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Dissipation-induced topological transitions in continuous Weyl materials

Kunal Shastri and Francesco Monticone *

School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA

(Received 17 March 2020; revised 24 June 2020; accepted 25 June 2020; published 14 July 2020)

Many topologically nontrivial systems have been recently realized using electromagnetic, acoustic, and other
classical wave-based platforms. As the simplest class of three-dimensional topological systems, Weyl semimetals
have attracted significant attention in this context. However, the robustness of the topological Weyl state in the
presence of dissipation, which is common to most classical realizations, has not been studied in detail. In this
paper we demonstrate that the symmetry properties of the Weyl material play a crucial role in the annihilation of
topological charges in the presence of losses. We consider the specific example of a continuous plasma medium
and compare two possible realizations of a Weyl-point dispersion based on breaking time-reversal symmetry
(reciprocity) or breaking inversion symmetry. We theoretically show that the topological state is fundamentally
more robust against losses in the nonreciprocal realization. Our findings elucidate the impact of dissipation on
three-dimensional topological materials and metamaterials.
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I. INTRODUCTION

Weyl semimetals are a new class of materials with lin-
ear degeneracies in the three-dimensional momentum space,
called Weyl points, which carry a topological charge and are
sources or sinks of Berry curvature. These properties make
Weyl materials an important example of three-dimensional
topological systems. Weyl points have been predicted and/or
observed in various periodic systems, including condensed-
matter electronic systems [1–3], ultracold atomic lattices
[4–8], and photonic [9–11] and acoustic crystals [12–14]. Re-
cently, Weyl points have also been found to exist in continuous
media with plasmonic dispersion [15,16]. Various unusual
physical properties can be found in these systems, including
robust surface-wave states called Fermi arcs [17], anoma-
lous magnetoresistance due to chiral anomaly [18–20], and
quantized circular photogalvanic effects [21]. Each of these
unique properties holds promise for far-reaching applications
in electronic, photonic, and acoustic systems.

It is well established that the Weyl semimetal state is
extremely robust to perturbations. This stems from the fact
that Hermitian perturbations to the system’s Hamiltonian can
only move Weyl points around in momentum space, without
changing the topology of the system. This can be seen from
the effective Hamiltonian around a Weyl point, which is given
by H = �iαikiσ i, where σ i are the Pauli matrices, αi are
scalar constants, and k is the wave vector. Since all three
Pauli matrices are used in the effective Weyl Hamiltonian H
[22], adding a perturbation of the form H′ = �iα

′
iσ i will only
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change the location of the Weyl points but will not usually
destroy them. For a topological transition to occur, the system
should be suitably modified such that two Weyl points of
opposite charge overlap in momentum space. In principle, this
charge annihilation can always be achieved since Weyl points
come in pairs carrying equal and opposite topological charge,
such that the Brillouin zone does not enclose any net charge.
When they collide, the two Weyl points would dissipate their
topological charge and transition to a topologically trivial
state, such as a gapped insulator or a Dirac semi-metal [22].

Recently, Cerjan et al. [23] have predicted another means
by which Weyl points can dissipate their topological charge.
In the presence of a non-Hermitian perturbation such as
absorption loss, a Weyl point transforms into a closed contour
of exceptional points (called a Weyl exceptional ring, first
predicted in Ref. [24] and then experimentally demonstrated
in Ref. [25]) carrying the same topological charge. If any point
on this Weyl exceptional ring comes into contact with a point
on another Weyl exceptional ring carrying the opposite topo-
logical charge, the two rings would dissipate their charge and
the system would undergo a topological transition to a trivial
state, even without opening a band gap. Thus any mechanism
that induces a non-Hermitian perturbation could, in principle,
destroy the topological nature of the Weyl semimetal along
with its useful properties. However, no study to date has
quantitatively investigated the robustness of these topological
properties to the effect of losses, despite the importance of this
issue for practical applications. In this paper we systematically
address this fundamental question, focusing on non-Hermitian
perturbations due to dissipative losses.

Most photonic, plasmonic, and acoustic systems are, by
nature, dissipative. This is particularly relevant for plasmonic-
based realizations of topological systems, which are inher-
ently dissipative due to electron-scattering losses and surface-
collision damping (Landau damping [26,27]). Moreover, dis-
sipation has been known to induce quantum phase transitions,
as observed, for example, in Refs. [28,29]. Yet, most previous
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FIG. 1. Weyl points and exceptional rings. (a) Illustration of two charge-1 Weyl points in a time-reversal-broken (nonreciprocal) Weyl
material. (b), (c) Any small non-Hermitian perturbation, such as absorption loss, will transform the points into Weyl exceptional rings (WER)
with the same topological charge, which may lie on the same plane (b) or on distinct parallel planes (c). (d) Illustration of the minimum number
of charge-1 Weyl points in an inversion-symmetry-broken (chiral) Weyl material, and (e), (f) two possible configurations of the corresponding
exceptional rings in the presence of loss. Dissipation of the topological charge is only possible if oppositely charged exceptional rings come
into contact as loss is increased.

studies on these classical Weyl materials have largely ignored
dissipation, which may lead to inaccurate predictions, as
discussed, in a different context, in Ref. [30]. Specifically,
dissipation cannot be ignored in systems where oppositely
charged Weyl points are located near each other in momen-
tum space, which is the case for systems that only weakly
break time-reversal or inversion symmetry. The size of the
resulting Weyl exceptional rings depend on the magnitude of
the non-Hermitian perturbation, which, in turn, depends on
the dissipative losses in the system. One can then imagine
different scenarios in which nearby Weyl exceptional rings
may come into contact in the presence of losses if the rings
lie on the same plane in momentum space, or avoid each other
completely if they lie on distinct parallel planes, resulting in
a topological transition in one case and no transition in the
other case. This suggests that the impact of dissipation on
the topological phase of a Weyl material can be qualitatively
deduced from geometrical or symmetry arguments and need
not depend on the particular realization. In the following, we
start by presenting these general arguments in detail and then
illustrate the most relevant results by considering a continuous
plasmonic medium, with broken time-reversal or inversion
symmetry, as a model system of dissipative Weyl materials
for electromagnetic waves.

II. RESULTS

A. The role of symmetries

In this section we consider two separate cases, a Weyl
material that breaks time-reversal symmetry but preserves
inversion symmetry and one that preserves time reversal and
breaks inversion. The first case will have a minimum of two
inversion-related Weyl points with equal and opposite topo-

logical charge, as shown in Fig. 1(a) (applying the inversion
operator to one of the two Weyl points yields the other Weyl
point with opposite charge). In general, for a non-Hermitian
perturbation that is isotropic and independent of the wave
vector (local), a Weyl point carrying unit topological charge
is transformed into a planar ring of exceptional points [23].
Thus, a topological transition would only be possible if the
two Weyl exceptional rings of opposite charge lie on the same
plane or on intersecting planes, as illustrated in Figs. 1(b)
and 1(c). For the time-reversal-broken case, we show in the
following that the rings are located on distinct parallel planes
and the presence of losses does not typically result in a topo-
logical transition. We also would like to note that time-reversal
symmetry is equivalent to Lorentz reciprocity in the lossless
case; hence, when referring to the nonperturbed Hamiltonian
of our systems we will use these concepts interchangeably.
Dissipation alone would break time-reversal symmetry but not
reciprocity.

Consider a minimal two-level Hamiltonian H0(k) =
kxσx + kyσy + (k2

z − α)σz describing two Weyl points located
at k± = (0, 0,±√

α) with charge ±1 as shown in Fig. 1(a).
Suppose then that the inversion operator is given by P = σz

and the time-reversal operator by T = UK, where K is the
antilinear complex conjugation operator and U is a unitary
operator. It can be seen that the above Hamiltonian preserves
inversion symmetry P†H0(−k)P = H0(k) but breaks time-
reversal symmetry T †H0(−k)T �= H0(k). To model dissi-
pative loss in the system, we then include a generic non-
Hermitian perturbation term given by H1 = j�igiσ i that does
not depend on the wave vector k. Let us also assume that this
perturbation preserves the inversion symmetry of the system
P†H1P = H1. In this case, H1 will reduce to the form H1 =
jgzσz, since σx,y are odd under inversion. It follows that the
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dispersion of the eigenvalues of the perturbed Hamiltonian
H0(k) + jgzσz consists of two exceptional circular rings with
radius

√
gz, having the same topological charge as the Weyl

point, located on distinct parallel planes along the kz axis, as
shown in Fig. 1(c). Thus, irrespective of the magnitude of
gz or the location of the unperturbed Weyl points on the kz

axis, the pair of Weyl exceptional rings of opposite topological
charge will not come into contact. This argument will also
apply to a Weyl material containing more than one pair of
Weyl exceptional rings, provided that the annihilating pairs
are related by inversion symmetry.

The assumption that the non-Hermitian perturbation does
not break any additional symmetries that are preserved by
the unperturbed Hamiltonian, except time reversal, is crucial
to our argument above. This is typically true in the case
of classical wave physics systems where the non-Hermitian
contribution is from material dissipative losses, which may
be inhomogeneous and anisotropic but are unlikely, per se, to
break inversion (parity) symmetry. Moreover, we would like
to note that, in realistic systems, large losses may result in
Hermitian perturbations as well, which would move the Weyl
exceptional rings in momentum space and may induce topo-
logical transitions, as further discussed in the next sections.
Furthermore, if the non-Hermitian perturbation is nonlocal
(spatially dispersive), namely, it depends on the wave vector
k, then the coefficients gx,y(k) in the non-Hermitian pertur-
bation term need not be zero, potentially resulting in Weyl
exceptional rings located on the same plane, as illustrated in
Fig. 1(b).

Let us now consider the second scenario of interest, that
is, a reciprocal Weyl material that breaks inversion symmetry
[Figs. 1(d)–1(f)]. In this case, time-reversal symmetry dictates
that pairs of Weyl points located at k and −k carry the same
topological charge (applying the time-reversal operator to one
of the two Weyl points yields the other Weyl point with the
same charge). Hence, in the presence of loss, the resulting
Weyl exceptional rings would not be able to annihilate each
other since they have the same charge. However, different
from the previous case, here the minimum number of Weyl
points is 4, since other two Weyl points having opposite
charge need to be present so that the total net charge is
zero [22]. (This is strictly true only for periodic systems;
for continuum systems, for which the momentum space is
not compact, this statement is still true if nonlocal effects
are properly included in the form of a high-spatial-frequency
cutoff for the material response, as done in Ref. [31].) Thus, in
this case, each ring would have to touch a second pair of Weyl
exceptional rings with opposite charge to cause a topological
transition to a trivial state. However, since these two pairs of
oppositely charged Weyl exceptional rings are not generally
related by symmetry, we cannot conclude that they will remain
parallel and not intersect. In this case, additional symmetry
arguments specific to the Weyl material realization will be
required to conclude whether the resulting Weyl exceptional
rings, in the presence of loss, would be located on parallel
or intersecting planes, as illustrated in Figs. 1(e) and 1(f).
As an example, in Fig. 1(f), Weyl exceptional rings located
on oblique parallel planes would violate mirror symmetry
along the x − y plane. If the dissipative system preserves this
symmetry, then this Weyl ring arrangement is prohibited and

the rings will necessarily have to be located on intersecting
planes. Hence, if the lossless Weyl points are located close
to each other, dissipation may easily lead to a topological
transition to a trivial state.

These considerations hint at an intrinsic fragility of the
topological phase of inversion-symmetry-broken Weyl mate-
rials in the presence of dissipation. Conversely, nonreciprocal
Weyl materials appear fundamentally more robust.

B. Weyl points in plasmonic media

In this section we explore and clarify the general con-
cepts discussed in the previous sections by considering
a relevant physical implementation of an electromagnetic
Weyl semimetal: a continuous lossy plasma, or plasmonic
(meta)material, with Weyl points [15,16]. Specifically, we
consider two possible ways of realizing Weyl-point disper-
sion in this model system: first, by breaking time-reversal
symmetry (reciprocity) via an external magnetic bias while
preserving inversion symmetry; second, by breaking inversion
symmetry via chiral coupling between the z components of the
electric and magnetic fields while preserving reciprocity.

The equation of motion for free charge carriers in a lossless
plasmonic medium with plasma frequency ωp can be written
as ω2

pε0E = jωJ for time-harmonic fields with e jωt temporal
dependence. Here, E and J are the electric field vector and
current density vector, and ε0 is the permittivity of free space.
The dielectric response from bound charges is assumed to
be negligible, i.e., ε∞ = 1. We will comment on the effect
of a larger than unity ε∞ in the next section. Together
with Maxwell’s equations for plane waves, k × E/μ0 = ωH
and k × H/ε0 = −ωE + jJ/ε0, this can be rewritten in the
form of an eigenvalue equation [16,32], H|ψn〉 = ωn/ωp|ψn〉,
where the eigenstates are 9 × 1 vectors of the form |ψn〉 =
[E,

√
μ0/ε0H, J/ωpε0]T and the Hamiltonian is given by

H(k) =
⎛
⎝

0 −cK/ωp jI
cK/ωp 0 0
− jI 0 0

⎞
⎠, (1)

where K is a 3 × 3 tensor given by Ki j = kkεik j =
(0,−kz, ky; kz, 0,−kx; −ky, kx, 0), where εi jk is the Levi-
Civita tensor (K is sometimes known as Kong’s tensor in
the electromagnetics literature). This system preserves both
inversion and time-reversal symmetries.

1. Nonreciprocal implementation

In the presence of an external static magnetic field, corre-
sponding to cyclotron frequency ωc, time-reversal symmetry
and reciprocity are broken. If the bias is applied along the +z
direction, the Hamiltonian becomes

H(k) =
⎛
⎝

0 −cK/ωp jI
cK/ωp 0 0
− jI 0 ωc�

⎞
⎠. (2)

Here, �i j = zkεik j = (0,−1, 0; 1, 0, 0; 0, 0, 0). Note that
this Hamiltonian is a 9 × 9 Hermitian matrix. The eigen-
frequency spectra (modal dispersion surfaces) are plotted in
Fig. 2(a) for ky = 0 and ωc = 0.5ωp.

This magnetically biased plasmonic system has two
regimes of interest. When 0 < ωc < ωp, there are two Weyl
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FIG. 2. Band diagrams and Weyl points in the nondissipative
scenario. (a) Modal dispersion surfaces for a lossless plasma mag-
netized along the +z direction. The cyclotron frequency is ωc =
0.5ωp, and ky = 0. The surface color corresponds to the frequency.
(b) Illustration of all the Weyl points of a magnetized plasma, with
ωc = 1.2ωp, in three-dimensional k space. (c) Modal dispersion
surfaces for a chiral plasmonic material with αzz = 0.5 and ky = 0.
(d) Location of the four Weyl points between the first and the second
band in three-dimensional k space. The pair WP1-WP3 and the pair
WP2-WP4 are at different frequencies.

points at kWP1,2 = ±√
ωc/(ωc + ωp), with charge −1 and +1,

respectively, corresponding to the linear degeneracies between
the circularly polarized transverse mode and the longitudinal
mode [Fig. 2(a)]. This regime has been studied in detail in
Refs. [33–35]. If the bias is turned off, ωc = 0, the system
becomes reciprocal, the two Weyl points annihilate each other
at kz = 0, and the Weyl material undergoes a topological
phase transition to a trivial state.

In the second regime of interest, when ωc > ωp, two more
Weyl degeneracies appear at kWP3,4 = ±√

ωc/(ωc − ωp), with
charge +1 and −1, between the lower circularly polarized
transverse mode and the longitudinal mode. As ωc approaches
ωp, these two Weyl points are created/annihilated at the
Brillouin zone edge, i.e., k = ±∞ for a continuous system.
Here, since the plasmonic medium is assumed continuous,
the Brillouin zone extends to infinity in momentum space
(the situation would be different for plasmonic metamaterials
based on a periodic arrangement of meta-atoms). The proper-
ties of this second pair of Weyl points have been studied in

[16]. The location of all the Weyl points for ωc = 1.2ωp in
three-dimensional momentum space is shown in Fig. 2(b).

Here we shall focus on the Weyl-point pair occurring in
the first regime, 0 < ωc < ωp, since this is a more common
situation and easier to realize in practice due to the lower bias
intensity. We also speculate that this type of Weyl points may
be present in naturally occurring plasmas under weak mag-
netic bias, such as in atmospheric or astronomical scenarios.

2. Chiral implementation

For the realization of a reciprocal Weyl semimetal based
on a plasmonic material, following [15], we break inversion
symmetry by including chiral coupling (αzz ) between the z
components of electric and magnetic fields and simultane-
ously including a nonunitary dielectric constant along the y
direction (εry). This system may be constructed in the form of
a chiral wire medium, i.e., a metamaterial consisting of helical
(elliptic) wires in the z direction [15] and straight wires in the
other two directions. This system is mathematically modeled
as an extended eigenvalue equation, H|ψn〉 = ωn/ωpC|ψn〉,
where the tensor H(k) is the same as in Eq. (1), and the 9 × 9
tensor C is given by

C =
⎛
⎝

εr jα/c 0
− jα/c I 0

0 0 I

⎞
⎠, (3)

where εr and α are diag(1, εry, 1) and diag(0, 0, αzz ), respec-
tively, and c is the speed of light in vacuum. The eigenfre-
quency spectra (modal dispersion surfaces) for this case are
plotted in Fig. 2(c) for ky = 0, αzz = 0.5, and εry = 1.5.

As shown in Fig. 2(d), for αzz > 0, this system has four
Weyl points (WP1-4) between the first and second lowest
frequency bands for ω > 0. Additional Weyl points (WP5,6)
are located between the second and third bands; however,
these are not the focus of this work and will not be con-
sidered further. The four Weyl points (WP1-4) are located
on the ky = 0 plane, with WP1 and WP3 on the kz axis
at kz = ±ωp

√
(α2

zz + εry − 1)/(1 − α2
zz ) and frequency ω =

ωp/
√

1 − α2
zz. Moreover, the pair WP1 and WP3 are related by

time-reversal symmetry and therefore have the same topologi-
cal charge of −1. The other time-reversal-related pair of Weyl
points, WP2 and WP4, have a topological charge of +1 and
are located on the kx axis at kx = ±ωp

√
(εry − 1)(1 + √

δ)/2,
where δ = (εry − 1 + 4α2

zz )/(εry − 1) and frequency ω = ωp.
As expected, the two pairs of Weyl points are not at the same
frequency since they are not related to each other by any
symmetries. As the chiral coupling between the electric and
magnetic fields, αzz, approaches zero, we verified that these
four Weyl points, and the corresponding bands, merge into a
single nodal ring, namely, a degeneracy curve in momentum
space carrying zero topological charge.

C. Weyl exceptional rings

Considering the two plasmonic Weyl systems discussed in
the previous section, we now investigate how their dispersion
properties and topology change in the presence of losses.
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FIG. 3. Band diagrams and Weyl exceptional rings in the dissipative scenario. (a) Modal dispersion surfaces (real eigenfrequency spectrum)
for a lossy magnetized plasma with ωc = γ = 0.5ωp, and ky = 0. The imaginary component of the eigenfrequencies is indicated by the surface
color of the bands. One of the Weyl exceptional rings, WR1, is clearly seen in the plot as an exceptional point in this two-dimensional
momentum space. (b) Modal dispersion surfaces, similar to (a), but for a chiral plasmonic material with αzz = 0.5, γ = 0.5ωp, and ky = 0. In
both (a) and (b), the bulk Fermi arcs (real-frequency degeneracies connecting the exceptional points) are highlighted in red. Real component
(c) and imaginary component (d) of the Berry curvature for the lossy magnetized plasma. (e) and (f) are the corresponding plots for the
lossy chiral plasmonic medium. In both cases, the imaginary component has zero divergence and does not contribute to topological charge
calculations.

1. Nonreciprocal implementation

For the case of a magnetized plasma with scattering losses
characterized by relaxation time τ and collision frequency
γ = 1/τ , the Hamiltonian in Eq. (2) becomes

H =
⎛
⎝

0 −cK/ωp jI
cK/ωp 0 0
− jI 0 ωc� + jγ I

⎞
⎠, (4)

where I is the identity matrix. The eigenfrequencies ωn of this
non-Hermitian Hamiltonian are complex and correspond to
decaying modes. The real frequency spectra for dissipation
γ = 0.5ωp and ky = 0 are plotted in Fig. 3(a), with the surface
color scaling linearly with the imaginary component of the
eigenfrequencies. In the two-dimensional momentum space
defined by kx and kz, the two Weyl points, WP1 and WP2,
located on the kz axis, split into two exceptional points each,
with an offset from the kz axis. Each pair of exceptional
points is connected by a real frequency line degeneracy, called
the bulk Fermi arc [36], which is indicated by red lines in
Figs. 3(a) and 3(b). However, the imaginary parts of the
eigenfrequencies are not degenerate along these lines, except
at the exceptional points, as seen from the surface color
in Fig. 3(a) (yellow for the transverse band and purple for
the longitudinal band). These exceptional points correspond
to Weyl exceptional rings in three-dimensional momentum
space.

Following the discussion in Sec. II A, if the dissipation
term does not break parity symmetry or the rotational sym-
metry around the direction of the magnetic bias (z), the Weyl

exceptional rings originating from Weyl points WP1 and WP2
lie on distinct parallel planes. We confirm this by plotting in
Figs. 3(c) and 3(d) the exceptional rings at which the real
and imaginary parts of the eigenfrequencies are degenerate in
three-dimensional momentum space.

In order to determine the total topological charge of these
exceptional rings, we first calculate the complex Berry curva-
ture of the frequency bands. Since the Hamiltonian in Eq. (4)
is not Hermitian, the eigenstates |ψn〉 are not orthogonal [37].
However, as usually done for complex Hamiltonians, we can
define a biorthogonal eigenbasis consisting of left |ψ l

n〉 and
right eigenstates |ψn〉 defined by the eigenvalue problems
H|ψn〉 = ωn/ωp|ψn〉 and H†|ψ l

n〉 = ω∗
n/ωp|ψ l

n〉. The Berry
curvature can then be defined in four different ways based
on a combination of left and right eigenvectors, but all four
have been shown to result in the same topological invariant
[38]. Here, we use the definition �n(k) = ∇ × 〈ψ l

n|∇|ψn〉
to numerically calculate the complex Berry curvature of the
non-Hermitian system. Since the derivative of the eigenstate
in this formula introduces a gauge ambiguity in the numerical
procedure, following the corresponding formula for Hermitian
systems [39], we express the complex Berry curvature as a
derivative of the Hamiltonian,

�n,i j (k) =
∑
m �=n

1

(En − Em)2

〈
ψ l

n

∣∣∂H
∂ki

|ψm〉〈ψ l
m

∣∣∂H
∂k j

|ψn〉

−〈
ψ l

n

∣∣∂H
∂k j

|ψm〉〈ψ l
m

∣∣∂H
∂ki

|ψn〉. (5)
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Using this formula we then evaluate the real [Fig. 3(c)]
and imaginary [Fig. 3(d)] components of the Berry curvature
vector field for the lower band (with respect to real frequency)
participating in the Weyl exceptional ring degeneracy. From
these plots it can be seen that the real-frequency-degeneracy
surface enclosed by the Weyl exceptional rings WR2 and
WR1 act, respectively, as a source or sink of real Berry
curvature. This is expected since these two rings have emerged
from Weyl points WP2 and WP1, respectively. In contrast,
the imaginary component of the Berry curvature curls around
the Weyl exceptional rings, analogous to the magnetic field
lines around a current carrying loop. This implies that the
imaginary component of the Berry curvature does not con-
tribute to the closed surface integral in the topological charge
calculations (its net flux is zero). Considering a cubic surface
enclosing each ring individually, we numerically find that the
topological charge of the Weyl rings is the same as for the
corresponding Weyl points: +1 and −1 for WR2 and WR1,
respectively. As the losses γ in the system are reduced, the
Weyl exceptional rings gradually shrink to a Weyl point and
the imaginary Berry curvature vanishes, resulting in the usual
monopolelike real Berry curvature field for Weyl points.

2. Chiral implementation

We can similarly explore the effect of dissipation in a
chiral plasmonic material by including the jγ I term in the
Hamiltonian of Eq. (1) [as we have done in (4)] and sub-
stituting it into H|ψn〉 = ωn/ωpC|ψn〉, where C is given by
Eq. (3). As an illustrative example, we set γ = 0.5ωp and
plot the dispersion surfaces for ky = 0 in Fig. 3(b). Similar
to the magnetically biased plasma case, all four Weyl points
WP1-4 transform into Weyl exceptional rings WR1-4 in the
presence of loss. Moreover, the disks enclosed by Weyl rings
WR1 and WR3 are sinks of real Berry curvature, whereas
WR2 and WR4 are sources, as shown in Fig. 3(e). In contrast,
the imaginary component of the Berry curvature curls around
the rings, similar to the nonreciprocal case. By numerically
integrating the Berry curvature we confirm that the topological
charge is −1 for WR1 and WR3 and +1 for WR2 and WR4.
A crucial difference from the magnetized plasma case is that
the oppositely charged Weyl rings are no longer located on
parallel planes; hence, they can easily annihilate each other
if they come into contact, as the dissipation in the system is
increased or the chiral coupling term αzz is reduced. Again,
this fact hints at the intrinsic fragility of the topological phase
of a chiral Weyl material, as further elucidated in the next
section.

D. Topological transitions

Since we are interested in studying the robustness of the
topological Weyl state against dissipation, we track the lo-
cation of the Weyl exceptional rings in the above cases for
increasing levels of loss. Intuitively, if oppositely charged
Weyl exceptional rings come into contact and merge, any
closed surface surrounding this new contour of exceptional
points would now enclose zero total topological charge (the
net flux of Berry curvature is zero), corresponding to a trivial
state. In other words, the topological charge has dissipated.

FIG. 4. (a) Phase diagram for a magnetized Weyl plasma with
isotropic losses. Weyl semimetal phase and trivial phase are denoted
by WSM and TR. (b)–(d) Plots of the modal degeneracies in two-
dimensional momentum space for a plasma with ωc = 0.5ωp. Purple
and green curves indicate the degeneracy in the real and imaginary
eigenfrequency spectrum, respectively. The intersections of real-
and imaginary-frequency degeneracy surfaces correspond to Weyl
exceptional rings (exceptional points in two dimensions, marked by
solid red crosses). Loss rate is γ = 0.5ωp in (b), γ = 1.0ωp in (c),
and γ = 1.5ωp in (d).

1. Nonreciprocal implementation

Starting with the nonreciprocal dissipative case, that is, a
lossy magnetized plasma with Hamiltonian given by Eq. (4),
we numerically calculate the contours along which the rel-
evant bands (N + 1, N ) have a degeneracy (ωN+1 − ωN =
0) in momentum space. Consistent with our discussion in
the previous section, for small nonzero losses, γ , the two
Weyl-point degeneracies WP1,2 satisfying Re[ωN+1 − ωN ] =
0 transform into two slightly curved disklike surfaces that
are approximately parallel to each other, corresponding to
the purple curves in the two-dimensional momentum space
in Figs. 4(b)–4(d). The degeneracy in the imaginary eigen-
frequency spectrum satisfying Im[ωN+1 − ωN ] = 0 is a single
surface that intersects the two real-frequency-degeneracy sur-
faces, corresponding to the green curves in Figs. 4(b)–4(d).
The intersection of the two degeneracy surfaces correspond to
the two Weyl exceptional rings WR1,2 indicated by solid blue
curves in Figs. 3(c) and 3(d) and by red crosses in Figs. 4(b)–
4(d). Note that in Fig. 4 we have only plotted degeneracy
surfaces in the kz-kx plane since the dispersion is cylindrically
symmetric around the kz axis. For a fixed cyclotron frequency
ωc = 0.5ωp, it can be seen in Figs. 4(b) and 4(c) that as the
dissipation γ is increased from 0.5ωp to 1.0ωp, not only does
the radius of the two Weyl exceptional rings (the distance
between red crosses) increase but they also get closer to each
other along the kz axis. While the expansion of the Weyl rings
is expected for a non-Hermitian perturbation, as discussed in
Sec. II A, their shift in momentum space is due to the fact
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that large losses also contribute to Hermitian perturbations of
the system’s Hamiltonian, namely, the Hamiltonian in Eq. (4)
cannot be simply written as an unperturbed Hermitian Hamil-
tonian plus a non-Hermitian perturbation. This behavior con-
tinues until finally, for γ = 1.5ωp, the imaginary-frequency
degeneracy surface disappears, as seen in Fig. 4(d), and the
two Weyl exceptional rings annihilate each other. We have
numerically verified that the equal and opposite topological
charge carried by the two exceptional rings cancels each other
and the system undergoes a topological transition to a gapless
trivial state.

Increasing the cyclotron frequency increases the separa-
tion between the oppositely charged Weyl exceptional rings,
thereby requiring higher levels of loss to undergo a topological
transition. This follows from the lossless case, in which the
separation between Weyl points WP1 an WP2 depends on the
cyclotron frequency, as discussed above. To better illustrate
this behavior, we map out the phase diagram for a dissipative
magnetized plasma by numerically locating the critical loss
γ that results in a topological phase transition, for different
values of cyclotron frequencies ωc. As expected, the phase
map in Fig. 4(a) shows that increasing the cyclotron frequency
monotonically increases the critical value of loss. Most im-
portantly, for small cyclotron frequencies, and even in the
limit ωc → 0, γ needs to be at least as large as the plasma
frequency to change the topology of the system. Since such
levels of loss are unrealistically high for most plasmas and
solid-state plasmonic materials [40], we conclude that, for all
practical purposes, dissipation cannot change the topology of
a nonreciprocal Weyl plasma. This resilience for arbitrarily
low external magnetic fields may seem surprising but can be
explained by the relative location of the two exceptional rings
on distinct parallel planes, which very slowly move toward
each other as dissipation increases. As discussed in Sec. II A,
the exceptional rings would lie on intersecting planes only if
the perturbation broke the inversion symmetry of the system.

It may appear that the exceptional rings could be brought
into contact at lower levels of dissipation if the rings could be
made to bend towards each other. Since this is different from
having rings on intersecting planes, it does not require break-
ing inversion symmetry; instead, it simply requires a spatially
anisotropic dissipation that breaks the rotational symmetry
of the system about the z axis. As a relevant example, we
consider a specific situation with large anisotropy in which
the dissipation occurs only along two directions, y and z. This
can be modeled by replacing the non-Hermitian dissipation
term jγ I in Eq. (2) with jγ�, where the vector � is given by
[0, 0, 0; 0, 1, 0; 0, 0, 1]. Either absorption losses or radiative
losses in a strongly anisotropic metamaterial structure (e.g.,
layered metamaterials) could give rise to anisotropic losses, as
the material resonances and loss mechanisms may be different
for different polarization directions.

For high cyclotron frequencies, it can be seen in Fig. 5(a)
that the numerically calculated phase diagram is different
from the previous case with isotropic losses in Fig. 4(a). In
particular, at higher cyclotron frequencies, the topological
transition can indeed occur at a lower critical value of loss.
As shown in Fig. 5(b), for ωc = 0.5ωp, the Weyl exceptional
rings for low dissipation, γ = 0.2ωp, look similar to the
isotropic loss case in Figs. 3(c) and 3(d). As the dissipation

FIG. 5. (a) Phase diagram for a magnetized Weyl plasma with
anisotropic losses (nonzero dissipation only along the y and z direc-
tions). (b) Weyl exceptional rings for different values of dissipation,
γ = 0.2ωp, 0.6ωp, and 1.1ωp, and a fixed cyclotron frequency ωc =
0.5ωp. It can be seen that the oppositely charged rings touch for γ =
1.1ωp, corresponding to a topological phase transition as discussed
in the text.

is increased, however, it can be seen that the two Weyl
exceptional contours grow in size and curve towards each
other along the kx = 0 plane. At γ = 1.1ωp, the two contours
lose their topological charge as they come into contact along
the kz = 0 plane. This critical loss value is indeed smaller than
in the isotropic loss case. However, for smaller cyclotron fre-
quencies ωc < 0.5ωp, the phase diagram looks very similar to
the isotropic case. A minimum loss of γ = ωp is still required
for a topological transition. This is because the dissipation
term only breaks the rotational symmetry but not the inversion
symmetry of the system. Hence, it follows from the argument
given in Sec. II A that, for low levels of loss, the exceptional
rings are located on distinct parallel planes independently
of ωc, and a large level of perturbation is required for the
exceptional rings to bend sufficiently to touch.

For the sake of completeness, we also note that the regime
of cyclotron frequency higher than plasma frequency, ωc >

ωp, results in two more Weyl degeneracies, WP3,4, between
the first and the second band, as mentioned above and
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reported in [16]. Compared to Weyl points WP1,2, these Weyl
points and the corresponding Weyl rings for dissipative plas-
mas are located further away in momentum space kW P3,4 =
±√

ωc/(ωc − ωp). Thus for these additional degeneracies a
topological transition induced by dissipation would occur for
even larger losses. Finally, another plasma parameter that
may affect the topological transition is the bound-charge
dielectric constant ε∞. In this work, we had set ε∞ = 1 (no
dielectric response from bound charges), and we have verified
that increasing this constant monotonically moves the Weyl
points WP1,2 further away from each other. All these findings
confirm our observations that nonreciprocal Weyl states are
inherently robust to the presence of dissipation.

2. Chiral implementation

We carried out a similar analysis for the chiral plasmonic
Weyl material, for which the Weyl degeneracies are not on
parallel planes, as discussed above. For a fixed value of chiral
coupling αzz, we have verified that increasing dissipation re-
sults in Weyl exceptional rings of opposite charge intersecting
at a critical value of isotropic loss. This behavior is shown in
Fig. 6(b): as γ is increased from 0.2ωp to 0.7ωp for αzz = 0.5,
the four Weyl exceptional rings, WR1-4, become roughly
elliptical and grow in size until they intersect at the same
frequency for γ = 0.7ωp, which results in a topological tran-
sition. In Fig. 7, we also show how the exceptional contours
and the corresponding Berry curvature evolve for losses larger
than the critical value. Our numerical calculations show that
the new exceptional contours are indeed topologically trivial
as they carry zero topological charge.

Decreasing αzz for a fixed γ increases the size of the Weyl
exceptional rings, which results in a topological transition at
a lower critical value of loss. By sweeping αzz and γ , we
plot the phase diagram for this system in Fig. 6(a). In stark
contrast to the magnetized plasma case, the critical value of
loss is directly proportional to αzz, even when the parameter
responsible for the topological nature of the system, in this
case αzz, is small. Specifically, this fact means that for small
chiral coupling, small dissipative losses in the plasmonic
material can result in a topological transition. These findings
confirm that, compared to the magnetized plasma realization,
the Weyl topological state realized in a chiral plasmonic
material is fundamentally more fragile to dissipation. The
effect of losses, therefore, should be carefully assessed in any
Weyl material that is based on breaking inversion symmetry
instead of time-reversal symmetry.

III. DISCUSSION

Dissipation is a basic phenomenon of wave physics, with
important implications for the operation of classical and quan-
tum devices. Within this context, in this work we have shown
that the impact of dissipation on the topological properties
of a three-dimensional Weyl material can be deduced from
relevant symmetry arguments, which provide insight into
the possibility of dissipation-induced topological transitions.
Furthermore, we have investigated nonreciprocal and chiral
plasmonic Weyl materials as a relevant model system for
continuous topological Weyl media. The physics of plasmonic

FIG. 6. (a) Phase diagram for a chiral Weyl plasma with isotropic
losses. (b) Weyl exceptional rings for different values of dissipation,
γ = 0.2ωp, 0.5ωp, and 0.7ωp, and a fixed chiral coupling between
the z components of the electric and magnetic fields, αzz = 0.5. An
example of exceptional contour for losses larger than the critical
value and the corresponding Berry curvature are shown in Fig. 7.

FIG. 7. Topological transition and numerical calculation of the
topological charge in a chiral Weyl plasmonic material. (a) Weyl
exceptional rings and corresponding real Berry curvature for αzz =
0.5 and γ = 0.5ωp. As an example, the complex Berry curvature is
numerically integrated over the shaded cuboid surrounding WR4.
The numerical calculation results in an approximate topological
charge C = +1. (b) Weyl exceptional rings and corresponding real
Berry curvature for αzz = 0.3 and γ = 0.7ωp. In this regime the four
Weyl exceptional rings merge and transform into two exceptional
rings carrying no charge. This is confirmed by integrating the com-
plex Berry curvature passing through the shaded cuboid surrounding
one of the new exceptional rings.
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systems with broken time-reversal or inversion symmetry is
incredibly rich, with a plethora of different topological and
nontopological degeneracies, including Weyl points, excep-
tional points and rings, nodal rings, bulk Fermi arcs, etc.
Based on this model system, we have shown that Weyl points
in a biased plasma transform into Weyl rings of exceptional
points with an integer topological charge. In theory, very high
values of loss may cause oppositely charged Weyl exceptional
rings to come into contact and dissipate their topological
charge. However, we have demonstrated that, even for low
cyclotron frequencies, this topological transition requires an
unrealistically high value of dissipation.

Our findings allow us to conclude that, in the specific
case of a nonreciprocal plasma, a topological transition solely
due to the presence of losses is possible in theory but is
practically unobservable in a physical system. Conversely,
we have shown that chiral plasmonic materials with broken
inversion symmetry are much more fragile to the impact of
dissipation. Loss-induced topological transitions are possible
for weakly chiral materials, even for low levels of losses. In
this case, the topological transition caused by the merging
of the Weyl exceptional rings could be experimentally ob-
servable by monitoring the evolution the Fermi arc surface

states. Indeed, when the Weyl exceptional rings merge, the
open Fermi arc contours would either become closed contours
or disappear completely, depending on the orientation and
nature of the boundary. Therefore, following the topological
transition, the resulting surface states would cease to be uni-
directional. The experimental demonstration of loss-induced
topological transitions in a weakly chiral Weyl metamaterial
will be the subject of future work.

In summary, our results clarify under what conditions
dissipation may provide a mechanism for inducing topological
transitions in different realizations of electromagnetic Weyl
materials. We believe that knowing, a priori, when dissipa-
tion may lead to a change in the topological nature of a
system and how the transition may be avoided are invaluable
pieces of information, especially for the applications of three-
dimensional topological materials in practical scenarios.
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