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Effect of Van Hove singularities in the onset of pseudogap states in Mott insulators

Wei Wu,1,2,3 Mathias S. Scheurer,4 Michel Ferrero ,1,3 and Antoine Georges1,3,5,6

1CPHT, CNRS, École Polytechnique, IP Paris, F-91128 Palaiseau, France
2School of Physics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, China

3Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
4Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

5Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
6DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Switzerland

(Received 26 January 2020; revised manuscript received 7 June 2020; accepted 11 June 2020;
published 14 July 2020)

The Mott insulating phase of parent compounds is frequently taken as a starting point for underdoped
high-Tc cuprate superconductors. In particular, the pseudogap state is often considered as deriving from the
Mott insulator. In this work, we systematically investigate different weakly doped Mott insulators on a square
and triangular lattice to clarify the relationship between the pseudogap and Mottness. We show that doping
a two-dimensional Mott insulator does not necessarily lead to a pseudogap phase. Despite its inherent strong-
coupling nature, we find that the existence or absence of a pseudogap depends sensitively on noninteracting band
parameters, and we identify the crucial role played by the van Hove singularities of the system. Motivated by a
SU(2) gauge theory for the pseudogap state, we propose and verify numerically a simple equation that governs
the evolution of characteristic features in the electronic scattering rate.
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I. INTRODUCTION

The complex phenomenology of cuprate high-Tc supercon-
ductors is widely thought of as a consequence of introducing
mobile charge carriers in a Mott insulator through doping [1].
In the regime of low doping, a pseudogap (PG) state [2–4]
prevails below an onset temperature T ∗, which lies above
the superconducting dome. There are a number of theories
proposed to describe the dominant physics in this regime,
such as preformed Cooper pairs [5], various emergent ordered
states [6–9], topological order [10–12], and Mottness collapse
[13–17]; however, to date, a full consensus has not been
reached. On the numerical side, prototypical models such
as the two-dimensional Hubbard model [18,19] or the t-J
model [20,21] have been investigated intensively. Regarding
the origin of the PG state, different approaches point to short-
range antiferromagnetic (AF) correlations and proximity to
Mottness, including quantum Monte Carlo [22–24], exact
diagonalization [20], cluster perturbation theory [25], and
cluster extensions of dynamical mean-field theory (DMFT)
[26–31]. This is in line with a recent systematic experimental
study [32] indicating that all other instabilities are secondary
to AF correlations in the opening of the PG.

Although the importance of AF correlations and Mottness
is stressed by various studies, the exact underlying mechanism
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of the PG is still an open question. It is natural to expect that
long-range AF fluctuations can cause a PG due to the coupling
of the electrons to collective magnetic modes [33–36]. In
hole-doped cuprates, however, this picture does not apply, as
the correlation length is significantly reduced. To shed light on
the role played by AF correlations and Mottness, we address
in this work the following fundamental question: do all doped
Mott insulators with short-range AF correlations have a PG
in two dimensions? To this end, we systematically study
Hubbard models on square and triangular lattices (see Fig. 1),
which have very different magnetic frustration properties. We
discover that, surprisingly, on both lattices the existence of
a PG at finite doping in the strong-coupling regime depends
sensitively on the electronic dispersion of the noninteracting
system. Numerical evidence suggests that this dependence can
be well described by a simple relation that involves the loca-
tion of the van Hove singularity (VHS). In addition, we find a
simple equation that captures the evolution of the “quasipole”
[31] in the electronic scattering rate, which is related to the
depletion of the spectral weight in the PG. This equation
agrees with an SU(2) gauge theory [10–12], where the PG is
the result of a Higgs mechanism, physically corresponding to
local AF order with large orientational fluctuations.

II. MODEL AND METHOD

We use the dynamical cluster approximation (DCA) [27],
a cluster extension of single-site DMFT [26], to study the
triangular- and square-lattice Hubbard models. The DCA
method can effectively capture temporal and short-ranged spa-
tial correlations by mapping the original lattice problem onto
a quantum cluster model embedded in an effective medium
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FIG. 1. Illustration of triangular- (left) and square- (right) lattice
tight-binding models studied in this work. Here we study complex
nearest-neighbor hopping on the triangular lattice with −te+i�/3

(along arrow) or −te−i�/3 (against arrow); electrons encircling a
triangular plaquette once acquire a phase of ±� as indicated. The
geometries of the DCA clusters we use are indicated by red and green
dashed lines.

[26]. The DCA clusters we use are illustrated in Fig. 1. For
concreteness, we focus on an on-site Hubbard interaction, U ,
and the corresponding Hamiltonians have the form

H = −
∑

i, j,σ

ti jc
†
iσ c jσ + U

∑

i

ni↑ni↓ − μ
∑

i,σ

niσ , (1)

where c†
iσ are electronic creation operators on site i with spin

σ = ↑,↓, niσ = c†
iσ ciσ , and μ denotes the chemical potential.

The magnitude of hopping between nearest-neighbor sites, t ,
defines the energy unit throughout this paper, t ≡ 1. Note that
for a triangular lattice we use the direction-dependent hopping
ti j = te±i�/3, which corresponds to a staggered magnetic flux
threading the triangular plaquettes [37]; see Fig. 1, left panel.
By changing the phase factor �, one can systematically vary
the dispersion relation while the antiferromagnetic exchange
to dominant order in t/U is unaffected. Hence, the Heisenberg
model and magnetic correlations associated with model (1) at
strong coupling are independent of �, which enters only at
subleading orders in t/U by inducing chiral terms [38]. We
note in passing that studying doped triangular lattice models
with flux is further motivated by their relevance as minimal
models of moiré superlattice systems [39,40], where opposite
valleys have opposite flux due to time-reversal symmetry.

III. TRIANGULAR LATTICE

We first show three-site DCA results on the triangular
lattice in Fig. 2. At half-filling, we find that the triangular
lattice model without flux, � = 0, becomes insulating for suf-
ficiently strong interactions U > U Mott

c � 8.2 at T = 0.06 —
in good agreement with previous numerical results [41–43].
In the following, we take U = 9.2, which corresponds to U �
1.15U Mott

c and to the regime of moderately strong correlations
at which a chiral spin liquid phase was found at half-filling in
[43] (before the spins order for U > 10.6). A characteristic
feature of the PG state is the opening of a partial energy
gap in the spectral function A(k, ω) near the Fermi level,
at certain regions in the Brillouin zone (BZ). As can be
seen in Fig. 2(a), A(kF , ω) at a typical momentum kF on

FIG. 2. Dependence of the PG on the bare dispersion for the
triangular lattice. In (a) and (b), we show the spectral function of the
triangular lattice model at low hole doping p = 0.02 for � = 0 [no
PG, kF = (1.3, 2.2)] and � = 3π/4 [with PG, kF = (0.5, 2

√
3

3 π )],
respectively. The imaginary part of the corresponding cluster self-
energies for these values of kF [both belong to a DCA patch centered
at k = ( 2π

3 , 2
√

3
3 π )] is plotted as a function of Matsubara frequency

for a few different dopings in (c) and (d). In (e) and (f), we show
the Hartree-shifted dispersions ε∗

k = εk − μ + 〈n〉U/2 (color plot)
at p = 0.04 together with the resulting ε∗

k = 0 surface (black solid
line) for � = 0 and � = 3π/4. Furthermore, the VHSs are indicated
by green circles. In all plots, we take T = 0.06,U = 1.15U Mott

c , i.e.,
U � 9.5 (U � 7.7) for � = 0 (� = 3π/4).

the Fermi surface [defined by Re G(kF , ω = 0) = 0] of the
slightly doped triangular lattice (hole doping p = 0.02) with
� = 0 shows a well-defined quasiparticle peak; no evidence
of a PG is seen over the whole BZ. Nevertheless, when one
turns on the staggered magnetic flux, the spectral function
becomes qualitatively different from its � = 0 counterpart:
as can be seen in Fig. 2(b), a PG reappears for � = 3π/4
(same doping p = 0.02 and even smaller U to keep U/U Mott

c
the same).

To gain further insights into this surprising difference,
Figs. 2(c) and 2(d) show a direct comparison of the imaginary
part of the self-energy �(k, iωn) with � = 0 and � = 3π/4
for different p. We see that the self-energy at � = 3π/4
inherits an insulating-like behavior from the half-filled Mott
insulator for small, finite p, characterized by an enhanced am-
plitude of scattering at small frequencies. A metallic �(k, iωn)
is only found for significant doping (p � 0.08). In contrast,
for � = 0, there is a sudden loss of low-energy scattering
when the Mott insulator is doped [44], as the self-energy
immediately turns metallic upon doping. This is in accordance
with A(kF , ω) in Fig. 2(a), where no PG was observed either.
Note that the absence of a PG on the triangular lattice (� = 0)
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FIG. 3. By continuously changing the bare dispersion of the tri-
angular lattice via �, we find that the strongest low-energy scattering,
indicated by the most negative imaginary part of the self-energy at
the first Matsubara frequency, is found [at K = ( 2π

3 , 2
√

3
3 π )] when

the value ε∗
k at the momentum k = kVHS of the VHS, ε∗

VHS, vanishes.
Here we use a three-site DCA, U = 8, T = 0.08, and p = 0.04.

was also noticed previously [45], where the author attributes
it to the triangular lattice being too frustrated. Here, the shown
strong sensitivity of PG to staggered flux � suggests it is not
the degree of geometric frustration that controls whether a PG
is present or not.

One might wonder whether there is a simple way to under-
stand how � affects the PG. To address this question, we plot
in Figs. 2(e) and 2(f) the bare dispersions εk with chemical
potential and Hartree shift subtracted,

ε∗
k = εk − μ + U 〈n〉 /2, (2)

for � = 0 and � = 3π/4, respectively. For � = 0, the VHS,
indicated by the green circle, is far away from the line where
ε∗

k = 0 (black line); note that this is not the bare, noninter-
acting Fermi surface and not the interacting one either, which
would require the self-energy in Eq. (2). In the following, we
will refer to this surface as the “ε∗

k = 0 surface.” We observe
that the VHS is located almost exactly at the ε∗

k = 0 surface
when � = 3π/4. We also found that when � is continuously
changed, the enhancement of low-energy scattering is essen-
tially guided by the VHS approaching the ε∗

k = 0 surface, as
suggested by the self-energy plot in Fig. 3. This indicates that
the position of the VHS relative to the ε∗

k = 0 surface plays a
crucial role in the formation of the PG. This observation does
not only apply on the triangular lattice: on the square lattice,
the enhancement of the PG is also guided by the VHS reaching
the ε∗

k = 0 surface, as we will see next.

IV. SQUARE LATTICE

We now study the square lattice with nearest-, t ≡ 1,
and next-nearest-neighbor hopping, t ′, which is a prototype
model for the high-Tc cuprates. Following the discussion of
the triangular lattice, we use the spectral function and the
imaginary part of the self-energy, shown in Figs. 4(a) and 4(b),
to probe the PG for two different band parameters, t ′ = ±0.2.

FIG. 4. PG and its parameter dependence on the square lattice
at hole doping p = 0.05 and T = 1/30. (a) Spectral function at the
Fermi surface for t ′ = 0.2 [black line, kF = (3.0, 0)] and t ′ = −0.2
[red line, kF = (π, 0)] for U = 7. The corresponding imaginary part
of the antinodal self-energy for the same set of parameters is shown
as a function of Matsubara frequency in (b). The inset illustrates
the on-site (left) and nearest-neighbor (right) spin-spin correlations
using the same color code as in the main panels of (a) and (b). In
(c), the imaginary part of the antinodal Green’s function at the lowest
Matsubara frequency is shown as a function of next-nearest-neighbor
hopping t ′ for various U . The minimum of the spectral intensity in
(c) corresponds to the maximum of the PG. The triangles indicate
the value of t ′ at which the shifted chemical potential, solid lines
in (d), is equal to ε(0,π ) = 4t ′, blue dashed line in (d), i.e., when
ε∗

k = εk − μ + 〈n〉U/2 = 0 at the VHS k = (0, π ).

It is worth noting that the two cases t ′ = ±0.2 are actually
identical Mott insulators at half-filling, related by a particle-
hole transformation. However, upon doping, the low-energy
scattering properties quickly become different: as one can see
in Figs. 4(a) and 4(b), the negative t ′ case has a well-developed
PG and an insulatorlike self-energy, whereas positive t ′ leads
to metallic behavior. This has been noticed before [46,47], but
the mechanism behind this striking asymmetry has remained
unclear.

To provide a systematic approach, we show −ImGk(iωn=0)
at the antinode k = (0, π ) as a function of t ′ for different U
in Fig. 4(c). We recover that the antinodal quasiparticles are
most suppressed for negative t ′. As U increases, the value
of t ′ with strongest suppression (marked by the triangles)
becomes more and more negative. Most importantly, Fig. 4(d)
reveals that the same triangles also correspond to the value of
t ′ for which the VHSs [located at kVHS = (π, 0), (0, π )] hit
the ε∗

k = 0 surface, i.e., when ε∗
kVHS

= 0. In other words, just
like in the triangular-lattice model, the existence of a PG on
the square lattice is determined by whether a VHS is close
to the line of zeros of the renormalized dispersion ε∗

k . In
particular, this also explains the aforementioned particle-hole
asymmetry regarding the PG: for t ′ = −0.2, the VHSs are
closer to the ε∗

k = 0 surface than for t ′ = 0.2.
A few comments are in order. We first note that this

empirical rule for the presence of a PG also applies to different
values of U [different colors in Figs. 4(c) and 4(d)], different
dopings, and holds for larger DCA cluster-sizes (16-site)
or different types of hopping terms (third-nearest-neighbor
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FIG. 5. Quasipole of antinodal self-energy can be described by Eq. (3). In (a)–(d), symbols show the frequencies ωpeak of the peaks
in Im�k(ω) [at k = (0, π ) unless otherwise specified] found by the maximum entropy method analytical continuation on �k(iωn), while
lines display εZ

k+Q − μ′ with values of Z marked in the corresponding plots. (a) and (b) Hubbard model with εk = −2[(t + δt ) cos(kx ) +
(t − δt ) cos(ky )] − 4(t ′ + δt ′)[cos(kx ) cos(ky )] with t ′ = −0.2, tuning δt and δt ′. For both plots, U = 7, p = 0.08, T = 1/30. (c) εk =
−2t[cos(kx ) + cos(ky )] − 4t ′[cos(kx ) cos(ky )] − 2t ′′[cos(2kx ) + cos(2ky )] with fixed t ′ = 0.1 and changing t ′′. Here U = 6, p = 0.05, T =
0.06. (d) εk = −2t[cos(kx ) + cos(ky )] − 4t ′[cos(kx ) cos(ky )] − 2t ′′′[cos(2kx ) cos(ky )] with fixed t ′ = −0.2 and changing t ′′′. Here U = 7, p =
0.05, T = 1/30. (e) Imaginary part of the antinodal self-energy as a function of frequency, where parameters are the same as for plot (c). Note
that while (a), (b), and (d) show 8-site DCA results, (c) and (e) are from 16-site calculations.

hopping, for example; not shown here). Let us also stress
that, as on the triangular lattice, the difference between t ′ =
+0.2 and −0.2 cannot be attributed to magnetic properties:
as can be seen in the inset of Fig. 4(b), both the on-site and
nearest-neighbor magnetic correlations are approximately the
same for the two values of t ′, although one has a metallic
and the other one an insulating antinodal self-energy. We
finally emphasize that our criterion involves the renormalized
dispersion ε∗

k in Eq. (2) rather than the bare εk. This seems
plausible as diagrammatic studies [24] at half-filling show
that the strong-coupling Feynman series converges when
particle lines are expressed as g−1

0 (k, iωn) = iωn − ε∗
k and

it diverges when using g−1
0 (k, iωn) = iωn − εk + μ instead.

This indicates that any perturbative treatment of PG physics
should be based on ε∗

k rather than on the bare εk. We em-
phasize, however, that the above analysis certainly cannot
be perceived as a weak-coupling picture of VHS-enhanced
quasiparticle scattering either: in the weak-coupling frame-
work, the AF correlation length ξ must be larger than the
thermal de Broglie wavelength [35,36] to obtain a PG at the
“hotspot” of the Fermi surface. VHSs can enhance low-energy
scattering, but the PG continues to exist even if all VHSs
are removed from the system in the weak-coupling picture.
In contrast, in our strong-coupling study, ξ is only a few
lattice spacings and the PG disappears in the absence of
VHSs.

V. QUASIPOLE OF SELF-ENERGY IN A PG REGIME

So far we have been studying the prerequisites for the
existence of a PG in underdoped Mott insulators. We will
next discuss the property of strong antinodal scattering when
the PG is present on the square lattice. There have been vari-
ous numerical studies [14,31,48] revealing that the antinodal
self-energy has a low-energy quasipole in the PG regime
[see Fig. 5(e)], connected to the opening of a PG in the
spectral function. By changing the hopping parameters, here
we monitor the evolution of the quasipole of the antinodal
self-energy in the parameter regime where a strong PG is
found. We display results for four different variations of the
hopping parameters in Fig. 5 on a square lattice. Remarkably,
we find that in all cases the variation of the peak locus of the

self-energy in frequency space can be described by the simple
relation

ωpeak(k) = εZ
k+Q − μ′. (3)

Here εZ
k is the bare dispersion with hopping terms renor-

malized by constants Z , and μ′ is the chemical poten-
tial with Hartree shift subtracted and rescaled by Zμ, i.e.,
μ′ = Zμ(μ − 〈n〉U/2). Furthermore, Q = (π, π ) is the AF
wave vector. The specific values of the renormalization con-
stants depend on the physical parameters such as doping
p and interaction strength U . In Figs. 5(a) and 5(b) we
show that, for the square lattice with nearest- and next-
nearest neighbor hopping, ωpeak(k) for k = (0, π ) is de-
scribed by Eq. (3) with εZ

k = −2Ztt[cos(kx ) + cos(ky)] −
4Zt ′t ′[cos(kx ) cos(ky)], Zt = 0.28, Zt ′ = 0.2, and Zμ = 0.17.
Note that Eq. (3) is fulfilled in all our DCA computations
with different clusters and different hopping terms. This is
illustrated in Figs. 5(c) and 5(d).

While this behavior is essentially an empirical observation,
the form of Eq. (3) is motivated by a (2+1)-dimensional SU(2)
gauge theory proposed for the pseudogap phase [10–12]: in
that theory, the electronic self-energy is peaked at the fre-
quencies ω

SU(2)
peak (k) = εZ

k+Q − μ, where the self-energy of the
“chargons,” the charge carriers in the bulk of the system, has
poles. For instance, Zt � 0.3 and Zt ′ � 0.2 were found [10]
in this description for the case of nearest- and next-nearest-
neighbor hopping, in good agreement with the coefficients
obtained by DCA; see Figs. 5(a) and 5(b).

VI. CONCLUSION AND DISCUSSION

In this work, we have systematically analyzed which con-
ditions are favorable for the emergence of a PG when doping
insulating half-filled Hubbard models. We identified empiri-
cally the proximity of VHSs to the ε∗

k = 0 surface, defined by
ε∗

k = 0 with renormalized dispersion ε∗
k in Eq. (2), as favoring

the formation of a PG. Theoretical clarification for why the
VHSs are key in the strong-coupling regime is clearly needed.
We believe that a systematic analysis of magnetic order and
potential spin-liquid phases at the half-filled triangular lattice
model with staggered flux could provide important missing
information to understand the observed behavior. Inspired
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by an emergent gauge theory proposed for the pseudogap
phase [10–12], we also verified the relation in Eq. (3) for the
frequency ωpeak at which the self-energy exhibits a quasipole
inside the pseudogap phase for several different bare disper-
sions on the square lattice. In experiments, the organic Mott
insulator κ − (BEDT − TTF)2Cu[N(CN)2]Cl can be mod-
eled as a single-band Hubbard model, where strong doping
asymmetry has been reported [49]. In agreement with our
result shown in Fig. 4(c), it is indeed found that the interaction
effect can be greatly enhanced as moving from the electron-
doping [corresponding to t ′ > 0 cases in Fig. 4(c)] side to the
hole-doping (t ′ < 0) side [49]. Finally, we note that a highly
tunable monolayer Bi2Sr2CaCu2O8+δ was recently fabricated
in experiments [50]. The importance of ε∗

k defined by Eq. (2)

in pseudogap physics can then directly verified in this system
in future experiments.
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[20] J. Jaklič and P. Prelovšek, Finite-temperature properties of
doped antiferromagnets, Adv. Phys. 49, 1 (2000).

[21] K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Pseudogaps in the
t − j model: An extended dynamical mean-field theory study,
Phys. Rev. B 68, 155119 (2003).

[22] N. Bulut, D. J. Scalapino, and S. R. White, One-Electron Spec-
tral Weight of the Doped Two-Dimensional Hubbard Model,
Phys. Rev. Lett. 72, 705 (1994).

[23] R. Preuss, W. Hanke, C. Gröber, and H. G. Evertz, Pseudogaps
and their Interplay with Magnetic Excitations in the Doped 2D
Hubbard Model, Phys. Rev. Lett. 79, 1122 (1997).

[24] W. Wu, M. Ferrero, A. Georges, and E. Kozik, Controlling
Feynman diagrammatic expansions: Physical nature of the
pseudogap in the two-dimensional Hubbard model, Phys. Rev.
B 96, 041105(R) (2017).

[25] M. Kohno, Mott Transition in the Two-Dimensional Hubbard
Model, Phys. Rev. Lett. 108, 076401 (2012).

[26] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[27] T. A. Maier, M. Jarrell, T. Prushke, and M. H. Hettler, Quantum
cluster theories, Rev. Mod. Phys. 77, 1027 (2005).

[28] S. Sakai, Y. Motome, and M. Imada, Evolution of Electronic
Structure of Doped Mott Insulators: Reconstruction of Poles
and Zeros of Green’s Function, Phys. Rev. Lett. 102, 056404
(2009).

033067-5

https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1038/382051a0
https://doi.org/10.1088/0034-4885/62/1/002
https://doi.org/10.1080/00018730500459906
https://doi.org/10.1103/PhysRevB.79.245116
https://doi.org/10.1038/31177
https://doi.org/10.1103/PhysRevB.63.094503
https://doi.org/10.1038/416610a
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1073/pnas.1720580115
https://doi.org/10.1103/PhysRevB.98.235126
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1103/PhysRevB.59.8943
https://doi.org/10.1103/PhysRevB.74.125110
https://doi.org/10.1103/RevModPhys.82.1719
https://doi.org/10.1098/rsta.2010.0188
https://doi.org/10.1002/andp.201100028
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1080/000187300243381
https://doi.org/10.1103/PhysRevB.68.155119
https://doi.org/10.1103/PhysRevLett.72.705
https://doi.org/10.1103/PhysRevLett.79.1122
https://doi.org/10.1103/PhysRevB.96.041105
https://doi.org/10.1103/PhysRevLett.108.076401
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.77.1027
https://doi.org/10.1103/PhysRevLett.102.056404


WU, SCHEURER, FERRERO, AND GEORGES PHYSICAL REVIEW RESEARCH 2, 033067 (2020)

[29] E. Gull, O. Parcollet, and A. J. Millis, Superconductivity and
the Pseudogap in the Two-Dimensional Hubbard Model, Phys.
Rev. Lett. 110, 216405 (2013).

[30] O. Gunnarsson, T. Schäfer, J. P. F. LeBlanc, E. Gull, J. Merino,
G. Sangiovanni, G. Rohringer, and A. Toschi, Fluctuation Di-
agnostics of the Electron Self-Energy: Origin of the Pseudogap
Physics, Phys. Rev. Lett. 114, 236402 (2015).

[31] W. Wu, M. S. Scheurer, S. Chatterjee, S. Sachdev, A. Georges,
and M. Ferrero, Pseudogap and Fermi-Surface Topology in the
Two-Dimensional Hubbard Model, Phys. Rev. X 8, 021048
(2018).

[32] O. Cyr-Choinière, R. Daou, F. Laliberté, C. Collignon, S.
Badoux, D. LeBoeuf, J. Chang, B. J. Ramshaw, D. A. Bonn,
W. N. Hardy, R. Liang, J.-Q. Yan, J.-G. Cheng, J.-S. Zhou,
J. B. Goodenough, S. Pyon, T. Takayama, H. Takagi, N.
Doiron-Leyraud, and L. Taillefer, Pseudogap temperature T ∗ of
cuprate superconductors from the Nernst effect, Phys. Rev. B
97, 064502 (2018).

[33] A. Kampf and J. R. Schrieffer, Pseudogaps and the spin-bag
approach to high-Tc superconductivity, Phys. Rev. B 41, 6399
(1990).

[34] A. P. Kampf and J. R. Schrieffer, Spectral function and pho-
toemission spectra in antiferromagnetically correlated metals,
Phys. Rev. B 42, 7967 (1990).

[35] Y. M. Vilk and A. -M. S. Tremblay, Non-perturbative many-
body approach to the Hubbard model and single-particle pseu-
dogap, J. Phys. I 7, 1309 (1997).

[36] B. Kyung, V. Hankevych, A.-M. Daré, and A.-M. S. Tremblay,
Pseudogap and Spin Fluctuations in the Normal State of the
Electron-Doped Cuprates, Phys. Rev. Lett. 93, 147004 (2004).

[37] Y. F. Wang, C. D. Gong, and S. Y. Zhu, Field-induced gap,
pseudogap and new van hove singularity in the triangular lattice,
Europhys. Lett. 69, 404 (2005).

[38] D. Sen and R. Chitra, Large-U limit of a Hubbard model in
a magnetic field: Chiral spin interactions and paramagnetism,
Phys. Rev. B 51, 1922 (1995).

[39] Y.-H. Zhang and T. Senthil, Bridging Hubbard
model physics and quantum Hall physics in trilayer

graphene/h-BN moiré superlattice, Phys. Rev. B 99, 205150
(2019).

[40] C. Schrade and L. Fu, Spin-valley density wave in moiré
materials, Phys. Rev. B 100, 035413 (2019).

[41] H. T. Dang, X. Y. Xu, K.-S. Chen, Z. Y. Meng, and S. Wessel,
Mott transition in the triangular lattice Hubbard model: A dy-
namical cluster approximation study, Phys. Rev. B 91, 155101
(2015).

[42] T. Shirakawa, T. Tohyama, J. Kokalj, S. Sota, and S. Yunoki,
Ground-state phase diagram of the triangular lattice Hubbard
model by the density-matrix renormalization group method,
Phys. Rev. B 96, 205130 (2017).

[43] A. Szasz, J. Motruk, M. P. Zaletel, and J. E. Moore, Observation
of a Chiral Spin Liquid Phase of the Hubbard Model on the
Triangular Lattice: A Density Matrix Renormalization Group
Study, Phys. Rev. X 10, 021042 (2020).

[44] D. Galanakis, T. D. Stanescu, and P. Phillips, Mott transition on
a triangular lattice, Phys. Rev. B 79, 115116 (2009).

[45] B. Kyung, Electronic properties of the Hubbard model on
a frustrated triangular lattice, Phys. Rev. B 75, 033102
(2007).

[46] M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.
Kotliar, Dynamical Breakup of the Fermi Surface in a Doped
Mott Insulator, Phys. Rev. Lett. 95, 106402 (2005).

[47] D. Sénéchal and A.-M. S. Tremblay, Hot Spots and Pseudogaps
for Hole- and Electron-Doped High-Temperature Superconduc-
tors, Phys. Rev. Lett. 92, 126401 (2004).

[48] T. A. Maier, T. Pruschke, and M. Jarrell, Angle-resolved pho-
toemission spectra of the Hubbard model, Phys. Rev. B 66,
075102 (2002).

[49] K. Yoshitaka, S. Kazuhiro, E. Yusuke, S. Yoshiaki, P. Jiang,
T. Taishi, Y. Seiji, M. Y. Hiroshi, and K. Reizo, Electron-hole
doping asymmetry of fermi surface reconstructed in a simple
mott insulator, Nat. Commun. 7, 12356 (2016).

[50] Y. Yu, L. Ma, P. Cai, R. Zhong, C. Ye, J. Shen, G. D. Gu,
X. H. Chen, and Y. Zhang, High-temperature superconductivity
in monolayer Bi2Sr2CaCu2O8+δ , Nature (London) 575, 156
(2019).

033067-6

https://doi.org/10.1103/PhysRevLett.110.216405
https://doi.org/10.1103/PhysRevLett.114.236402
https://doi.org/10.1103/PhysRevX.8.021048
https://doi.org/10.1103/PhysRevB.97.064502
https://doi.org/10.1103/PhysRevB.41.6399
https://doi.org/10.1103/PhysRevB.42.7967
https://doi.org/10.1051/jp1:1997135
https://doi.org/10.1103/PhysRevLett.93.147004
https://doi.org/10.1209/epl/i2004-10357-4
https://doi.org/10.1103/PhysRevB.51.1922
https://doi.org/10.1103/PhysRevB.99.205150
https://doi.org/10.1103/PhysRevB.100.035413
https://doi.org/10.1103/PhysRevB.91.155101
https://doi.org/10.1103/PhysRevB.96.205130
https://doi.org/10.1103/PhysRevX.10.021042
https://doi.org/10.1103/PhysRevB.79.115116
https://doi.org/10.1103/PhysRevB.75.033102
https://doi.org/10.1103/PhysRevLett.95.106402
https://doi.org/10.1103/PhysRevLett.92.126401
https://doi.org/10.1103/PhysRevB.66.075102
https://doi.org/10.1038/ncomms12356
https://doi.org/10.1038/s41586-019-1718-x

