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Quantum transport in self-similar graphene carpets
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Fractals, a fascinating mathematical concept made popular in the 1980s, has remained for decades mainly a
beautiful scientific curiosity. With the tremendous advances in nanofabrication techniques, such as nanolithog-
raphy, it has become possible to design self-similar materials with fine structures down to nanometer scale.
Here we investigate the effects of self-similarity on quantum electronic transport in graphene Sierpinski carpets.
We find that a gap opens up in the electron spectrum, in the middle of which lies a flat band of zero-energy
modes. Despite the vanishing velocity of these states, a supermetallic phase is revealed at the neutrality point
with a conductivity that coincides within a few percent with σ0 = 4e2

πh . For Fermi energy located in the valence
or conduction bands and in the presence of a small inelastic scattering rate, the system stays metallic and the
transport appears to be strongly anisotropic.
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The rapid progress in nanofabrication techniques such
as nanolithography, molecular engineering, and three-
dimensional printing has made it possible to design complex
two- and three-dimensional multiscale and self-similar ma-
terials with fine structures down to nanometer scale [1–4].
Self-similar materials have already been in use in several areas
such as fractal antennas [5], photonic crystal waveguides [6],
or even heat transfer devices [7]. Possibilities to design and
grow at will this new class of materials open pathways for
the exploration of new exotic physical phenomena that may
have remarkable technological spinoffs. The rapidly growing
field of cold atoms on optical or artificial lattices also offers
a platform to address these fundamental issues by directly
tuning the physical parameters of model Hamiltonians [8–11].
Recent theoretical studies on quantum effects in fractal lat-
tices have been focusing on, for instance, the Hall effect
[12–14], plasmon confinement [15], and topological phases
[16]. In these studies the host material of the fractal structure
is a simple square lattice. In this work we investigate how
transport is affected by the self-similarity of the underlying
lattice in one of the most remarkable two-dimensional mate-
rial of the 21st century, graphene [17–20].

This one-atom-thick material holds great potential in vari-
ous technological fields. It is a zero-gap semiconductor with
high mobility at room temperature [21,22], it displays a huge
thermal conductivity, it is extremely flexible while being
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stronger than steel, and it is impermeable to gas and liquids.
Among its plethora of astonishing physical properties, quan-
tum electronic transport is certainly one of the most intriguing
and intensely debated [23–34]. Chirality, which results from
the bipartite nature of the graphene lattice, plays a key role
in its unconventional electronic transport properties, such as
Klein tunneling [35,36] or the existence of a conductivity
minimum at the neutrality point. The effects of disorder such
as C vacancies, short- and long-range on-site potentials, adsor-
bates or resonant impurities on the one-particle spectrum, and
transport of the massless Dirac fermions have been the main
focus of several numerical studies [27,30–32]. However, no
clear consensus on the nature of the transport properties at the
neutrality point could emerge. Recently, based on large-scale
numerical calculations, it has been shown unambiguously that
in the presence of vacancies (up to 1%) σ (0) remains identical
to that of pristine graphene, e.g., σ0 = 4e2

πh [34].
In this study the issue of quantum transport in self-similar

graphene Sierpinski carpets (GSCs) is addressed. We investi-
gate the interplay between the chirality of the massless Dirac
fermions, leading to the unconventional quantum transport
in the host compound and the fractal nature of the spectrum
resulting from self-similarity. Here we ignore the effects of
disorder such as dislocation, rough edges, vacancies, or ex-
tended defects that may have an impact on transport [37–41]

Electrons on GSCs are modeled by a nearest-neighbor
tight-binding Hamiltonian that reads

Ĥ = −t
∑

〈i j〉,s
c†

isc js + H.c., (1)

where t = 2.7 eV is the hopping integral, 〈i j〉 denotes nearest-
neighbor pairs of C atoms, and c†

is creates an electron with
spin s in the π orbital at site Ri. Here we ignore the
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FIG. 1. Illustration of the GSC, from fractal level 2 to 4. The
removed squares produce armchair edges in the x direction and
zigzag along the y direction.

next-nearest-neighbor hopping of the order of 10% that breaks
particle-hole symmetry. The GSCs as illustrated in Fig. 1 are
obtained from a square piece of graphene of size 3ic+1a (a
is the nearest-neighbor C-C distance) on which Sierpinski
masks are applied iteratively. In what follows we make use
of the notation ic and f , where L = Lx = Ly = 3ic+1a is the
system size and f stands for the degree of fractalization,
which varies from 0 (pristine) to its maximum value fmax = ic.
For f = 0, the system embodies NS = 4

3
√

3a2 LxLy of C atoms.
Periodic boundary conditions in both the x and y directions
(see Fig. 1) are used in the whole study. The smallest system
considered corresponds to ic = 3 and the largest to ic = 7;
they contain about 5000 and 33 × 106 C atoms, respectively.
Here we focus our attention on the GSC series corresponding
to ic − f = 0, the maximally fractalized Sierpinski carpets.
As a future prospect, one could also study the transport in
other self-similar series such as ic − f = 1, 2, . . . [42]. The
conductivity along x direction is given by the Kubo formula

σ (E ) = e2h̄

π�
Tr[Im Ĝη(E )v̂x Im Ĝη(E )v̂x]. (2)

The current operator defined by v̂x = − i
h̄ [x̂, Ĥ ] is

v̂x = −i
at

h̄

∑

i∈A,l,s

αl c
†
Ris

cRi+δl s + H.c. (3)

The sum runs over atoms of sublattice A only; δl are the vec-
tors connecting a given atom to its three nearest neighbors on
sublattice B. In the current operator expression, αl = 1, − 1

2 ,
and − 1

2 for l = 1, 2, and 3, respectively. The Green’s function
Ĝη(E ) = (E + iη − Ĥ )−1, � is the Sierpinski carpet area, and
η mimics an energy-independent inelastic scattering rate with
a characteristic timescale τin = h̄

η
. The calculations are done

using the Chebyshev polynomial Green’s function (CPGF)
method [34,43] that allows (i) large-scale calculations as it
requires a modest amount of memory and (ii) a CPU cost that
increases linearly with the system size NS . This is in contrast
to the exact diagonalization (ED) method that needs a memory
scaling as N2

S and CPU time as N3
S . The CPGF method has
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FIG. 2. Density of states calculated for the (7,7) graphene Sier-
pinski carpet compared to that of pristine graphene (red dashed).

proven to be a powerful tool to address the nature of the
magnetic couplings in disordered materials [44,45]. Notice
that, in the same spirit as the CPGF method, the conductivity
could be calculated by quantum wave packet dynamics as well
[31,32,46]. Figure 2 depicts the electronic density of states
(DOS) ρ(E ) = − 1

πNS
Tr[Im Ĝη(E )] as a function of energy for

the (7,7) GSC. Notice that we have checked, for the stochastic
evaluation of the trace, that convergence was reached. More
precisely, we have used a few dozen random vectors and a
large number of Chebyshev polynomials, 20 000. First, we
observe complex fluctuating substructures that result from the
fractal nature of the eigenspectrum. Sharp peaks are visible
at E = ±t , corresponding to the Van Hove singularities in
pristine graphene and a third one at E = 0 that results from
the removal of C atoms. This peak corresponds to a flat
band of zero-energy modes (ZEMs). We have indeed checked
by ED calculations on smaller systems that the eigenvalues
are, within numerical accuracy, exactly zero. In the CPGF
calculations, from the E = 0 peak weight in the DOS we have
extracted a number of ZEM NZEM. It is found to coincide with
|NA − NB|, with NA (NB) the number of atoms on sublattice
A (B), as expected for bipartite lattices [28,47]. The extracted
density of ZEM modes (xZEM) in the GSC is approximately
0.052. Interestingly, we find a gap 	 between the conduction
(valence) band and the flat band as can be seen more clearly
in the inset. Its value is approximately 0.135t . Both (6,6) and
(5,5) GSCs give the same value. Thus, in GSCs, the ZEM
band is an impurity band. This contrasts with the gapless
spectrum of randomly distributed vacancies in graphene, un-
less vacancies are created on the same sublattice [28]. Here
Sierpinski masks produce an imbalance between NA and NB,
but 2-coordinated C atoms exist on both sublattices. Thus, the
gap results only from the self-similar structure of the GSC.

It is important to emphasize that in the single-hole case
( f = 1) for which the density of removed atoms is 1/9,
the spectrum is gapless in the thermodynamic limit. As ic
increases, both the gap and the ZEM peak weight decay as
1/L. Hence, we recover the physics of the pristine compound.
This would be the same for f = 2 and so on. To address
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FIG. 3. Conductivity σ (E ) as a function of E in the pristine
case (analytical calculations) for two different values of the inelastic
scattering rate η = 0.02t and 0.04t . The inset shows a close-up in the
vicinity of E = 0; as expected, σ (0) is 4

π
e2/h within less than 1%.

Away from the Dirac point σ (E ) ∝ 1/η.

properly the effects of self-similarity, the calculations that
allow a direct comparison between different GSCs should be
performed at fixed ic − f .

Before we proceed further with the electronic conductivity
in self-similar Sierpinski carpets, we briefly recall the results
for pristine graphene. In this case, the analytical calculation is
relatively straightforward. The conductivity for two different
values of η is depicted in Fig. 3. Away from the Dirac
point, σ (E ) scales as 1/η, as expected in standard materials
when intraband transitions dominate. At E = 0 precisely, the
conductivity is independent of η and coincides with 4

π
e2

h .
Notice that at this point, intraband and interband transitions
contribute equally to σ (0).

Let us now examine how Sierpinski carpet masks alter the
transport properties. For that purpose, we calculate the DC
conductivity σ (E ) in both the x and y directions. The results
for a fixed η are depicted in Fig. 4. The number of random
vectors NR used for the trace calculation is 500, 100, and
10 as the system size increases. The number of Chebyshev
polynomials kept is M = 2000, leading to an M × M matrix
for the moments. It has been checked that both NR and
M were sufficient to reach convergence. First, we observe
a unexpected anisotropic conductivity in the GSC. Besides
restricted regions where they almost coincide, σyy is smaller
than σxx; σxx is even found one order of magnitude larger
than σyy for Fermi energy in the vicinity of ±0.2t . At first
glance, it is astonishing that σxx � σyy since the edges of the
removed square are zigzag in the y direction and armchair
in the x direction. As it is well known, the nature of the
edge in graphene nanoribbons (GNRs) has a drastic impact
on transport and magnetism [48–50]. Zigzag edges induce
flatband magnetic moment formation and favor a metallic
behavior, while armchair GNRs are often semiconductors or
insulators. Moreover, very-small-size effects are found and
the calculated conductivity for (6,6) and (7,7) GSCs almost

FIG. 4. Conductivity (x and y directions) at T = 0 K as a func-
tion of the energy. Calculations for the (7,7) GSC are done in a
restricted region around E = 0. The inelastic scattering rate is η =
0.016 25t . Along the x axis, σ (0) = 1.39, 1.37, and 1.355 e2

h for (5,5),

(6,6), and (7,7), respectively, and in the y direction σ (0) = 1.165 e2

h
for the (6,6) GSC. The inset magnifies the data around E = 0.

coincide with each other. Notice that the carpet size (in units
of a) varies from 729 for the (5,5), 2187 for the (6,6), and
6561 for the (7,7) GSCs. For Fermi energy in the conduction
band (or valence band) and in the presence of a small η, the
GSC remains metallic in the whole energy range. In addition,
due to the fractal nature of the eigenspectrum, rich structures
and multiple peaks are visible. In the vicinity of E = 0, σ (E )
drops rapidly because of the gap and has a Lorentzian shape.
Along the x axis, the conductivity σ (0) is 1.39 e2

h , 1.37 e2

h , and

1.35 e2

h for the (5,5), (6,6), and (7,7) GSCs, respectively. In the

y direction, σ (0) = 1.165 e2

h for the (6,6) GSC while for (5,5)

we have found 1.15 e2

h (not shown). These results indicate a
relatively slow convergence towards the universal value σ0.
Thus, despite the gap between the ZEM impurity flatband and
the valence and conduction bands, the conductivity remains
fully unaltered at E = 0. It is worth noting that for randomly
distributed vacancies on the same sublattice that induces a gap
in the spectrum, σ (E ) was found to vanish at the neutrality
point [31]. As discussed in Ref. [34], this insulating phase may
result from difficulties to get converged results because of the
singular density of sates. Thus, it would be of great interest to
investigate the transport for this particular case with the CPGF
method [51].

In Fig. 5 the effects of varying the inelastic scattering rate
η is illustrated for the (5,5) GSC. We first focus on energies
far from the neutrality point, e.g., |E | � 	. As η decreases
and because of the fractal nature of the spectrum, we observe
(i) more and more fine structures and multiple peaks in σ (E )
and (ii) regions where it increases, alternating with a narrow
energy interval where it remains insensitive. In the GSC, the
conductivity is never Drude-like since one would expect a 1/η

variation of σ (E ) as in the pristine graphene (Fig. 3). Figure 5
also reveals that the conductivity at the neutrality point is

033063-3



G. BOUZERAR AND D. MAYOU PHYSICAL REVIEW RESEARCH 2, 033063 (2020)

FIG. 5. Conductivity in the x direction at T = 0 K as a function
of E for three different values of η: η = 0.004t , 0.008t , and 0.016t .
Here σ (0) = 1.37 ± 0.02 e2

h ; thus it is almost insensitive to η.

insensitive to η: σ (0) = 1.37 ± 0.02 e2

h for the (5,5) GSC. In
addition, in the gap region (|E | � 	), the conductivity σ (E )
gets narrower and narrower as η decreases and can be nicely
fitted by a Lorentzian of width η.

With the support of exact diagonalization calculations, we
propose to analyze in more detail the conductivity at the
neutrality point. For η � 	, in the x direction σ (0) reduces
to

σ (0) = 32

3
√

3

e2

h

1

NS

∑

β

Cx,β , (4)

where the dimensionless Cx,β is defined by

Cx,β = h̄2

a2

∑

α,λ=±

|〈�β |v̂x|
λ
α〉|2

E2
α

, (5)

where |�β〉 are the ZEM eigenstates (Eβ = 0) and |
λ
α〉 those

of the valence (λ = −) and conduction (λ = +) bands with
energy ±Eα (|Eα| > 	), respectively. In the limit of vanishing
η (η � 	), neither interband nor intraband transitions with
matrix elements 〈
λ

α|v̂x|
λ′
α′ 〉 can contribute to σ (0) because

of the gap. On the other hand, the flat intraband at E = 0
cannot contribute either because 〈�β |v̂x|�β ′ 〉 are all zeros.
Indeed, |�β〉 and v̂x|�β ′ 〉 are orthogonal to each other and they
belong to the two different sublattices. Thus, σ (0) consists
only of interband transitions between the ZEM impurity band
and the valence and conduction bands and a finite conductivity
arises despite the presence of the gap. This feature is rather
unusual. In standard systems and for EF in the impurity band
(localized states), the conductivity is controlled by intraband
transitions only and decays as η decreases. However, in qua-
sicrystals and approximants the scenario is different. For in-
stance, in icosahedral quasicrystals, the diffusion coefficient is
essentially controlled by interband processes, which explains
the nonstandard transport properties observed [52–54].

To improve our physical understanding and get a better
intuitive picture of the nature of the electronic transport in
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FIG. 6. Local charge density of (a) a typical ZEM state |�β〉 and
(b) v̂x|�β〉 obtained from exact diagonalization of a (4,4) GSC that
contains 26 833 C atoms.

GSCs, we propose to have a close look at the local charge dis-
tribution of one typical ZEM state |�β〉 and its corresponding
v̂x|�β〉. Because it requires the eigenstate, the calculations are
performed by a direct exact diagonalization of the (4,4) GSC
Hamiltonian. Beyond this size the calculations would be too
cumbersome. The results are illustrated in Fig. 6. This figure
immediately reveals that both states are rather extended. This
feature sheds light on why the overlaps between v̂x|�β〉 and
the extended valence- or conduction-band states |
λ

α〉 lead to
a finite σ (0) notwithstanding the existing gap. In addition, to
allow a visualization of the real-space contributions to σ (0),
we define the weighted quantity

�x(r) =
∑

β

Cx,β |〈�β |r〉|2, (6)

which is plotted in Fig. 7 for the (4,4) GSC. First, as can be
clearly seen, �x(r) reflects the self-similar structure of the
GSC. Only atoms of sublattice A are shown, since |〈�β |r〉|2

0 0.05 0.35 0.70 1.15 1.35 1.90 2.40

FIG. 7. Two-dimensional plot of the local contribution �x (r) to
the conductivity σ (0) as defined in the text, obtained from the exact
diagonalization of the (4,4) GSC Hamiltonian.
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FIG. 8. Probability distribution of Cx,β , as defined in the text,
calculated from exact diagonalization of the (4,4) GSC Hamiltonian.
Here 〈Cx,β〉 stands for the average value.

is exactly zero on sublattice B. Away from the pores, the
weight is found to be relatively small. It can be seen that
the dominating contributions to σ (0) originate from the re-
moved square edges. Notice also that the asymmetric local
contribution �x(r) is much larger for C atoms belonging to
the zigzag edges than to the armchair edges. This feature
reflects the fact the the ZEM local charge density is larger
along the y-direction edges of the removed squares, as can be
seen in Fig. 6. Note that one would expect, upon switching
the electron-electron interaction, the formation of magnetic
moments on the sides of the removed squares parallel to the y
axis only.

Finally, we propose now to analyze, more quantitatively,
the probability distribution of the dimensionless Cx,β as
obtained from the exact diagonalization of the (4,4) GSC
Hamiltonian. The result is depicted in Fig. 8. This plot dis-
plays a relatively narrow distribution with a mean value of
〈Cx,β〉 = 4.1 and width of approximately 0.5. From Eq. (4)

and recalling that the density of ZEM modes is xZEM =
0.052, we immediately get σ (0) = 1.315 e2

h , which coincides
with σ0 within less than 3%. Notice that the diffusivity
D(E ) can also be straightforwardly obtained from the well
known Einstein formula, which reads D(E ) = σ (E )

e2ρ(E ) . Here,
because of the gap, in the vicinity of E = 0, the density of
states simplifies to ρ(E ) = NZEM

π�

η

E2+η2 . From Eqs. (2) and (5)
and for |E |, η � 	, the conductivity can rewritten σx(E ) =
4e2 h̄
π�

∑
α,λ=±,β

|〈�β |v̂x |
λ
α〉|2

(Eα−E )2+η2 η
η

E2+η2 . After inserting the DOS ex-
pression, one gets the diffusivity that reads

Dx(E ) = 4a2

h̄
〈Cx,β〉η. (7)

Thus, the diffusivity is proportional to η at the neutrality
point. This is in contrast with the 1/η dependence of standard

metallic materials for which D = h̄v2
F

2η
(vF being the Fermi ve-

locity). Because the diffusivity can be written D = L(t )2

t , this
allows one to extract a typical length scale Ld = 2

√〈Cx,β〉a ≈
4a, where πL2

d could be interpreted as the averaged surface
occupied by a ZEM eigenstate on the GSC.

In summary, by means of the Chebyshev polynomial
Green’s function and exact diagonalization methods, we have
investigated the effects of self-similarity on quantum elec-
tronic transport in graphene Sierpinski carpets. We have found
that a finite gap opens up in the electron spectrum, in the
middle of which lies a flatband of the zero-energy mode.
Although ZEM states have a vanishing velocity, a supermetal-
lic phase is found at EF = 0; the corresponding conductivity
is independent of the inelastic scattering rate and coincides
within few percent with the universal 4e2

πh . Despite the gap,
σ (0) originates only from interband transitions between the
ZEM impurity band and the valence or conduction bands.
When EF lies in the valence or conduction band and in
the presence of a small but finite inelastic scattering rate,
the graphene Sierpinski carpets show a non-Drude metallic
behavior. Finally, away from the neutrality point, the transport
appears to be strongly anisotropic.

We would like to thank S. Thébaud for his relevant com-
ments and P. Mélinon for interesting discussions.
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