propagating edge modes, analogous to the Kane-Mele model, and with a 30◦ twist. We show that the resulting
localized modes at corners, characteristic of a HOTI, are not associated with conventional mass inversions but are
instead associated with what we dub “fractional mass kinks.” By generalizing the low-energy theory, we establish
a classification for arbitrary n-fold rotational symmetries. We also derive a relationship between corner modes in
a bilayer and disclination modes in a single layer. By using numerics to go beyond the weak-coupling limit, we
show that a hierarchy of additional gaps occurs due to the quasiperiodicity, which also harbor corner-localized
modes.
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I. INTRODUCTION

The topological classification of insulators with internal
symmetries is a cornerstone of modern condensed-matter
theory [1–4]. Recently, this classification was further enriched
by the addition of crystalline symmetries [5–8]. In fact, a full
classification has been achieved for all 230 crystal symmetry
groups without internal symmetries [9–12]. A particularly
interesting result in this direction is the discovery of higher-
order topological insulator (HOTI) phases [13–19]. In these,
crystalline symmetries allow for a generalized bulk-boundary
correspondence where the insulating D-dimensional bulk has
(D − d )-dimensional edge states with d > 1.

Another fascinating line of research for topological insu-
lators in recent years has been in exploring their relevance
for quasicrystals [20–23]. These are systems that are interme-
diate between periodic and amorphous systems, in that they
possess long-range order and yet lack translational symmetry
[24–26]. They are defined as having Bragg peaks (and hence
long-range order) that require more basis vectors than spatial
dimensions to index (therefore lacking a Brillouin zone) [25].
For topological insulators, quasicrystals provide a test bed
for exploring the extent to which these are robust to disorder
[21–23]. Through the Harper-Hofstadter model [27,28], these
have also been shown to possess topological indices that
are inherited from higher-dimensional parent systems via a
projection, suggesting routes to studying higher-dimensional
topology experimentally [20,29–31].
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For higher-order topological insulators, quasicrystals
present a particularly interesting prospect. Since they do
not possess translational symmetry, all known classifica-
tions based on symmetry indicators in the Brillouin zone
no longer apply [32,33]. While this is also true for amor-
phous systems, which have been shown to support HOTI
corner modes [34], quasicrystals notably still possess ro-
tational symmetries. Moreover, as these rotational symme-
tries can be disallowed for crystalline systems, and are ab-
sent in amorphous systems, a higher-order topological in-
sulator phase here would be unique to a quasicrystal. It
was shown in recent studies that quasicrystals do indeed
support HOTI phases [35], including phases with disal-
lowed rotational symmetry [36]. All current approaches rely
solely on numerical methods, lacking a direct analytical
understanding.

Here we bridge this gap by constructing an analytical ap-
proach that can describe quasicrystalline HOTIs. We demon-
strate this approach for a simple model consisting of two
Haldane models [37] stacked with a 30◦ twist, which we liken
to Kane-Mele [38,39] with a twist. This model is, by con-
struction, quasicrystalline since it is two-dimensional and has
Bragg peaks indexed by four basis vectors [25]. Our analytical
approach is based on a low-energy edge theory. Unlike the
Kane-Mele model in which the edge theory is protected by a
local time-reversal symmetry, the nonlocal 12-fold rotational
symmetry in the model we study does not protect the edge
modes from gapping out. Instead, the rotational symmetry
places a constraint on a phase θ parametrizing the edge mass.
This forces domain walls at the corners, resulting in the corner
modes associated with the HOTI phase.

Interestingly, the domain walls in the mass are not the
standard “mass inversions” (corresponding to �θ = π ) with
the associated corner charge of 1/2, encountered in similar
studies [14,32]. Instead, for the model we study, these in-
volve a fractional phase shift, �θ = π/2, corresponding to a
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corner charge of 1/4 [40]. We therefore dub this a “fractional
mass kink.” Moreover, we generalize this result to arbitrary
n-fold rotational symmetry, finding that corner charges are
fractionalized as Q = p/n associated with a fractional mass
kink �θ = 2π p/n, where p is an integer. Interestingly, this
provides an alternative perspective on a classification of Cn-
protected corner charges in Ref. [33] and generalizes to arbi-
trary rotational symmetries, including quasicrystalline.

Furthermore, in Sec. IV, we use our low-energy theory to
make a connection between the corner modes of a bilayer
and disclination modes in a single layer. In doing so, we
extend the known disclination modes of a single Haldane
layer [41] to a generalized relationship between disclination
charge and disclination angle applicable to arbitrary rotational
symmetries. In Sec. V, we use numerics to go beyond the low-
energy theory (weak-coupling limit) and find that at stronger
couplings a hierarchy of gaps opens in the edge spectrum,
with these harboring additional corner-localized modes. We
show that this is a direct result of the quasiperiodicity and
therefore provides a striking example of how quasicrystalline
HOTIs differ from their crystalline counterparts. In Sec. VI,
we discuss further generalizations and highlight an interesting
feature of the twist construction. We show that a trivial HOTI
without a twist can be nontrivial after twisting.

II. MODEL

We study a model that is constructed by stacking two
Haldane models [37] with opposite Chern numbers with a 30◦
twist, as shown in Fig. 1. It is given by

H = −t
∑
〈i j〉

c†
i τ0c j + iλH

∑
〈〈i j〉〉

νi jc
†
i τzc j + λ⊥

∑
i j

t⊥
i j c†

i τxc j,

(1)

where ci = (ct
i cb

i )
T

is a two-component spinor with com-
ponents acting on the top and bottom layers described by the
Pauli matrices τx, τy, τz and the identity τ0. The annihilation
operators ct

i (cb
i ) act on the site at rt

i (rb
i ), with rt

i = R12rb
i +

dz ẑ, where Rn is a rotation by 2π/n and dz is the interlayer
separation. The nearest- and next-nearest-neighbor notation
〈· · · 〉 and 〈〈· · · 〉〉 denotes a coupling between sites on the same
layer. The first two terms describe the Haldane models on
each layer, while the third is an all-to-all interlayer hopping
governed by t⊥

i j = exp (−|ri − r j |/δ), where top and bottom
labels have been suppressed.

In Fig. 1 we outline a natural comparison of the model we
study to that of Kane-Mele [38,39]. Indeed, by associating the
spin degree of freedom there with a physical layer degree of
freedom here, giving these layers a 30◦ twist and replacing
the “Rashba” interlayer coupling with that in (1), one arrives
at the model studied here. The crucial difference, however, is
in the relevant symmetry. For Kane-Mele, the symmetry iτyK
is a local symmetry, in the sense that it relates spatially local
degrees of freedom (albeit applied globally over the sample),
whereas here the relevant symmetry, R12τxK , is nonlocal,
relating spatially separated degrees of freedom. The local
symmetry in the Kane-Mele model is sufficient to protect the
two oppositely propagating edge states from being gapped out
everywhere along the edge, providing an example of a spinful

FIG. 1. Left: The Kane-Mele model amounts to stacking two
Haldane models with opposite Chern numbers and requiring a spinful
time-reversal symmetry T = iτyK . As a result of this symmetry,
the two edge modes are protected from gapping out. Right: In the
model we study, we imagine twisting one of the Haldane layers
by 30◦. As such, we remove the local time-reversal symmetry and
replace this with a nonlocal 12-fold rotation plus time-reversal
symmetry. Without the local time-reversal symmetry, the edge modes
are gapped. However, due to the rotational symmetry the mass that
gaps the edge modes changes by a phase between edges, protecting
corner-localized modes.

time-reversal symmetry-protected topological insulator. How-
ever, the nonlocal symmetry here does not protect the edge
states from being gapped out. Instead, this nonlocal crystalline
symmetry protects lower-dimensional corner modes at the in-
tersections of the 12 edges of a 12-fold rotationally symmetric
sample. Our model therefore provides an example of a higher-
order topological insulator protected by a crystallographically
disallowed 12-fold rotational symmetry.

We demonstrate numerically the presence of a higher-order
topological phase with crystallographically disallowed rota-
tional symmetry by directly computing the spectrum, with the
results shown in Fig. 1. For the parameters t = 1, λH = 0.3,
and λ⊥ = 1, one finds a gap opens in the edge spectrum,
as outlined schematically in Fig. 1. In Fig. 2, we show a
close-up of the spectrum at this gap opening. One sees 12
in-gap corner-localized states, with these indicated by a light-
blue coloring. An example of a corner-localized eigenstate is
shown in Fig. 1.

Diagnosing this nontrivial higher-order topology is hin-
dered by the presence of the quasiperiodicity. Established
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FIG. 2. A close-up of the numerically obtained spectrum of
(1) with parameters λH = 0.3t , λ⊥ = 3.0t , dz = 1.362a, and δ =
0.184a. The 12 corner-localized states at E/t � 0.1 are indicated by
light-blue coloring. Unlike corner modes due to a conventional mass
inversion (�θ = π in our notation) in which the localized modes
are at E = 0, the mass here undergoes a fractional mass kink (�θ =
π/2), resulting in a bound-state energy of E = m/

√
2, where m is the

half-gap width. Due to finite-size effects, the degeneracy between the
12 corner modes is lifted; this splitting reduces exponentially with
system size.

tools based on eigenvalues at high-symmetry points in the
Brillouin zone are ruled out as momentum is no longer a
good quantum number. Instead, in the following we pursue
an approach based on classifying how crystalline symmetries
can enforce domain walls in a low-energy edge theory. As
this approach does not rely on crystal momentum being
a good quantum number, it is robust in the presence of
quasiperiodicity.

III. LOW-ENERGY THEORY AND CLASSIFICATION

In order to understand the origin of the HOTI phase we
ask how the rotational symmetry of the model we study
constrains the low-energy theory at the edge. We construct
the low-energy theory using the following arguments. Consid-
ering the λ⊥ = 0 limit, our model reduces to two uncoupled
Haldane models of opposite chirality, and therefore, we expect
a gapless one-dimensional (1D) Dirac theory consisting of a
single term, kτz, describing the two counterpropagating modes
on the edge (see Appendix A). For λ⊥ �= 0, a gap is opened in
the edge spectrum, as shown in Fig. 2. To describe this, the
low-energy theory must include additional terms that do not
commute with kτz. We therefore include terms proportional to
τx and τy. Including these alongside the kinetic term, one has
the following low-energy theory:

H = kτz + mMθ , (2)

with Mθ ≡ cos θ τx + sin θ τy. The mass terms τx, τy have
been parametrized via m and θ , with both parameters consid-
ered to be functions of position along the edge.

If one had m = 0 along the entire edge, the edge spectrum
would be gapless. This is the case for the Kane-Mele model, as
there the local spinful time-reversal symmetry iτyK anticom-
mutes with τx and τy and therefore forces m = 0 everywhere
along each edge. However, here we will show in the following

FIG. 3. (a) The corner-localized modes are understood in a low-
energy theory consisting of left- and right-propagating modes cou-
pled by a mass Mθ . (b) The effective C12 symmetry in the low-energy
theory forces the parameter θ to change by π/2 at a corner of a
dodecagonal sample. (c) At this domain wall in θ , there exists a
localized state with a fractional fermion charge of 1/4. This is the
corner mode found numerically.

that the nonlocal C12 symmetry of the bilayer model imposes
a constraint that forces a kink in the angle θ across a corner,
as shown in Fig. 3.

Before discussing the specifics of the low-energy theory of
the model we study, we first outline a general classification
for how rotational symmetries can lead to HOTI phases for
the low-energy edge theory in (2). Consider all symmetries
Cn acting on the edge theory that contain an n-fold rotation
Rn alongside an additional unitary or antiunitary operation
Un, that is, Cn = RnUn. If the operator Un is antiunitary it
will contain a complex conjugation K , and the associated
Cn will amount to a rotation plus time reversal. The only
conditions we require for Cn are that a full rotation is spinor-
like, Cn

n = −1 [42], and that Cn commutes with the kinetic
part of the low-energy theory [Cn, kτz] = 0. This constrains
Cn to the following representations. For unitary Un one has
Cn = Rn exp[−iπ (qτ0 + pτz )/n], with integer q and p, with
q + p being odd. However, for antiunitary Un, one has Cn =
Rn exp (−iτzπ p/n)τxK for even n and odd p. The requirement
of even n in the antiunitary case is because only even powers
of an antiunitary operator are unitary.

In order for the mass mMθ to be present it must com-
mute with Cn, that is, [Cn, mMθ ] = 0. As Cn acts nonlocally
on the edge, this condition relates masses on neighboring
edges via

UnMθU †
n = Mθ+2π p/n (3)

for both unitary and antiunitary representations. That is, Cn

causes rotations in the phase θ between two edges. As is well
known from the work of Jackiw and Rebbi [43], a phase shift
of π , known as a mass inversion, results in a zero-energy
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localized state with fractional charge, Q = 1/2. While this can
be the case here, more generally, the phase shift �θ = 2π p/n
between two edges is a multiple of 2π/n. Nevertheless, for
any nonzero �θ the following localized state can be shown to
exist [40]:

ψ (x) = 1√
2

(
e−i(θ+�θ/2)

1

)
e−κ|x|, (4)

where κ = m sin (�θ/2) and x is the distance from the do-
main wall. One can also show that this localized state lies at
an energy of E = m cos (�θ/2) and has a quantized charge
of Q = �θ/2π = p/n [44–46]. Therefore, the conventional
mass inversion, p/n = 1/2, is a special case. More generally,
rotational symmetries bind fractional charges that are multi-
ples of 1/n.

A few comments can be made about these results. The
trivial case for which there is no domain wall, �θ = 0, has
κ = 0, E = m, and Q = 0. That is, this state is delocalized
(infinite localization length), it is part of the edge band, and it
has zero quantized charge. Therefore, for this representation
(p = 0), the state is trivial. Note that as p = 0 is not possible
for antiunitary representations, all antiunitary representations
are nontrivial. For �θ = π , that is, representations with
p/n = 1/2, one recovers the familiar case of a mass inversion.
Here one finds a maximally localized state, κ = m, with zero
energy, E = 0, and half fermion charge, Q = 1/2. For all
other representations one finds a fractional mass kink. These
have nonzero energy and a fractional charge that is a multiple
of 1/n different from 1/2.

We highlight two crucial features of this classification. The
first is that our theory applies to all rotational symmetries
regardless of whether these are allowed by a periodic lattice.
As such, our classification applies to quasicrystalline sys-
tems, which are typically not included in HOTI classifications
due to the lack of a well-defined Brillouin zone. Another
interesting feature is the presence of fractional mass kinks.
In three-dimensional (3D) class-AII classifications, fractional
mass kinks are not possible [32], which can be understood
from the following. The two-dimensional (2D) edge theory
(of the 3D TI) has two Pauli matrices assigned to the two
momentum components, leaving a single Pauli matrix for the
mass. Therefore, symmetries cannot “rotate” the mass as in
one dimension but can still invert the sign of the mass. An
interesting consequence of this is that odd rotational symme-
tries are necessarily trivial in three dimensions; however, in
two dimensions these can be nontrivial.

We also highlight that unlike chiral or particle-hole
symmetry-protected phases, in which the symmetry protects
the precise location of the zero-dimensional state within the
gap, the rotational symmetry does not exclude local terms
that can move the energy of the corner states [47]. Instead,
the rotational symmetry protects the corner charge. In the
low-energy theory there are no symmetry-allowed terms that
can remove the twist in the mass. Since it is the kinks in
this mass that determine the charge of the corner state, it
is the charge that is symmetry protected. Furthermore, since
the representation of the rotation at the edge can be changed
only by closing the bulk gap, the presence of these symmetry-
protected charges is the signature of a topologically nontrivial
bulk phase.

FIG. 4. (a) and (b) Plots of the phase winding of a Haldane model
edge state. One observes π/2 shifts at the corners of a hexagonal
sample, indicating that the effective sixfold rotational symmetry for
the low-energy theory is C6 = ±iR6. (c) The same π/2 phase shift
is also revealed by an overall shift in the numerically obtained low-
energy m = 0 angular momentum edge state.

In order to apply the general theory above to the model
we study we need to determine the representation for the C12

edge symmetry. To do this, we turn to the simpler question
of finding the correct representation for the C6 symmetry of a
single layer. We discuss how this can be determined and then
show how the full C12 symmetry can be obtained by taking a
“square root” of the C6 symmetry.

Consider the phase of a low-energy chiral edge state on a
hexagonal sample, as shown in Fig. 4. Away from the corners,
one finds a phase winding, exp (ikx), corresponding to a state
with momentum k = π/a + δk, where a is the 1D unit cell
length. That is, the phase shifts by π between neighboring
unit cells, which is expected since the chiral edge state for a
“zigzag” edge passes through k = π/a. This is accompanied
by a small linear increase due to the small but nonzero energy
of the state. However, at the corners, one sees an abrupt
shift of ±π/2, with the sign determined by the chirality of
the edge state. This result is also consistent with studies on
disclination modes in the Haldane model [40,41,48]. This
shows that across the corner the state acquires a factor of ±i.
Consequently a bilayer will have C6 = iτz = exp (iτz3π/6),
and therefore, the C6 representation has p = 3.

This result can be corroborated by studying the details
of the low-energy spectrum of this finite hexagonal sample,
shown in Fig. 4(c). Since the system has sixfold rotational
symmetry, each eigenstate ψ can be assigned an angular
momentum quantum number m according to R6ψ = eimπ/3ψ .
Given an edge state with angular momentum m, the total
phase accumulated along an edge of length L, consisting of
the kinetic term kx plus possible phase shifts ϕ at a corner, is
constrained by kL + ϕ = mπ/3. Since the edge state disper-
sion is ε = vFk, one has the following low-energy spectrum
of states:

Em = πvF

3L

(
m − 6ϕ

2π

)
. (5)

By comparison to numerics, one finds that the m = 0 state
is shifted by −3/2 of the energy spacing. Therefore, one has
6ϕ/2π = 3/2, which gives ϕ = π/2, in agreement with the
previous discussion.

We deduce the full C12 symmetry from the C6 symmetry by
taking a square root. We require C2

12 = C6 and, additionally,
look for solutions that include time reversal since we expect
the effective edge C12 symmetry to be of a form similar to
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FIG. 5. Construction of a  = −2π/6 disclination in a Haldane
model, demonstrating the connection between phase shifts of an edge
state at a corner and disclination modes. This consists of two pieces,
each having an edge state propagating counterclockwise, but one
with a straight edge and therefore no phase shift and the other with a
C6 corner with a π/2 phase shift. When couplings are established
between the pieces, masses will appear in the low-energy theory,
gapping out the edge states. As the phase of the edge state shifts by
π/2 at the corner, the masses will have the same π/2 shift, resulting
in a localized mode at the disclination core with a charge of 1/4.

the bulk C12 symmetry. According to our classification, this
amounts to keeping p = 3 fixed while doubling n, giving
C12 = exp(−iτzπ/4)τxK . The effect of this symmetry is out-
lined in Fig. 3. The C12 symmetry induces fractional mass
kinks, �θ = π/2, localizing states at the corners, with energy
E = m/

√
2, where m is the half-gap width and charge Q =

1/4. Comparison with the spectrum in Fig. 2 shows close
agreement, and further numerics on scaling confirm that the
corner modes lie at the expected energy for large systems (see
Appendix B).

IV. DISCLINATIONS

It is well known that the Haldane model (a single layer of
the model we study) features localized modes with fractional
charge at disclinations (rotational defects corresponding to
the removal or addition of 2π/6 segments of the hexagonal
lattice, forming conical points in three-dimensional space)
[41]. Given the presence of corner modes for a bilayer, this
raises a possible connection between corner modes and discli-
nation modes. In the following we show that there is indeed a
connection between the two and derive the relationship

Qdisclination = f

2
Qcorner (6)

between the disclination charge Qdisclination of a single Chern
insulator layer and the corner charge Qcorner of a bilayer of
Chern insulators with opposite Chern numbers. Here f is
the Frank index for the disclination angle (Frank angle)  =
−2π f /n, with n being the rotational symmetry. A Frank index
f > 0 ( f < 0) corresponds to the removal (addition) of 2π/n
segments; for example, the disclination shown in Fig. 5 has
Frank index f = 1 and Frank angle  = −2π/6.

Our approach to deriving (6) uses the low-energy theory
developed in the preceding section. The central idea is most
clearly understood by first considering a specific example.

FIG. 6. Diagrams outlining the derivation of Eq. (7) relating
disclination charge to rotational symmetry n, representation p, and
Frank index f . (a) The phase π p/n of the Cn symmetry gives the
phase acquired by an edge state as it passed a Cn corner. (b) The
corresponding phase shift for an elementary corner of angle π −
2π/n is given by the phase of Cn/2−1

n . (c) Similarly, one may find
the phase shift for a corner with twice this angle. (d) By splitting
this piece into two, one finds a nonzero phase �0 across the cut in
order for all phases to be consistent. We call this the gluing phase.
(e) The phase shift at an arbitrary corner with angle 2πm/n is found
by summing the gluing and elementary phases. (f) By splitting off an
elementary piece, we may apply the same reasoning from Fig. 5 to
find the change at a disclination with  = −2π f /n = 2π (m − n)/n.

Consider a  = −2π/6 disclination in the Haldane model
[41]. One constructs this disclination by gluing two Haldane
pieces, as shown in Fig. 5. A piece with a flat edge is
connected to a piece with a 2π/6 corner. As this corner is
identical to the corner of a sixfold hexagonal sample, the
phase shift for the edge state across this corner is π/2, as
found in the preceding sections. When the two pieces are
joined, the oppositely propagating edge states will gap out;
however, because of this π/2 phase shift, the mass matrices
will have a �θ = π/2 phase shift at the core of the disclina-
tion. Appealing to the theory in the preceding sections, one
can immediately determine that a bound state will be present
with charge 1/4.

We generalize this procedure to all disclination angles
and rotational symmetries by deriving rules for the fractional
phase shift at an “elementary” corner and the “gluing” phase
for joining these pieces together, as shown in Fig. 6. We
consider a two-dimensional n-fold symmetric system with a
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single chiral edge state (Chern number of one). The edge
theory must have a Cn symmetry satisfying Cn

n = −1, that is,
Cn = Rneiπ p/n, with odd p indexing a particular representa-
tion of this symmetry. If a disclination with Frank index f
is made, one may expect a topologically bound mode at the
disclination core depending on the representation p.

We carry this out for even rotational symmetries and then
argue that the same result can be extended to odd rotational
symmetries. We wish to find the phase acquired by the edge
state at the most acute corner of angle 2π/n; we refer to
this as an elementary corner. The phase in Cn = Rneiπ p/n

is associated with a 2π/n rotation of the state. At a cor-
ner with angle 2π/n, the state is rotated by π − 2π/n =
(2π/n)(n/2 − 1), which is n/2 − 1 times the rotation for
Cn. One therefore finds the phase for the elementary corner
from Cn/2−1

n = Rn/(n/2−1)ei(π p/n)(n/2−1). We call this phase
shift �1 ≡ (π p/n)(n/2 − 1). Similarly, we can find the phase
shift of the second most acute corner of angle 4π/n is �2 ≡
(π p/n)(n/2 − 2).

As shown in Fig. 6, if one splits this second smallest
corner into two elementary pieces, in order for all phases to
be consistent an additional gluing phase is needed between
elementary pieces of �0 = −π p/n. The phase shift �m across
a “corner” with angle 2πm/n can then be found by sum-
ming over elementary and gluing phases, �m = m�1 + (m −
1)(−π p/n) = (π p/n)(n/2 − m). The final step in finding the
disclination charge is achieved by splitting the part consisting
of m pieces into two parts: one with m − 1 pieces, and another
with one piece. In joining these pieces, masses with phases �m

and �0 will occur on either side of the disclination.
Therefore, the phase difference between the two channels

is �θ = �m − �0 = π p − mπ p/n. Since a sample consist-
ing of m pieces will have Frank index f = n − m, we have
�θ = f π p/n. The final expression for the disclination charge
is therefore

Q = f p

2n
. (7)

For odd rotational symmetries the approach above does
not directly apply. Nevertheless, one can expect the results to
be consistent in the following sense. Consider disclinations
with odd rotational symmetry n ∈ 2Z + 1. These disclina-
tions can be found in a system with n′ = 2n rotational sym-
metry by restricting the Frank index to even integers f ′ =
2 f . In this case, one therefore has disclination charge Q =
f ′ p/2n′ = (2 f )p/2(2n) = f p/2n, which is consistent with
(7). We therefore postulate that the result in (7) holds true for
systems with odd rotational symmetry.

The final connection to corner charges of a bilayer is made
by noting that a bilayer will have the following representation
for n-fold rotational symmetry Cn = Rn exp(iτzπ p/n). From
the preceding section, we know that this has corner charges
Q = p/n. Therefore, the corner charge for a bilayer is related
to the disclination charge in a single layer by Eq. (6). We
remark that a similar result was obtained in Ref. [33] for
a gapped single layer using different methods. Our result
superficially differs by a factor of 1/2; nevertheless, the results
are consistent. This is because our result relates a corner
charge for a bilayer to a disclination charge in a single layer,

whereas in Ref. [33] the corner charge of a single layer is
related to the disclination charge of single layer.

V. HIERARCHY OF CORNER STATES

In the preceding sections, all results relied solely on the
presence of rotational symmetry. These were general and as
such applied to both periodic and quasiperiodic systems. Nev-
ertheless, quasiperiodicity itself can lead to a number of novel
features. Here we discuss a striking example, demonstrable in
the model we study. This is found by moving beyond the low-
energy theory and instead looking at the full edge spectrum.
As shown in Fig. 7, for sufficiently large interlayer coupling
and sample size, a hierarchy of additional gaps appears that
can also harbor corner-localized modes.

The origin of these additional gaps is easily understood
by attempting to construct the 1D spectrum of a strip ge-
ometry. Since the system is quasiperiodic, this cannot be
exactly achieved; however, one can approach this by using
“approximants.” That is, we use the Diophantine approxima-
tions,

√
3 � p/q, to produce a series of sequentially more

accurate, larger unit-cell approximations to a true, infinite unit
cell. Indeed, for a particular approximant, one can show that
the unit-cell length is 3p. The 1D Brillouin-zone width is
therefore 2π/3p and reduces with approximant order. This
leads to a folding back of the two edge-state bands.

At lowest order, the only crossing is at zero energy, re-
sulting in the “principal” (largest) energy gap. However, at
higher orders one has more crossings and, as such, more gaps.
The edge spectrum plot in Fig. 7 demonstrates that gaps that
appear at lower orders remain robust at higher orders. More-
over, these match well with the gaps found in the spectrum
of a sample with C4 symmetry. The corner-localized states in
this spectrum are highlighted in red. Since each higher-order
gap is formed from an anticrossing between the edge modes,
the same low-energy theory as that used above must apply.
However, it is an open question whether all higher-order gaps
must share the same representation and therefore the same
corner-state charge.

For any finite sample the full hierarchy of gaps will not
be resolved; as such, the number of corner states grows
extensively with sample size. One can understand this in two
ways. For an edge length L, one will not see k-space features
with wavelength larger than L, that is, momentum smaller than
1/L; this provides a natural cutoff for relevant momentum
transfers, providing a cutoff for relevant gaps. A similar cutoff
can be obtained by considering the energy spacing for a
sample of finite edge length L. As in Eq. (5), the spacing is
∼1/L; as such, all gaps smaller than this will not be resolved
in the spectrum of the finite sample.

VI. GENERALIZATIONS

A. Stacking construction

We highlight that while we have used a quasicrystalline
model consisting of two incommensurately stacked crystalline
layers, the same results apply to fully quasicrystalline lattices
such as Penrose and Ammann-Beenker. For example, a bilayer
consisting of coupled opposite-Chern-number Penrose tilings
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FIG. 7. Hierarchy of edge gaps. (a) The “strip” geometry used to calculate the edge spectrum. An approximant unit cell is made by using the
rational approximant

√
3 � p/q, giving a unit cell length 3p, dependent on the order p of the rational approximation. (b) The edge spectra for

two rational approximations to
√

3. One sees a folding occurring at higher-order approximants. This folding generically leads to anticrossings
that can gap out under the presence of the interlayer coupling. (c) The spectrum of a sample with C4 symmetry for λ⊥ = 5t and λH = 0.3t .
The corner states for the principal zero-energy gap are present, in addition to a number of distinct corner states within higher-order gaps.

[22] would have a low-energy edge theory similar to that
found here.

Nevertheless, the stacking with a twist construction is a
very natural and powerful way to produce similar phases.
Indeed, doubling the rotational symmetry will generally lead
to quasicrystalline rotational symmetries, that is, 4-fold → 8-
fold and 6-fold → 12-fold. In addition the square root en-
countered in going from Cn → C2n can produce a nontrivial
HOTI from a trivial HOTI. For example, a system with Cn =
−τ0 after twisting will have C2n = τyK , which protects Q =
1/2 corner modes at the 2n corners. Also, as we find here, a
system with conventional mass inversions without a twist will
have fractional mass kinks with a twist.

B. Interlayer coupling

The model studied throughout this work had an interlayer
coupling which differed from the interlayer Rashba coupling
in the Kane-Mele model. A natural question is whether this
is important to the results described throughout. The answer
is no; we could, indeed, use a generalized Rashba type of
interlayer coupling

HR = iλR

∑
i j

t⊥
i j c†

i (τ × d i j )zci, (8)

where d i j = ri − r j . Due to this different interlayer coupling,
the C12 symmetry is changed from R12τxK to R12iτyK . That
is, the antiunitary part is a spinful time-reversal symmetry
(iτyK )2 = −1 opposed to spinless (τxK )2 = 1. However, all
of our numerical results remain qualitatively unchanged, high-
lighting that the time-reversal part of the C12 symmetry is

irrelevant to the protection of the HOTI phase. The important
feature is the nonlocal action of the symmetry.

VII. SUMMARY

We have shown that a simple 30◦ twist of the Kane-Mele
model is sufficient to produce a quasicrystalline higher-order
topological insulator. We showed this result numerically and
provided a detailed analytical understanding based on a low-
energy theory. In carrying this out, we derived a general low-
energy theory that classifies higher-order topological phases
with any rotational symmetry, including those disallowed in
periodic crystalline materials. We found that these are gener-
ally associated with what we dub fractional mass kinks, in
which instead of a change in sign in the low-energy mass,
there is a fractional shift in phase. We then highlighted a natu-
ral connection between corner modes and disclination modes
and used the low-energy theory to establish this relationship
in general. Furthermore, we demonstrated numerically that
for strong interlayer couplings, a hierarchy of gaps opens in
the edge spectrum. We showed this to be a direct result of
the quasiperiodicity. Finally, we outlined a number of natural
generalizations and highlighted that our stacking with a twist
construction can, in general, produce a nontrivial higher-order
topological insulator from a trivial system without a twist.
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APPENDIX A: DERIVATION OF EDGE THEORY

We start with the bulk low-energy theory for a bilayer
Haldane model

Hbulk = (kxσxρz + kyσy) + �Hσzρzτz + �Sσz, (A1)

where σ is the sublattice (A or B) degree of freedom, ρ is
the valley (K or K ′), and τ is the layer (top or bottom). The
first two terms derive from the nearest-neighbor hopping and
describe the two Dirac cones. The term proportional to �H

derives from the Haldane time-reversal symmetry- breaking
next-nearest-neighbor hopping. The term proportional to �S

is due to a sublattice-dependent on-site energy and is included
to allow for a normal insulator phase for �S > �H > 0. We
will assume throughout that the interlayer hopping λ⊥ = 0,
adding this back in at the end. Note that this derivation is
identical to that of the Kane-Mele model by associating layer
and spin degrees of freedom.

Our first step will be to perform a unitary rotation in the σ -
ρ subspace to remove the opposite chirality between valleys,

H′
bulk ≡ UHbulkU = k · σ + �Hσzτz + �Sσzρz, (A2)

with

U ≡
(

σ0 0
0 σy

)
τ0. (A3)

Now consider a domain wall with normal n̂ and tangent t̂ =
ẑ × n̂ between nontrivial and trivial regions. We decompose
k = kt t̂ + knn̂. As the Hamiltonian is now position dependent
along the n̂ direction, we write kn = −i∂λ, where λ is the
distance from the domain wall. Letting kt = k, we have

H′
bulk = kt̂ · σ − i∂λn̂ · σ + �Hσzτz + �Sσzρz (A4)

and use a mass dependence [49]

�H > 0, �S = 0 for λ < 0, (A5)

�H = 0, �S > 0 for λ > 0. (A6)

Therefore, for λ < 0, we have Chern numbers C = ±1 on
each layer, while for λ > 0 both layers have C = 0.

We then search for a solution exponentially localized at the
domain wall,

�(λ, k) =
{

e�Hλ ψ (k), λ < 0,

e−�Sλ ψ (k), λ > 0.
(A7)

Substituting into Hbulk� = E�,

[kt̂ · σ − i�Hn̂ · σ + �Hσzτz]� = E�, λ < 0, (A8)

[kt̂ · σ + i�Sn̂ · σ + �Sσzρz]� = E�, λ > 0. (A9)

This can be solved by requiring the following:

�H[−in̂ · σ + σzτz]ψ = 0,

�S[+in̂ · σ + σzρz]ψ = 0, (A10)

and,

(kt̂ · σ)︸ ︷︷ ︸
Hedge

ψ = Eψ. (A11)

One can rewrite the first two conditions in terms of projec-
tions. Using in̂ · σ = σz(ẑ × n̂) · σ = σzt̂ · σ, one has

σzτz[1 − t̂ · στz]ψ = 0, (A12)

σzρz[1 + t̂ · σρz]ψ = 0, (A13)

which can be written as

1
2 (1 + t̂ · στz )ψ = ψ, (A14)

1
2 (1 − t̂ · σρz )ψ = ψ, (A15)

where we define

PH ≡ 1
2 (1 + t̂ · στz ), (A16)

PS ≡ 1
2 (1 − t̂ · σρz ), (A17)

satisfying P2
H = PH, P2

S = PS, and [PH, PS] = 0. The above
projectors imply that the internal structure of the edge theory
is lower dimensional than that of the bulk theory. In order to
find this lower-dimensional subspace we find rotations that
diagonalize the composite projector P ≡ PHPs.

The composite projector P ≡ PHPs, satisfying Pψ = ψ ,
can be alternatively decomposed as

P = 1

2
(1 + t̂ · στz )

1

2
(1 − t̂ · σρz ) (A18)

= 1

4
(1 − τzρz + t̂ · στz − t̂ · σρz ) (A19)

= 1

2
(1 + t̂ · στz )︸ ︷︷ ︸

≡P1

1

2
(1 − τzρz )︸ ︷︷ ︸

≡P2

. (A20)

One can now diagonalize P1 and P2 using the following
unitary transformations:

V1 ≡ exp(iπ n̂ · στz ), V1P1V
†

1 = 1

2
(1 − σz )ρ0τ0,

V2 ≡ σ0

(
ρ0 0
0 ρx

)
, V2P2V

†
2 = 1

2
σ0(1 − ρz )0τ0, (A21)

with [V1,V2] = 0, [V1, P2] = 0, and [V2, P1] = 0. By noting
that the projector

1

2
(1 − σz ) =

(
0 0
0 1

)
(A22)

picks out the “down” subspace, one can construct the rectan-
gular matrix

p ≡ (0 0 0 τ0)T, (A23)

which picks out the correct subspace for P′.
One therefore finds the final edge Hamiltonian by taking

this projection:

(pTVHedgeV
† p)(pTV ψ ) = E (pTV ψ ), (A24)

H′
edgeψ

′ = Eψ ′, (A25)

where V ≡ V2V1 and

H′
edge = pTV (kt̂ · σ)V † p (A26)

= kτz. (A27)
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FIG. 8. The in-gap location of the corner states for a C4-
symmetric system as a function of interlayer coupling λ⊥ and for
various system sizes. The expected location E/m = −1/

√
2 is indi-

cated by the dashed line. The error bars indicate the splitting of the
four degenerate corner states. This splitting is due to a lengthening of
the exponential tails of the corner states for small λ⊥. (Inset) Diagram
indicating how the various parameters are defined for the numerically
obtained spectrum.

The final result is a one-dimensional Dirac theory, with two
counterpropagating modes. Note that due to the rotation V
that mixes all three degrees of freedom, the final τ cannot be
directly associated with the original layer degree of freedom.

In summary one has

H′
edge = (pTVU )Hbulk(U †V † p) (A28)

= kτz, (A29)

with U , V , and p defined in (A3), (A21), and (A23). To
connect back to the main text, we reiterate that the interlayer
coupling was set to zero throughout this derivation; therefore,
this is the edge theory for two uncoupled layers. In order to
incorporate the interlayer coupling, one notes (as in the main
text) that since numerically λ⊥ �= 0 gaps out the edge theory,
one must include all terms that can gap out (A27), that is, τx

and τy.

APPENDIX B: SCALING OF THE CORNER-STATE
IN-GAP ENERGY

In the main text it was found that the corner-localized
states for a system with 12-fold symmetry will have an energy
of E = m/

√
2 above the midgap value Emidgap, where m =

Egap/2 is the half-gap width. Similarly, by using C4 = C3
12,

one can show that for a system with fourfold symmetry the
corner states will similarly have an energy of E = −m/

√
2.

In Fig. 8 we plot the numerically obtained in-gap energy of
the corner-localized states of a system with fourfold symmetry
as a function of interlayer coupling and for various system
sizes. For λ⊥/t � 1 the agreement is good; however, this
does begin to deviate for larger λ⊥. This is expected since
the result E = −m/

√
2 is found from a low-energy theory

and should therefore be expected to remain valid only for
moderate couplings. One also notices a strong deviation for
λ⊥ � 1. Again, this is expected since for a finite system size
of length L, there is a natural energy scale vF /L discussed
in Sec. V and evident in Eq. (5), which sets a resolution on
spectral features. For increasing system size, this resolution
becomes sharper, and accordingly, the curves in Fig. 8 flatten
towards E = −m/

√
2.
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