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Noise reduction in gravitational-wave data via deep learning
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With the advent of gravitational-wave astronomy, techniques to extend the reach of gravitational-wave
detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected,
many more are below the surface of the noise, available for detection if the noise is reduced enough. Our
method (DeepClean) applies machine-learning algorithms to gravitational-wave detector data and data from
on-site sensors monitoring the instrument to reduce the noise in the time series due to instrumental artifacts and
environmental contamination. This framework is generic enough to subtract linear, nonlinear, and nonstationary
coupling mechanisms. It may also provide handles in learning about the mechanisms which are not currently
understood to be limiting detector sensitivities. The robustness of the noise-reduction technique in its ability to
efficiently remove noise with no unintended effects on gravitational-wave signals is also addressed through
software signal injection and parameter estimation of the recovered signal. It is shown that the optimal
signal-to-noise ratio (SNR) of the injected signal is enhanced by ~21.6% and the recovered parameters are
consistent with the injected set. We present the performance of this algorithm on linear and nonlinear noise

sources and discuss its impact on astrophysical searches by gravitational-wave detectors.

DOLI: 10.1103/PhysRevResearch.2.033066

I. INTRODUCTION

The recent detections of gravitational waves from binary
systems (see Ref. [1] for a summary of the first two observing
runs) motivates technological and data analysis improvements
to extend the reach of current gravitational-wave detectors.
The current network consists of the two advanced Laser
Interferometer Gravitational-Wave Observatory (aLIGO) in-
terferometers in the United States [2], the Advanced Virgo
(adVirgo) interferometer in Italy [3], the GEO-HF interfer-
ometer in Germany [4], the Kamioka Gravitational-Wave
Detector (KAGRA) interferometer in Japan [5], and even-
tually the LIGO-India detector in India [6]. Identification
of gravitational-wave events from binary systems is subject
to transient and periodic noise sources in gravitational-wave
instruments. Such noise sources may limit the significance of
gravitational wave events and reduce them to a subthreshold
level [1,7]. The ability to reduce noise in the instruments,
thus enhancing their sensitivity, can enable identification of
additional events that would otherwise remain below the
threshold.

The ultimate sensitivity of the aLIGO detectors is dictated
by the physics inherent to their design, such as shot noise of
the laser light or thermal fluctuations of the mirror coatings
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and optic suspensions [2]. However, the performance during
the observation runs is also influenced by environmental and
technical noises which arise from factors such as earthquakes
and the instrumentation or control of the interferometer, re-
spectively [8]. The confidence in the significance of any given
signal and our ability to extract astrophysical information
from it is directly impacted by the noise and sensitivity of the
detectors at the time, and so there is a strong need to improve
their performance by any available means.

In general, the performance of a single detector is charac-
terized by separately considering the plethora of mechanisms
by which nonastrophysical noise sources couple into the strain
output of the instrument, such as the shot noise of the light
incident on the output photodiodes or thermal motion of the
arm cavity mirror surfaces. Once categorized into causally
distinct groups, we can predict the instrument’s performance
from the incoherent sum of these noise mechanisms and
compare it to the observed steady-state sensitivity. This is a
crucial analysis when working to understand and improve the
performance, as a diagnosis of what aspects or subsystems of
the detector are the limiting factors. It also shows us where
the observed noise exceeds the sum of the budgeted noise
sources, and thereby where our understanding of the noise is
incomplete.

In this analysis, we concentrate on the frequencies of less
than 1000 Hz since this range contains unexplained features.
At those greater than 1000 Hz, the detector is generally well
understood, and the features mostly correspond to the shot
noise at the output photodiode or harmonic lines that are not
well witnessed by environmental sensors. At frequencies of
less than 100 Hz, there exists some amount of noise that
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FIG. 1. Estimate of the noise budget (black) and actual measured
strain (red) at the Hanford interferometer for LIGO’s second obser-
vation run, O2. The strain of the differential arm length (DARM) was
calculated using data from July 4, 2017 [10].

remains unexplained, as shown in Fig. 1. There is also signifi-
cant contribution from technical noise arising from the control
of the suspended optics. This is due in part to the control
actuation necessary to keep the instrument well aligned over
long periods of time and the gradual shifts in the beam spot
positions. In addition, the low-frequency sensitivity of the
detectors are especially important for detecting high-mass bi-
nary mergers because these systems merge at low frequencies.
For example, the recorded signal from GW 150914 only spent
about 200 ms in the sensitive band of the instrument and was
resolvable from about 35-250 Hz [9].

II. BACKGROUND

The aLIGO detectors employ numerous subsystems that
control different aspects of the instrument and monitor its
state. These are coordinated and operated in large part by a
distributed digital control system which measures and records
a large numbers of signals related to these subsystems, in
addition to the main output which measures space-time strain.
Thus, numerous signals are synchronously recorded along
with the interferometer output, such as those from environ-
mental sensors, mirror suspension actuation, and photode-
tectors. These auxiliary signals have the potential to witness
coupling of unwanted noises into the interferometer and are
used in the commissioning of the detector to diagnose and
mitigate such couplings.

Seismometer signals have also been used to train feed-
forward subtraction filters that are run in real-time to reduce
the physical motion of interferometer elements [11]. This
manner of online subtraction has the strong benefit of reducing
the gain or dynamic range requirements of the length and/or
angular feedback systems. However, gradual changes in in-
strument state, such as alignment or thermal state, can cause
changes in the expected couplings during an observation run,
when it is preferred to make as few configuration changes
to the instrument as possible. This may lead to unwanted
noise making its way to the recorded strain data, despite the
necessary information required to subtract it being available.
Furthermore, there is the possibility of unconsidered noise
couplings being present that could in principle be predicted

from other recorded signals. At this point, the only recourse is
to revisit previously recorded data and attempt to regress the
unwanted noise out.

One technique for reducing the noise in the strain signal
post facto using auxiliary information is Wiener filtering
[12-15], a multiple-input single-output (MISO) algorithm
which optimizes the mean squared difference between the
subtraction target and the predicted coupled noise from mul-
tiple witnesses, taking the correlations between the witnesses
themselves into account. Time domain Wiener filtering has
been used successfully in terrestrial gravitational wave de-
tectors to enhance the performance of the vibration isolation
system [11,16] and reduce the influence of local gravitational
field fluctuations [17,18].

Naturally, linear couplings of external disturbances into
the gravitational-wave strain readout are a subset of the full
dynamics of the detectors. It is therefore worthwhile to extend
these regression techniques to more complicated nonlinear
and nonstationary couplings. There are many known non-
linear coupling mechanisms, and it is likely that more exist
which have not been fully accounted for [19]. The functional
forms can vary greatly and even modest uncertainty in the
parameters involved can make it impractical to reconstruct
and regress the unwanted noise. Machine learning techniques
have shown great promise at improving the sensitivity of
gravitational-wave data analysis. For example, Gravity Spy
combines crowd sourcing with machine learning to aid in
the challenging task of categorizing all of the instrumental
data transients recorded by the gravitational-wave detectors
[20]. Other algorithms have risen to characterize both data
transients [21,22] and improve gravitational-wave searches
[23-26]. This success has prompted work into developing
techniques for performing linear, nonlinear, and nonstationary
regression in the interferometer data that does not require
precise a priori knowledge of all of the system parameters.

In this paper, we describe the DeepClean algorithm in
which auxiliary signals are used post facto to estimate
noise couplings that existed during the recent science runs
using machine-learning techniques. We can use simulated
gravitational-wave events to characterize the performance of
the algorithm and compare the performance of the noise
subtraction to that of Wiener filters. We describe how the
algorithms were validated to not corrupt or bias the resultant
estimates of the astrophysical source parameters. Finally, we
detail the sensitivity improvement that results from this sub-
traction and the consequent improvement in the confidence in
the estimates of the source parameters of select detections.

III. NOISE SUBTRACTION PIPELINE

In this section, we present the analysis pipeline applied
onto data for the purpose of noise subtraction. The method
processes time series corresponding to the gravitational-wave
strain data h(¢) and a set of auxiliary (“witness”) channels
w;(t). The witness channels may be physical environmen-
tal monitors (PEM) or auxiliary interferometric channels
that contain information about the witnessed noise and not
the astrophysical signal. This is a critical convenience af-
forded to us by our confidence that true astrophysical sig-
nals are uniquely present in the main readout signal of the
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FIG. 2. Workflow diagram of the noise subtraction pipeline.

interferometer; any attempted noise subtraction from a com-
bination of witness signals may only increase or reduce the
influence of noise terms and cannot fundamentally alter any
present astrophysical signals. The algorithm employs a one-
dimensional convolutional neural network (CNN) which takes
in a user-specified set of witness channels at one time and
subsequently outputs the predicted noise in A(z). Input witness
channels are conditioned before being fed into the CNN. The
output from the CNN (i.e., the predicted noise) is also condi-
tioned before being subtracted from A(¢). Figure 2 shows the
schematic of the noise subtraction pipeline. In what follows,
we will discuss the details of the algorithm implemented for
this analysis.

A. Formalism and loss function

The gravitational-wave strain A(¢) as reconstructed by the
gravitational-wave detectors may be written as

h(t) = s(t) + n(0), ey

where s(t) is the astrophysical signal that may be present in
the data and n(¢) is the noise in the detector. We may further
subdivide the noise into

n(t) = ny(t) + nuw (1), @

where n,, () represents noise sources coupled into the witness
channels w;(t), and n,,, (t) represents noise sources we do not
intend to subtract, which include nonremovable (fundamental)
noise (e.g., quantum noise, photon shot noise) and noise
sources not witnessed by w;(z).

We design the neural network to take in the witness
channels and produce an estimate of the witnessed noise,

which may then be filtered from the gravitational-wave strain
data. The neural network can be represented as a function
F(wi(t);6) which maps the witness channels w;(¢) to the
strain output given a set of parameters 6. The parameters 6; are
obtained by minimizing a loss function J which quantifies the
difference between the predicted noise and the real witnessed
noise. Mathematically, the problem may be stated as

6= argming, J[h(z), }"(wi(t);g’)]. 3
In our analysis, we choose the loss function to be the weighted
average of the amplitude spectrum density (ASD) of the
residual strain r(¢) (i.e. after subtracting the predicted noise)
over a frequency interval [ fi, f>]. In other words,

1 f
hoa == [ WOVSTAD @
r(t) = h(t) — F(wi(1);6), )

where W (f) is a frequency-dependent weighting function. As
in Ref. [27], we choose W (f) to be the reciprocal of the ASD
of the target strain +/S[4, h](f). Since the ASD typically spans
several orders of magnitude and convergence is dependent on
the span of the eigenvalues of the correlation matrices of the
input [28], this has a whitening effect on the ASD and ensures
noisy frequency bins do not dominate the loss function. We
also make a modification to set W (f) to be zero at frequencies
outside the witnessed noise. This helps the network converge
faster and to a more stable solution, especially in cases where
the noise source couples into the gravitational-wave strain
at multiple frequencies (e.g., the 60-Hz power mains and its
harmonics). In the discrete time-series notation, the ASD loss
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function [Eq. (4)] can be written as

1 M—1

Jasd = MZ

i=0

S[r, r1li]

S[h, h][i]° ©)

where M is the number of frequency bins.

In addition to the frequency-domain loss function in
Eq. (6), we find adding a time-domain loss function further
improves subtraction power on spectral lines. We choose the
time-domain component of the loss function to be the mean
squared error (MSE) across the time series:

1 N—-1
_ 12
Jmse - ]v ; I‘[l] ) (7)

where N is the number of time-series samples. Combining
with the ASD loss in Eq. (6), the final loss function can be
written as

J = w-]asd + (l - w)-’msea (8)

where w is a weighting factor that goes from O to 1. It is a
hyperparameter which can be adjusted depending on the data
set. In general, we found that high values of w perform better
on broadband noise, and lower values of w performs better on
spectral line noise.

In practice, the MSE loss Jise is calculated from the full
discrete time series, while the ASD in the ASD loss Juyq
is estimated using Welch’s method, i.e., averaging over the
discrete Fourier transform (DFT) of overlapping time-series
segments. The number of frequency bins M is chosen to be
four to eight times smaller than the number of time-series
samples N in order to obtain a nonbiased estimate of the ASD.
Because M is proportional to the frequency resolution, we also
make sure N is large enough to reach a frequency resolution
of at least 0.5 Hz. M and N remain important hyperparameters
to be explored in further studies.

B. Data preprocessing

The witness channels are preprocessed before being fed
into the neural network. Because we design the neural net-
work to take in a time series and output time series of the same
length, we first resample all witness channels, with appropri-
ate anti-imaging filtering, to the same sampling frequency as
the strain. By doing so, we also ensure the input and predicted
time-series arrays have coincident start and stop times. In
order to save computational time, the sampling frequency of
the strain is chosen such that the Nyquist frequency is just
above the frequency of the witnessed noise.

Next, we apply an eighth-order Butterworth bandpass filter
to mitigate the power outside of the frequency band of the
witnessed noise. For nonlinear couplings, the frequency of the
noise coupled into the witness channels can be different from
the frequency coupled into the strain channel. To account for
this, we only bandpass the strain and not the input witnesses.

In machine-learning problems, it is good practice to nor-
malize the data to have zero mean and unit variance. This
scaling ensures that any one witness channel does not account
for the majority of the error in the loss function, which would
prevent the network from correctly learning the coupling of
the other channels. In addition, because the ASD of LIGO

strain has a magnitude of order 10728 t0 1072 Hz ™!, the
normalization helps prevent numerical instability when taking
the ratio in Eq. (6). We normalize both the strain channel and
the witness channels. For each channel, we compute the mean
and standard deviation across the time series. All data samples
in the time series are then subtracted by the mean and divided
by the standard deviation. This ensures normalization does not
add any unwanted features to the time series. The procedure is
also invertible, so the network’s prediction can later be easily
converted back into real physical units.

To help the network learn the noise coupling more effi-
ciently, we then divide each time series into smaller over-
lapping segments. Each training sample consists of segments
from multiple witness channels. In machine-learning litera-
ture, this step is known as data augmentation. In our analysis,
we choose a segment length to be 8 s. This choice is motivated
by the frequency resolution of the discrete ASD in Eq. (6). To
achieve a resolution of 0.5 Hz, we set the DFT length to 2 s.
Using Welch’s method with a 1-s DFT overlap, we require the
segment length to be at least 8 s. To increase the frequency
resolution, we would have to increase the DFT length, the seg-
ment length, and by extension, the computational resources
of the algorithm in both time and memory. For the noise
couplings presented in the results of this paper, we find the
length of 8 s gives the best performance in both subtraction
power and run time. We choose the overlap duration between
segments to be 7.75 s (96.875%) during training and 4 s (50%)
during inference. Increasing the overlap duration increases the
size of the data set (and thus the computational resources)
but also allows the network to make more connections and
therefore characterize variants of the noise sources more
effectively. The overlap duration during inference is chosen
to be smaller than during training to save computational time.

C. Neural network architecture

As mentioned earlier the section, the algorithm employs
a one-dimensional CNN which takes in a set of witness
channels and predicts the contributed noise in the gravita-
tional wave strain. The typical CNN consists of a number
of convolutional layers, each employing a set of discrete
window functions, or kernels, with trainable weights. Each
layer takes in an input series, which may have multiple
channels. During forward pass, each layer slides its kernel
across the input and computes the dot product across all
channels between the kernels and the input series within the
kernel. This locality helps the CNN learn short-term features
in the data. The output of each layer is then passed through
some nonlinear activation function and becomes the input
of the subsequent layer. Because the output of each layer
is downsampled, each subsequent layer sees exponentially
more of the network’s input. This enables deep CNNs (with
more layers) to “remember” longer series and learn long-term
features in the data. Because the convolutional operator by
definition has a built-in spatial (temporal) invariance, the CNN
can also detect repeating features in the series, making it
suitable to process highly periodic time series. In addition
to convolutional layers, we employ transposed convolutional
layers in our CNN. Transposed convolutional layers [29] work
by exchanging the input and output of convolutional layers. In
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other words, they distribute each sample of the input by the
weights of the kernels and then add the resulting segments
elementwise. As a result, the output of the transposed convo-
lution operator is upsampled instead of being downsampled
like in the convolution operator. The upshot is that the output
of the network will be the same size as the input, making the
subtraction straightforward, and the transposed convolution
operator adds a layer of weights which a fully connected layer
or traditional upsampling cannot.

Given the above motivations, we employ a fully con-
volutional autoencoder to map the witness channels to the
predicted noise. In more detail, the input witnesses are first
passed through an input convolutional layer which extracts
their features and maps them to a set of output channels. To
preserve the length of the time series, the input layer uses a
stride of 1 and applies an appropriate zero padding scheme
to the input witnesses. After each layer, the series length is
reduced by a factor of 2, and the number of channels increases
by a factor of 2 to preserve the time complexity of the layer.
To downsample the series, instead of using pooling layers
(e.g., max pooling), each convolutional layer uses a stride of
2 with an appropriate zero padding scheme. The output of
the downsampling layers is then passed through a series of
transposed convolutional layers. After each transposed layer,
the series length increases by a factor of 2, and the number
of channels is reduced by a factor of 2. This is done by using
transposed layers with a stride of 2 and an appropriate zero
padding scheme. The output of the transposed convolutional
layer is then passed through an output convolutional layer to
combine all features into the predicted noise in the gravita-
tional wave strain. Except in the last layer, the output of each
layer is normalized using batch normalization [30] and passed
through an activation function before going to the subsequent
layer.

The symmetrical architecture of the network is motivated
by the common knowledge that each convolutional layer
learns a different feature level of the input series; while the
earlier layer of the CNN learns the low-level features, the
deeper layer learns more advanced, high-level features. There-
fore, we expect the first downsampling convolutional layer
to extract low-level features of the witness channels while
the last transposed convolutional layer reconstructs low-level
features of the predicted noise. Similarly, the intermediate
layers will learn the intermediate-level features, and the last
down-sampling convolutional layer and the first transposed
convolutional layer will learn the high-level features.

In our analysis, we use three convolutional layers for down-
sampling (not including the input and output convolutional
layers) and three transposed convolutional layers for upsam-
pling. We set the kernel size of all layers to be seven. The
numbers of output channels of each layer (including the input
and output layers) are 8, 8, 16, 32, 32, 16, 8, 1, respectively.
For the activation function, we use Tanh. The input and output
dimensions of each layer then depend only on the dimension
of the input, i.e., the number of witness channels and length of
the time series, which we vary depends on the noise couplings.
An example of the network architecture is shown in the
Appendix. We have tried different network architectures and
other activations such as ReLLU and Sigmoid and found that
they give similar results.

D. Training and inference

The pipeline can be divided into two parts: training and
inference. During training, data are fed into the network by
minibatches, wherein each batch consists of 32 training sam-
ples. The network then computes the loss function in Eq. (8)
(averaging over the minibatch) and its gradient with respect
to the network’s parameters 6. The parameters are updated
accordingly using a first-order stochastic gradient descent
algorithm. Training terminates when gradient descent con-
verges, which typically takes about 5-10 iterations over the
training data (“epochs”), or when it reaches a set maximum
number of 50 epochs. The gradient descent algorithm used
in our analysis is ADAM [31] with default hyperparameters.
Also, we find reducing the learning rate of ADAM by a factor
of 10 every five epochs helps the network converge to a lower
loss value and improves the subtraction. During inference,
the network takes in the witness channels and produces the
predicted noise. This is processed further using the procedure
described in the subsequent section before being subtracted
from the gravitational wave strain. To prevent overfitting,
which occurs when the network learns features presented
uniquely in the training data without being able to generalize
to a broader data set, the training data do not overlap with
the inference data. In addition, at the end of every epoch, we
compare the loss on the training and inference set and stop
the gradient descent if the network is trading performance
on the inference set for performance on the training set.
The duration of the training data is greatly dependent on the
properties of the witnessed noise, such as the complexity of
its coupling function to the gravitational-wave strain. More
complex coupling functions require longer training data.

Because noise coupling functions in LIGO are typically
nonstationary, we design our network to be small such that
frequent retraining does not take a significant amount of run
time. Using the architecture described above, the training
time on 300-1024 s of training data (using 8-s segments
with 7.75-s overlapping) takes about 2—6 min (including data
preprocessing) on an NVIDIA TITAN X (Pascal) GPU. Once
trained, inference on 1024-3600 s of data takes a few seconds
on the same GPU. Because both the training and inference
time are much less than the duration of the corresponding
data set, the algorithm can be applied for both offline and
real-time subtraction. Because the algorithm takes in raw data
with no featurization, it is also easy to implement in real time.
We expect the training time to scale linearly with the dura-
tion of the training set. The number of trainable parameters
in the network also contributes significantly to the training
time. Because the input layer maps the witness channels
to a fixed-dimensional subspace, increasing the number of
witness channels only increases the run time of the input layer,
which is a small fraction of the run time of the network.
However, whenever possible, we do not include irrelevant
witness channels into the input because they hinder gradi-
ent descent convergence and possibly add uncertainty to the
subtraction.

E. Output data postprocessing

As mentioned earlier, the output of the neural network is
processed before being subtracted from the original target
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strain. During inference, the network takes in the witness
channels in 8-s segments with a 4-s (50%) overlap between
segments and predicts the noise in the strain. We apply a
Hann window to each segment before adding them together
to reduce edge effects.

Because the network is trained on the normalized strain,
the predicted noise will be in the dimensionless units. We
convert the noise back to the gravitational-wave strain unit
by scaling all data samples up by the standard deviation and
adding the mean computed in the normalization step during
data preprocessing.

During training, the weighting function W (f) in Eq. (4) is
set to zero for frequencies outside the band of the witnessed
noise. It is reasonable to assume that prediction made by
the network at these frequencies will only add noise to the
gravitational-wave strain. We therefore bandpass all these
frequencies using an eighth-order Butterworth bandpass filter.

As mentioned earlier, to save computational time, we
downsample the strain such that the Nyquist frequency is just
above the frequency of the witnessed noise. The predicted
noise will have the same sampling frequency as the sam-
pling frequency chosen during training. Because this sampling
frequency might not be optimal for detection and parameter
estimation of astrophysical signals, we upsample the noise,
with an appropriate anti-imaging filter, before subtracting it
from the full bandwidth strain.

IV. PIPELINE PERFORMANCE ON LIGO DATA

We applied our noise subtraction pipeline to data collected
by the LIGO detectors during their second and third obser-
vation runs (O2 and O3). We choose multiple instances of
data collection corresponding to different types of couplings
present in order to study and quantify the performance of our
pipeline.

A. 02 jitter noise

We first explore subtraction on the calibrated output data
from the LIGO Hanford detector during the second obser-
vation run. These data were subsequently cleaned using a
Wiener filter to linearly regress the data over LIGO’s sec-
ond observation run [14]. We aim to compare our method
with such Wiener filter subtraction that has been adopted by
the LIGO search pipelines. The broadband linearly coupled
noise in this analysis comes from fluctuations of the presta-
bilized laser beam in size and angle [32] and comprises the
majority of the noise removed in the frequency band from
~10% to 10° Hz [10]. In addition to the beam jitter noise,
narrowband spectral features such as the 60-Hz power line and
its harmonics, as well as the interferometer’s calibration lines
are also removed. As input to the network we use an identical
set of auxiliary channels, as in Ref. [14]. These channels are
known to have strong linear couplings into the output strain
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FIG. 3. Comparison of the subtraction performance between a Wiener filter used to create the cleaned LIGO frames (DCH-
CLEAN_STRAIN_CO02) and the DeepClean neural network shows nearly identical results. A Tanh activation function was used which does
not limit the network to simple linear connections. The results demonstrate that DeepClean can reproduce the results of linear subtraction when

provided with the same channels and without overfitting the data.
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FIG. 4. The increase in the binary neutron star inspiral range after the linear subtraction is seen to be ~20%.

data stream. However, we do not limit the network to strictly
linear interactions. As mentioned in the previous section, the
network instead utilizes a nonlinear Tanh activation function
and therefore could in principle discern additional nonlinear
couplings within these channels.

We present an example of the O2 linear subtraction in
Figs. 3 and 4. In this example, the network is trained on
the 1024 s of data starting at GPS time 1182410770 (2017-
25-06 07:25:52 UTC) and subtracts on the 1024 s of data
starting at GPS 1182411794 (2017-25-06 07:42:56 UTC). The
preprocessing and postprocessing procedures, as well as the
network architecture, are described in the previous section,
with all witness and gravitational-wave strain channels re-
sampled to a sampling frequency of 2048 Hz. In addition to
these steps, we remove all spectral lines (power mains and
calibration lines) before subtracting the broadband beam jitter
noise. For each spectral line (or group of spectral lines, such as
the calibration lines near 37 Hz), we train a different network
(using the appropriate witness channels) and combine the
outputs. Because the lines are at different frequencies, they
can be removed simultaneously by parallelizing the training
and inference process. To remove the broadband beam jitter
noise, a final network is trained using the interferometer strain
data with the spectral lines removed. Figure 3 shows the
ASD(s) of LIGO Hanford before and after the subtraction,
computed based on the inference data (and not the training
data). The improvement of the BNS inspiral range due to
this linear noise subtraction is shown in Fig. 4. The result of
the Wiener filter subtraction from Ref. [14] is also shown for
comparison. The range obtained from DeepClean is similar to
within 1-2% of that from the Wiener filter result, suggesting
that the network has learned the coefficients of the optimal
MSE filter and captured physical couplings without overfitting
or adding any additional noise.

B. O3 60-Hz sidebands

DeepClean is not limited to linear couplings unlike the
Wiener filter. The nonlinear activation function allows the
algorithm to learn arbitrarily high order couplings of the
input data. One such example of nonlinear and nonstationary
couplings is the modulation of a low-frequency signal from
LIGO’s alignment sensing and control (ASC) system with
the 60-Hz line of the power mains. This coupling produces
sidebands around the central frequency. In a previous work
[27], the ASC system channels and a witness to the power
mains have been used to subtract these sidebands during the
third observation run, O3.

We have benchmarked our pipeline on the same data set
to compare the two methods. Using the same set of witness
channels as in Ref. [27], which uses an analytic modulated
linear adaptive filter in the frequency domain, we show in
Fig. 5 that our network is capable of removing nonlinear and
nonstationary couplings such as these. In this example, the
neural network is trained on 1024 s of data starting at GPS
time 1243926522 (2019-07-06 07:08:24 UTC) and subtracts
on the 1024 s of data at GPS time 1243927546 (2019-07-06
07:25:28 UTC). All channels are resampled to a sampling
frequency of 1024 Hz. Note that the network subtracts both
the linear coupling (central peak at 60 Hz) and the nonlinear
and nonstationary coupling (sidebands) at the same time.

V. PARAMETER ESTIMATION AND NETWORK SAFETY

The procedure outlined above is carried out for each grav-
itational wave time-series separately, i.e., the ones from the
LIGO detectors in Hanford and Livingston. If the performance
of the trained filters does not add noise and is either consis-
tent with known results from analytic methods or subtracts
spectral features of the target channel in a manner consistent
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FIG. 5. Since the network is not restricted to linear couplings, nonlinear noise such as the modulation of the 60-Hz power line by the ASC
system may be effectively and safely removed. The nonstationary subtraction in Ref. [27] is also shown for comparison.

with the features of the witness channels, then those filters are
safe to apply to the strain data during the time of interest. The
result of the filters is the production of a new strain time series
which should have increased fidelity to the gravitational-wave
strain signal incident on the instruments. One way of assessing
the ability of our method to denoise gravitational-wave time
series is by invoking parameter estimation methods on a set of
astrophysical signal wave forms that are injected via software
and for signals in which the true astrophysical parameters are
known a priori. In this way, we can test whether this noise
subtraction scheme is legitimately reducing unwanted techni-
cal noise without distorting the measured gravitational-wave
signals. We use the DeepClean algorithm to filter noise from
a stretch of data which contains an astrophysical software
injection. Then we check that the resultant posterior parameter
estimation distributions are consistent with those from the
presubtraction strain signal and not significantly biased away
from the known injected parameters.

For this study, we injected nonspinning binary black hole
(BBH) signals into the gravitational-wave strain and com-
pared the recovered source parameters from the cleaned and
uncleaned time series.

For the O2 beam jitter data set, we injected 10 nonspin-
ning BBH signals. The signals are injected at GPS time
1182411606. As in Ref. [32], each BBH has component
masses M| and M, sampled from a uniform distribution from
[28, 64]M, with a mass ratio g constrained to [0.125, 1.0].
The sky coordinates and orientation are sampled isotropically,

and the luminosity distance Dy is sampled uniformly in
comoving volume from [70, 1540] Mpc. The optimal SNR
of the injected signals is ranging from 1.50 to 18.7. In the
03 60-Hz dataset, we injected 12 nonspinning, high-mass
BBH signals at GPS time 1243309096 and 1244006580. Each
injection time has six signals, which have a mass ratio g
and total mass M = M| + M, combination of (0.5, 1) and
(100, 150, 300) M respectively. The high total masses are
chosen such that the signals have significant power at around
60 Hz. Similarly to the O2 injections, the sky coordinate and
orientation of the signals are sampled isotropically, with the
luminosity distance sampled uniformly in comoving volume
from [70, 1540] Mpc. This results in an optimal SNR range
of 0.722 to 30.3 of the injected events. The wave-form model
for both the O2 and O3 injections is generated from the IM-
RPhenomPv2 wave-form approximant [33-35]. We applied
Bayesian statistics and estimated the posterior probability
distribution of the source parameters using the dynamic nested
sampling algorithm Dynesty [36] implemented in the Bilby
library [37]. For this study, the posterior distribution was es-
timated using only the gravitational-wave strain from a single
detector, i.e., LIGO Hanford. We only recovered the masses
M, M>, inclination angle 6;,, and the luminosity distance
D; of the each gravitational-wave signal. All quantities are
reconstructed within 3¢ of their true values. In the O2 beam
jitter dataset, the 90% credible intervals of the reconstructed
quantities shrink by approximately 7.25% when comparing
them with the ones obtained from the original strain. In
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FIG. 6. Corner plot showing the parameter estimation of the O2
data from the Hanford detector after cleaning the data with the
DeepClean neural network and using the same auxiliary channel list
as was used in the linear cleaning analyses.

addition, we observed an average increase in the recovered
optimal SNR of about 21.6%. We attribute this to the im-
proved noise spectrum our method provides. Figure 6 shows
a posterior distribution recovered from an example injection

(8, 4096)

(16, 2048)

(21, 8192)
(32, 1024)

INPUT (21, 8192)

(64, 512)

in the O2 linear dataset. In the O3 60-Hz dataset, we did
not observe any significant decrease in the 90% credible
intervals, or any substantial increase in the recovered SNR.
This is to be expected given that subtracting only the 60-Hz
line and its sidebands should not significantly change the
ASD. In all injections, the parameters recovered from the
cleaned strain were consistent with the true values and those
recovered from the original strain, suggesting that the network
did not introduce any noise or corrupt the gravitational-wave
signals.

VI. CONCLUSIONS

Going forward, it is evident that noise regression efforts
are worth pursuing further. In addition to analytic methods,
neural networks such as DeepClean have the extended ad-
vantage of being able to determine linear, nonlinear, and
nonstationary couplings into the detector output without pre-
vious knowledge of the physical mechanisms of the noise.
The ability of the machine-learning algorithm to successfully
subtract nonlinear couplings allows for network-derived filters
to become a more valuable as Advanced LIGO and future
detectors become increasingly sensitive to additional, more
complicated noise sources and the hardware engineering limit
is approached. Given the great cost associated with the de-
sign, construction, commissioning, and analysis of the LIGO
interferometers, being able to reliably improve the data quality
through semiautomated processes will ensure a greater sci-
ence return on the investment of the scientific community and
the public. Future avenues of application could be to perform
training of filters in a low-latency manner, such that a cleaned
strain time series could be consistently available not long after

(32, 1024)
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(21, 8192)

(8, 4096)

OUTPUT (1, 8192)

ConvTranspose1d
BatchNorm1d *

[ Convld

FIG. 7. DeepClean architecture for the O3 60-Hz dataset. The input has 21 witness channels, including 1 PEM 60-Hz channel and 20 ASC
channels. Each channel has 8192 data samples (8 s of data at a sample rate of 1024 Hz).
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the raw data are recorded. Running regressions in a constant
online manner would also facilitate the use of cleaned data
in the gravitational-wave search pipelines, which require the
use of the entire run’s data to properly estimate the statistical
significance of events over the background. The prospects
of rerunning searches on previous data would be especially
promising if successful nonlinear regression routines are de-
veloped to capture sources such as scattering noise which was
known to be a significant hindrance to the sensitivity of the
aL.IGO detectors during the first and third observation runs. In
this case, it may be possible for marginal event candidates [1]
to be promoted to fully confident detections.
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APPENDIX: NEURAL NETWORK ARCHITECTURE

In this section, we present the network architecture (Fig. 7)
used in the O3 60-Hz data set. For different data sets, we keep
the network hyperparameters (e.g., kernel size, filter size, etc.)
the same. Therefore, the input and output dimension of each
layer depends on the dimension of the input, which depends
on the number of witness channels and length of the time
series.
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