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We present a systematic classification and analysis of possible pairing instabilities in graphene-based moiré
superlattices. Motivated by recent experiments on twisted double bilayer graphene showing signs of triplet
superconductivity, we analyze both singlet and triplet pairing separately, and describe how these two channels
behave close to the limit where the system is invariant under separate spin rotations in the two valleys, realizing
an SU(2); x SU(2)_ symmetry. Further, we discuss the conditions under which singlet and triplet can mix
via two nearly degenerate transitions, and how the different pairing states behave when an external magnetic
field is applied. The consequences of the additional microscopic or emergent approximate symmetries relevant
for superconductivity in twisted bilayer graphene and ABC trilayer graphene on hexagonal boron nitride are
described in detail. We also analyze which of the pairing states can arise in mean-field theory and study the impact
of corrections coming from ferromagnetic fluctuations. For instance, we show that, close to the parameters of
mean-field theory, a nematic mixed singlet-triplet state emerges. Our paper illustrates that graphene superlattices
provide a rich platform for exotic superconducting states, and allow for the admixture of singlet and triplet

pairing even in the absence of spin-orbit coupling.

DOI: 10.1103/PhysRevResearch.2.033062

I. INTRODUCTION

Experiments on twisted bilayers of graphene have recently
revealed interaction-induced insulating phases and supercon-
ductivity when the relative angle between the layers is fine
tuned to yield almost flat moiré bands, which enhances the
impact of electronic correlations [1-4]. Due to the strong-
coupling nature of the problem, which is corroborated by
tunneling spectroscopy measurements [5-9], the form and
mechanism of the insulating and superconducting phases
are still under debate, despite considerable theoretical effort
[10-46]. Another graphene-based moiré system that displays
both superconducting and correlated insulating behavior is
ABC-stacked trilayer graphene on hexagonal boron nitride
[47,48]. In this case, the moiré pattern results from the
difference in lattice constants, and it can be controlled by
application of a vertical electric field [49,50].

The most recent member of the family of strongly
correlated graphene superlattice systems is twisted double
bilayer graphene [51-53], where two individually aligned AB-
stacked graphene bilayers are twisted with respect to one an-
other. As theoretical calculations show [54—-60], flat electronic
bands can be realized by tuning the twist angle and a vertical
electric field. Similar to the above-mentioned graphene moiré
systems, both correlated insulating [51-53] and superconduct-
ing [51,52] phases are observed in experiment. However, in
stark contrast to twisted bilayer and trilayer graphene, the
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superconducting transition temperature is found to increase
linearly with a weak in-plane magnetic field [52], which is
a strong indication of triplet pairing [42,57]. Furthermore,
the gap of the correlated insulating phase is seen to increase
with an applied magnetic field, indicating ferromagnetic order
[51-53]. There are also clear experimental indications of
ferromagnetism in twisted bilayer [4,61,62] and ABC trilayer
graphene [63].

In this paper, we study the possible pairing states in
graphene moiré superlattices. Motivated by the recent exper-
imental signatures of triplet pairing, we pay special atten-
tion to the triplet channel, and possible mixed singlet and
triplet phases. While the weak spin-orbit coupling in graphene
seems to disfavor the latter class of phases, projections of the
Coulomb interaction on the relevant moiré bands evince that
the interaction terms that couple the spin degrees of freedom
of the two valleys, v = &, of the system are much weaker than
other interaction terms that do not [13,50,57]. Together with
the nearly valley-diagonal band structure, this indicates that
the system is approximately invariant under independent spin
rotations in the two valleys. As has been pointed out before
[19,44], the associated SU(2)+ x SU(2)_ symmetry renders
the singlet and triplet pairing channels degenerate. This paper
will address the questions of (i) under which conditions can
singlet and triplet mix when the SU(2),. x SU(2)_ symmetry
is only weakly broken and (ii) which triplet state transforms
into which singlet upon reversing the sign of the symmetry-
breaking interactions. In this way, we map out all possible
phase diagrams close to the SU(2), x SU(2)_ invariant limit.

In light of the narrow bandwidth and strong correlations of
the graphene-based moiré superlattices we are interested in,
our analysis will begin with a comprehensive study of exact
constraints resulting from symmetry. The symmetry-based
classification will then be supplemented with energetics, by
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FIG. 1. Geometry (top), lattice symmetries (bottom left), and Brillouin zone with symmetries (bottom right) for (a) twisted double bilayer
graphene, (b) twisted bilayer graphene, and (c) ABC-stacked trilayer graphene on hexagonal boron nitride. In all three cases, we assume a
commensurate superlattice structure for simplicity. For (a) twisted double bilayer, we only show ABAB stacking, which exhibits a 7 -rotation
symmetry C,, along the x axis. For ABBA stacking, we have a C,, symmetry instead. Our symmetry analysis of pairing applies to both
stacking orders as the applied electric field breaks both of these in-plane rotation symmetries. In (b) twisted bilayer graphene, superconductivity
emerges without any applied electric field and, hence, the C,, symmetry of the lattice has to be taken into account. In addition, the system is
approximately invariant under a Cs symmetry [15] as indicated in gray in the Brillouin zone in (b). In (c), we show only the top boron nitride
layer and one of the graphene layers for image clarity in the main panel; the other two graphene layers are indicated in the close-up view of the
lattice in light blue. We assume no additional twist such that the moiré pattern is solely due to the lattice mismatch. This leads to the reflection
symmetry o,., which for the effective two-dimensional description of the system can be viewed as an in-plane rotation C, as is done in the
main text. Also, this system is believed to exhibit an approximate Cs symmetry [50] as indicated in gray in the respective Brillouin zone.

studying which of the pairing states can be realized in the
weak-coupling limit and what changes in the presence of addi-
tional fluctuation corrections. As it has the smallest set of sym-
metries, we will begin our classification with twisted double
bilayer graphene: while the lattice is invariant under threefold
rotation, C3, perpendicular to the graphene sheets, and under
a twofold in-plane rotation [see Fig. 1(a)], the latter is broken
due to the vertical electric field that is applied to tune the band
structure and to induce superconductivity. It seems currently
unclear whether the superconducting state coexists with the
likely ferromagnetic correlated insulator and whether, at least
in part of the phase diagram, there is a thermal transition di-
rectly from the (paramagnetic) normal metal to superconduc-
tivity without any ferromagnetic order. For this reason, we will
analyze two scenarios separately: (I) there is no ferromagnetic
order around the critical temperature, T, of superconductivity;
and (II) there is ferromagnetic order already at 7 > T, that
coexists microscopically with superconductivity for T < T
(or, at the minimum, the associated ferromagnetic moments
couple significantly to the superconducting order parameter).
We will begin with the analysis of the superconducting states
transforming under the irreducible representations (IRs) of
the point group C3 assuming time-reversal symmetry in the
high-temperature phase—this is relevant for case I above. In
order to capture scenario II, we will later add the coupling
to the time-reversal symmetry-breaking magnetic moments
and examine how it affects the superconducting transition.
This allows us to determine which of the pairing states are
compatible with the linear increase of the critical temperature
with small magnetic field, B, and to describe the possible
phase diagrams in the temperature-B plane.

We also generalize our discussion to twisted bilayer
graphene and ABC trilayer graphene on hexagonal boron

nitride. Here, we have to take into account an additional
twofold rotation symmetry, C,, perpendicular to the plane of
the system and an in-plane rotation symmetry C,, along the
y axis; these symmetries are either realized as exact micro-
scopic symmetries of the lattice or as approximate emergent
symmetries [15,17,50] of those systems [see Figs. 1(b) and
1(0)].

A. Brief summary of the main results

Due to the length of the paper, here, we provide a very
concise summary of the key results of this paper for the
convenience of the reader.

(1) We analyze the consequences of the enhanced
SU2)+ x SU(2)- spin symmetry, taking into account the
possibility of several consecutive superconducting transitions
with their difference in transition temperatures vanishing in
the limit where SU(2), x SU(2)_ becomes exact. The result-
ing complete sets of possible phases for the relevant symmetry
groups Cs; and D3 (or, equivalently, D¢, see Sec. VIA) are
summarized in Tables I, II, and IV.

(2) As follows from these tables, all point groups and
all of their IRs allow for singlet-triplet admixed phases in
the absence of any spin-orbit coupling. As opposed to the
conventional mechanism of singlet-triplet admixture, which
is based on a reduced symmetry [64], here, it results from (the
proximity to) an enhanced spin symmetry.

(3) To supplement these purely symmetry-based considera-
tions with energetics, we analyze which of those states can be
realized in single-band mean-field theory, i.e., whether there
exists a form of the effective electron-electron interaction that
can stabilize the superconducting state when treated within
the mean-field approximation; the result is indicated in the
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last column in Tables I, II, and IV. This identifies the most
important pairing states from a weak-coupling perspective.
The presence of any of the remaining pairing phases—as
might eventually be established in future experiments—must
result from the strong-coupling and/or interband nature of
superconductivity.

(4) We also study corrections to mean-field theory com-
ing from ferromagnetic fluctuations, within a simplified phe-
nomenological approach in Sec. V that is justified micro-
scopically in Appendix B1. We analyze two limits. First, we
consider the case of weak fluctuations in order to lift the
residual degeneracies within mean-field theory. We find that
out of the two possible phase diagrams for the IR E close to
mean-field theory, shown in Fig. 5, the one in part (b) [part
(a)] is favored for spin (orbital) ferromagnetic fluctuations.
This reveals that a nematic mixed singlet-triplet phase is a
natural candidate pairing phase in graphene moiré superlat-
tices. Second, we analyze which pairing states are favored
in the case where the fluctuation corrections dominate over
the mean-field contributions (see last column in the tables
mentioned above).

(5) We study the coupling of the superconducting states to
the magnetic field, B, and examine which states can give rise
to a linear increase of the critical temperature for small B: if
SU2)+ x SU(2)_ is broken significantly, triplet pairing has
to dominate for B = 0 and there are only three possible triplet
states as leading instabilities for B # 0. In the case where
SU(2); x SU(2)_ is an approximate symmetry, even singlet
pairing at B =0 can yield a linear increase. For instance,
the possible phase diagrams in the presence of a magnetic
field for pairing in the trivial IR A of C; are shown in
Fig. 3.

B. Relation to other works

Let us briefly comment on the relation of this paper to other
works in the literature. While our classification also contains
the pure singlet states, which have been subject to intense
scrutiny in twisted bilayer graphene, we are mainly interested
in elucidating the consequences of the enhanced SU(2), x
SU(2)_ spin symmetry with respect to subsequent transitions
and the associated nontrivial interplay of singlet and triplet
pairing.

In the context of twisted double bilayer graphene, where,
recently, signs of triplet pairing have been discovered, [65]
mainly focuses on the correlated insulating phase in this
system, whereas [57] also discusses pairing. We extend the
work of [57] by allowing for momentum-dependent pairing
states, contrasting weakly and significantly broken SU(2), x
SU(2)— symmetry, investigating admixed singlet and triplet
phases, analyzing fluctuation corrections to mean-field theory,
and mapping out the phase diagram in the presence of a
magnetic field. In a follow-up work [66], we will complement
the analysis of this paper by a microscopic energetic study
specifically for twisted double bilayer graphene. In [66], we
discuss which IR is expected to be favored, the form of the
associated basis functions, and the impact of disorder on
superconductivity.

C. Structure of the paper

This paper is organized as follows. As described above,
we start with twisted double bilayer graphene. In Sec. II, we
introduce the model and the action of the relevant symmetries.
We first discuss pairing in the trivial IR of the point group of
the system in Sec. III and then generalize to the complex IR E
in Sec. IV. Section V demonstrates how strong fluctuations
can yield significant corrections to mean-field theory. We
extend our analysis to twisted bilayer graphene and ABC
trilayer graphene in Sec. VI, and explore the consequences of
the additional microscopic and emergent symmetries relevant
to those systems. A discussion of our results can be found in
Sec. VIL

II. MODEL AND SYMMETRIES

We first focus on the (nearly flat) conduction band of
twisted double bilayer graphene which appears to host the
superconducting phase observed experimentally [51,52], and
later discuss the modifications for the related moiré systems,
bilayer and trilayer graphene. Owing to the presence of a gap
to other bands in the relevant parameter regime [56-59], it
is reasonable to describe the superconducting instability in
a single-band picture. We stress, however, that many of our
conclusions are symmetry based and, thus, also apply when
several bands are taken into account. Exceptions are provided
by the energetic mean-field and fluctuation considerations,
where we will specifically comment on the consequences of
interband effects that might be present in these systems [8].

Denoting the corresponding electronic creation and anni-
hilation operators by ¢, ., where k is crystal momentum, o
is spin, and v = =+ represents the valleys, the general pairing
term can be written as

HSC = Z Cltav(Akiayfx)av,o’v’cika/v/ + H.c. (1)
k

Here and in the following, o; and t; are Pauli matrices in
spin and valley space, respectively, and the 4 x 4 matrix
Ay is the superconducting order parameter. In Eq. (1), we
have already made the assumptions that only Cooper pairs
with zero net momentum form and that superconductivity
preserves translational symmetry. Due to the proximity of
superconductivity to ferromagnetic order [51,52], relaxing
this assumption could be interesting, but we leave this for
future work. Consequently, we need not consider IRs of the
full space group but rather can concentrate on the point group
G of the system and time reversal ®.

In this regard, we study two different point groups: an
approximate point group,

G = C3 x SUQ), x SUQR)_ x U(1),, (2)

where Cj is the crystalline point group, SU(2).. is spin rotation
in valley v ==+, and U(1), corresponds to valley charge
conservation. As argued in [57], the intervalley “Hund’s”
coupling J is much smaller than the intravalley-density inter-
action V. In combination with the fact that the noninteracting
band structure only has very small valley mixing, the system
is invariant under Eq. (2) to a good approximation. In the
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presence of a finite Hund’s coupling, Eq. (2) is reduced to
Gr = C3 x SU2)s x U(1)y, 3

where SU(2), is global spin rotation. To define these sym-
metries more precisely, we specify their representation on the
electronic field operators:

Cs: o — Cop (4a)
SUQ) : ¢, — €9, (4b)
SUQ)+ : ¢, —> (Pee'® + Py, (4c)

U(l), : ¢ —> €¥"cy, (4d)

with P. = (19 £ 1,)/2 being the valley projection operators.
Furthermore, time reversal is represented by the antiunitary
operator ® with

00" = ioyT.c_y. ®)

To classify superconductivity, we proceed as usual [67] and
express Ay in Eq. (1) in terms of the IRs n (with dimension
d,) of the point group as

dy
Ae=)> "mixpk), npeC, (6)
n u=l1
where Xﬁ (k), un = 1,...,d,, are partner functions transform-

ing under the IR n. Within the minimal description of pairing
in Eq. (1), which only involves one band per valley, x; (k) €
C*** are matrices in spin and valley space.
In our case, the point group has the form G; = C3
U (1), x G} with G = SU(2); x SU(2)- =~ SO(4) and G;
SU(2)s. As a consequence, the IRs of G; have the form n =
ne, X ny X ng where ng,, n,, and n, are IRs of G5, U(1),, and
1, respectively. We can thus rewrite Eq. (6) more explicitly
as

X

ducy  dyy  dyy

A=Y DD M @i (D

neyMysis =1 po=1 uz=1

In order to classify superconducting states, we need to con-
sider the different IRs of C3, U (1),, and g; .

Let us begin our discussion of IRs with U(1),. While it
has, in general, countably infinite IRs (one dimensional and
with character ¢”™% m, € Z), only three are relevant here as
all representations with |m,| > 1 cannot be realized with only
two valleys. First, there is the trivial representation, m, = 0,
with x™=0 = ar, + bt, with a priori unknown a, b. Recalling
the extra factor of 7, in Eq. (1), this translates to purely
intervalley pairing. Secondly, the pair of complex conjugate
representations with m, = =1 has to be considered. Note that
due to time-reversal symmetry the complex representations
cannot be discussed separately. Here, the basis functions read
as x™=*' =t it as such, this corresponds to purely
intravalley pairing.

We thus see that U(1), prohibits the mixing of inter-
and intravalley pairing. As time reversal (5) interchanges the
valleys along with sending k — —k and we assume zero-
momentum Cooper pairs, we will restrict our discussion to
intervalley pairing, i.e., m, = O for the rest of the paper.

As is well known [68], C; has the following IRs, both
of which are one dimensional: the trivial one, A, and the
complex representation E (and its complex conjugate partner).
We analyze each of these IRs in Secs. III and IV and, in both
cases, discuss the differences between G} and G3; we will also
see how the states “connect” once Gj is weakly broken to G
due to a small but finite value of Hund’s coupling.

III. TRIVIAL REPRESENTATION OF THE CRYSTALLINE
POINT GROUP

For simplicity, we begin with the trivial representation A of
C3, which is real and one dimensional. In fact, the following
discussion will not be modified as long as the IR is real and
one dimensional and there is no crystalline symmetry relating
the two valleys. Interestingly, the last assumption is violated
in twisted bilayer graphene and trilayer graphene on boron
nitride; see Sec. VI for a detailed discussion of the associated
modifications.

As already mentioned, we consider only intervalley pairing
which corresponds to a real and one-dimensional IR as well.
This means that the order parameter in Eq. (7) has the form

d”.r
(Agor = 8,y X U 0) D 02 (xp ), . ®)

u=1

where x“(k, v) is invariant under k — gk for all generators g
of the crystalline point group (here, we only have g = C3).

A. Limit of exact SU(2);. x SU(2)_ symmetry

To proceed further, we have to inspect the scenarios for
both G} and G5. We start with the former, i.e., we assume
that Hund’s coupling is zero. Inserting Eq. (8) in the general
pairing Hamiltonian (1), we obtain a pairing term of the form

Hse = ZCZGU(MkuiO'y)U,a’Cika,ﬁ +H.c.,
k,v
Mkv = XA(k7 U)AU, (9)
where v =F for v=4=4, and My, as well as A, =

o T Do .
>, M x;¢ (v) are matrices in spin space. Fermi-Dirac statis-

tics implies
My, =o,M"; 0, (10)

Rewriting pairing in terms of singlet and triplet as M, =
0yA;, +0 -diy, Eq. (10) is equivalent to A; = A*,- and

d,, = —d_,;, as expected.

We now study the stable superconducting phases in this
channel by writing down the most general Ginzburg-Landau
expansion constrained by the symmetries

0 My, — M}, (11a)

SUQR); x SUQ)_ : My, —> e+ M,e'”°.  (11b)

Due to the constraint (10) stemming from Fermi-Dirac
statistics, we express the free energy in terms of one valley
only (say v =4) as F = F[M, = x*(k, +)A,], and the
pairing in the other valley just follows from Eq. (10). The most
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general free energy to quartic order in A, invariant under
Eq. (11) and A, — €'Y A,, reads as

F ~

T b
a(2 V(AT AL + Zl(tr[ALAg)z

+ 2 ulal A, ALA 1+ Tl Ao, ATIP. (12)

Note that |tr[o, A, o, AT]]?/2 = tr[A+ayAf_Aj_ayA1], so the
latter is not an independent term to consider. It further holds
that [troy A, o, ATT12/2 = (a[ALALD? —u[Al AL AT AL
which allows us to set b3 = 0 in the following without loss of
generality.

Using the singular-value decomposition of A,, it is
straightforward to find all symmetry-inequivalent minima of
Eq. (12). There are two different states depending on the sign
of b, which we label by A, —o(A*;d), where A® and d refer to
the singlet and the triplet vector, respectively, A indicates the
trivial IR of C3, and m,, = 0 signifies intervalley pairing [IR of
U(l), withm, = 0].If b, > 0, we get A, X 0y, i.e, My + =
Axro with A k= = A;; according to the notation introduced
above, this state will be labeled as A, —o(1;0, 0, 0). There
are (infinitely) many different equlvalent representations of
this state since, for instance, the transformations in Eq. (11b)
mix the singlet and triplet components—as described by the
isomorphism SU(2); x SU(2)_ >~ SO(4). However, for the
sake of notational clarity, we will henceforth only show one
convenient representative of each state. The A,, —(1;0, 0, 0)
state preserves time-reversal symmetry and breaks SU(2); x
SU(2)— down to SU(2); [rotations of the total spin, i.e., ¢, =
¢_ in Eq. (11b)].

On the other hand, if b, < 0, we find A, o o, + o,, which
corresponds to A, —o(1;1,0,0). For this phase, the order
parameter in Eq. (9) assumes the form My + = Ay (0, +0,)
with Acyx = Ag. This state preserves time-reversal symmetry
too, but it breaks SU(2); x SU(2)_ down to O(2), (with
¢, = @_ = @eé,),i.e.rotations of the total spin along a single
axis.

B. Turning on Hund’s coupling

In reality, there is, of course, a finite Hund’s coupling that
reduces G = SU(2)+ x SU(2)- to only global spin rotations,
G5 = SU(2);, already in the high-temperature phase. In [57],
Hund’s coupling J has been estimated to be about 60 times
smaller than the intravalley interaction V. Note, however, J
might be enhanced due to loop corrections. For this reason,
we first classify the possible instabilities in the absence of an
approximate SU(2); x SU(2)_ symmetry and then analyze
how the different states “connect” for small values of J and
whether admixtures of singlet and triplet are possible.

To introduce our notation, we will begin with the classifi-
cation for the reduced symmetry group G, in Eq. (3); in that
case, we have either singlet or triplet pairing.

1. Singlet

This corresponds to the d,,, = 1 one-dimensional IR of Gj
with x™ = oy in Eq. (8). The pairing Hamiltonian simply has

the form
e = D MinChoy(i0)5.0¢ o + Heoo  (13)
k,v
with Ay, = A%, and Ag,, = Ay,. All symmetries of the

high- temperature phase are preserved. We refer to this state
as Amv _o with the I, referring to spin singlet, m, =0 to

mtervalley pairing, and A to the trivial representation of Cs.

2. Triplet

This pairing channel is associated with the three-
dimensional IR of G5. A possible choice of basis functions
is x(v)=o0yu, w=12.73,in Eq. (8). As it is a multidi-
mensional representation, the free energy has to be expanded
beyond quadratic order. Writing d = (7", 5', 15'), we have
up to quartic order

F~a)d'd+b,@d'd)? +bhld* xd>.  (14)

Observe that |d”d|? is not an independent quartic term since
ldTd|> = (d'd)* — |d* x d|*. The free energy in Eq. (14) has
two stable minima. For b’2 > 0, we have d « (1,0, 0)" and
the corresponding pairing term is

HSC = Z)L;CUCZJU(Gxqu)U,a/CikG/D + H.c., (15)
kv

with Ap, = —A",. and A, =Aj,. As is easily seen, this
¢ 3KV v

term preserves time-reversal symmetry and breaks SU(2),
down to spin rotation along a single axis. This state will
be referred to as unitary triplet and denoted by the symbol
Afn“v:()(l, 0, 0), where the three components just indicate the
direction of the triplet vector. If, instead, b, < 0, we obtain
d « (1,i,0)7, whence

Hse = Y MeyChoo [0 + i0))ioyJg 0T + Hee,  (16)
kv

with A} as above. This is a nonunitary triplet state. It breaks
time-reversal symmetry and will be denoted by Afyfyzo(lv i, 0).

One might wonder what kind of interaction or band struc-
ture would favor Af,-;vzo(l, i,0) over Af,';vzo(l, 0, 0) and vice
versa. In mean-field theory, as detailed in Appendix A, it is
straightforward to show by evaluation of a one-loop diagram
that

d*k AL |4
=T . 17
;/ 27)? (w +g,3+)2 1n

Here, w, are fermionic Matsubara frequencies and & is the
electronic band energy in valley v =+ of the nearly flat
band hosting superconductivity. We observe that 2, > 0 holds
irrespective of microscopic details and, hence, Afr;vzo(l, 0,0)
is generically favored if we neglect corrections beyond mean-
field theory (such as residual interactions or frequency depen-
dence of pairing). Intriguingly, there have been experimental
reports [69] of intrinsically nonunitary pairing in LaNiC,,
i.e., nonunitary triplet pairing born out of a paramagnetic
normal state. Thus, there is reason to believe that we cannot
generically exclude this state, but we do not expect it to show
up in any simple mean-field computation.
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3. How do the states connect in the J = 0 limit?

Next we establish how the three possible states, Am —0°

A, 70(1 0,0), andA ¢ _o(1,1,0), connect to the two derived
in the previous subsectlon with enhanced SU(2), x SU(2)_
symmetry, namely, A, —o(1;0, 0, 0) and A,,,—o(1; 1, 0, 0). To
this end, we decompose the Ginzburg-Landau expansion (12)
into singlet and triplet by writing A, = A* 4o -d. Since
tr[AT Al= |AS|2 +d'd, singlet and triplet are degenerate
at quadratic order in F as a consequence of the enhanced
SU2); x SU(2)- symmetry. For nonzero J, this degeneracy
is lifted and we have

F ~a(T)(|A*)? +dTd) + sa(T)(|A*)? —d'd), (18)

where da can be made arbitrarily small as J — 0. Neglecting,
for now, the “back action” of the superconducting order
parameter that condenses first on the second one (as described
by higher-order terms in the Ginzburg-Landau expansion),
we conclude that there are two superconducting transitions
at Tfo =T, £ AT, with AT, = |8a(T.0)|/a, taking a(T) ~
a(T —T.p) near T.o. The extra index O in Tcﬁ% highlights
the fact that the aforementioned higher-order terms in the
Ginzburg-Landau expansion can significantly affect the lower
transition temperature, 7.~ # T, w05 of course, this has no effect
on the higher transition temperature, 7" = T

Before analyzing these corrections, it is useful to esti-
mate the temperature scale AT,.. Using the expected result,
T* ~ Aexp(—1/[(V £ J)v]) of mean-field theory (from the
linearized gap equations)—where A is the cutoff and v the
density of states at the Fermi level—leads to

AT. |J]

Tc,O V21)
The large density of states, taken together with the estimated
value of V—which is larger than even the bandwidth [57] of
the flat bands—and the relation J <« V implies that AT, <
T..0 [70]; the temperature/energy scale AT, is most likely too
small to be visible in experiments. While the estimate above
is only based on mean-field theory, it indicates at least that it
is important to study the behavior of superconductivity in the
limit of small AT, /T. o [and, hence, weakly broken SU(2), x
SU(2)_ symmetry], accounting for the possibility of two
transitions and mixing of singlet and triplet pairing (despite
the absence of spin-orbit coupling). Moreover, we will see that
nearly degenerate singlet and triplet pairing also has crucial
consequences for the behavior of superconductivity in the
presence of a magnetic field.

While we postpone the analysis of magnetic fields to
Sec. III C, here, we investigate the possibility of an admixture
of singlet and triplet in the presence of time-reversal sym-
metry (relevant to scenario I defined in the introduction). As
anticipated above, this requires also considering the quartic
terms of Eq. (12). We find

F ~aT)(|A)? +dTd) + sa(|A°)> —d'd)
+ (b1 + b)IA [ + (by + by)(@dd) + bold* x d?
+2(by + 2by)| A2 dTd + 2b,Re[(A) dTd*],  (20)

19)

neglecting corrections to the quartic terms coming from
finite J.

(@ ; (b)

Anti-Hund's

Hund's Anti-Hund's

singlet

singlet triplet singlet triplet
d x (1,0,0) + triplet d o (1,3,0)
d o (1,0,0)
~/ \r\/
Apmo—0(1;0,0,0) 6 Am,—0(1;1,0,0) 6

FIG. 2. Schematic phase diagram as a function of temperature,
T, and 8 = aT - 7 close to the SU(2); x SU(2)_ invariant
point (§ = 0) obtained by minimizing the free energy in Eq. (20).
Parts (a) and (b) correspond to b, > 0 and b, < 0, respectively, and
are, hence, associated with the pairing states A,, —(1;0, 0, 0) and
Ay,—0(1;1,0,0) at § =0 as indicated in red. In our notation for
the pairing A,,, (A*;d), m, is the valley quantum number, and A’
and d are singlet and triplet pairing amplitudes, respectively. As
the pure singlet and the unitary triplet state for b, > 0 (the mixed
singlet-triplet phase and the nonunitary triplet for b, < 0) transform
into each other under reversing the sign of § < J, we will refer to
them as Hund’s partners.

Looking at the first transition with the higher transition
temperature, we assess which of the two distinct triplet
states, A?n —0(1,0,0) and A3 —0(1,7,0), and the singlet
state can be stabilized by startmg from A,,—0(1;0,0,0) or

Ap,=0(1;1,0,0) and turning on a finite Hund’s coupling J.
For this purpose, we can neglect the coupling terms in the
third line of Eq. (20). Clearly, if da < 0 (“anti-Hund’s cou-

pling”), we get a singlet state for both A,, —(1;0, 0, 0) and

Ap,=0(151,0,0). A straightforward way of establishing which

of the triplet states is realized when éa > 0 (“conventional”
Hund’s coupling) proceeds by evaluating their respective free
energy in Eq. (20). One finds that the state A?;;,:O(l’ 0,0) is

realized if b, > 0; otherwise, A?ﬁl.:o(l’ i, 0) is favored. This
brings us to the conclusion that

Ap—0(1:0,0,0) — A} _jorA% (1,0,0),  (2la)

Am—0(1:1,0,0) — A} _jorAy (1,i,0),  (21b)

at the first transition (see the schematic phase diagram in
Fig. 2). This result is just a consequence of the fact that the
form A o oy for the A,,,—o(1; 0, 0, 0) state we had chosen in
the previous section can alternatively be written as A, « oy
due to the SU(2); x SU(2)_ symmetry and, thus, explicitly
assumes the form of the unitary triplet state. Similarly, A
oy + o, used above for A,, —o(1; 1, 0, 0) can also be written as
Ay & o, + ioy. This is why it transitions into the nonunitary
triplet state, upon turning on a nonzero Hund’s coupling.

In order to determine whether there is a second transition,
we have to include the coupling terms between singlet and
triplet in the third line of Eq. (20). To illustrate that these
terms can be crucial, we consider the case a > 0 and b, > 0,
i.e., the triplet state Aif,;o(lv 0, 0) condenses first. This leads
to the coupling between singlet and triplet 2c|A*|?|d(T)|?,
¢ = by + by, in the free energy, where we have made use of
the fact that a relative phase of 7 /2 between singlet and triplet
is energetically most favorable. As a result of |d (T))? = (ba —
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TABLE 1. Summary of the different intervalley pairing states transforming under the trivial representation of the point group C; in the
absence of a magnetic field. For notational convenience, we neglect the extra label m, = 0 to indicate intervalley pairing. A, is a real-valued
and Brillouin-zone-periodic function that is invariant under C;. To lowest order, we can take X to be independent of k. We also indicate the
minimal number of nodes, which state it transforms to when setting J = 0 [“SO(4) parent’’] and reversing the sign of J (“Hund’s partner”), and
whether the state can be found in a single-band mean-field (MF) computation neglecting residual interactions and/or when the ferromagnetic
(FM) fluctuation corrections discussed in Sec. V dominate. In the last line, n describes the temperature-dependent strength of admixing of the

unitary triplet state.

Pairing My, Nodes SO(4) parent Hund’s partner MF/FM
Als X0, None A(1;0,0,0) A¥(1,0,0) N
A%(1,0,0) A0 None A(1;0,0,0) Als v /X
A3(1,1i,0) M(o, +io) | gapless/none A(1;1,0,0) Als +A%(1,0,0) X/
Als +A%(1,0,0) Moy +1n0,) None A(1;1,0,0) A3(1,1i,0) X/

a(T))/(2c), which is valid as long as there is no additional
singlet pairing, the growing triplet component induces the
extra term

2¢|A°PlA(T)? = [8a — a(TH]| A, (22)

which is always larger than the “bare” quadratic term of
singlet pairing [in the first line of Eq. (20)]. Accordingly,
there is no second transition (at least close to 7., where our
Ginzburg-Landau approach is valid) into a state that has a
nonzero singlet component. We also checked that Eq. (20)
does not allow for a first-order transition.

Similarly, all other cases can be scrutinized and one finds
that if triplet dominates there is no second transition. How-
ever, if singlet has a larger transition temperature (6a < 0),
there is a second transition into a phase with singlet and
triplet pairing when b, < 0. This transition happens at the
temperature

- =1o(14+ <212l 5= L T
¢ — Le0 s _0571-,0 —Vzv-

The stability of the Ginzburg-Landau expansion only requires
¢>0and ¢ > —by, soboth T” < T and 7" > T, are
possible. More importantly, unless |b;|/c is fine tuned to be
of order §, generically, 7.~ — T.o as J — 0 and the two
transitions, if present, are likely too close to be experimentally
discernible. Due to the term 2b, Re[(A%)’d d*] in the free
energy, we obtain the unitary triplet vector d = dy(1, 0, 0)”
with A*dj € R (same phase). This is to be expected as A
0y + o, for the “parent” state A,, —o(1; 1, 0, 0).

A summary of these results is provided by the schematic
phase diagrams in Fig. 2. We observe that the proximity to the
enlarged symmetry in spin space, SU(2)+ x SU(2)_, favors
the possibility of having a nonzero triplet component: for b, <
0, even a negative Hund’s coupling (anti-Hund’s) allows for
d # 0 and leads to the exotic possibility of significant (dy =~
A* for T, — T > AT,) singlet-triplet mixing in spite of the
absence of spin-orbit coupling.

It is noteworthy that all the states are fully gapped (more
precisely, they have no symmetry-enforced nodes) except
for the nonunitary triplet Afrj:o(l, i, 0), which is gapped for
one spin species while the other is completely gapless. The
admixture of singlet and unitary triplet has two unequal gaps
for the two spin species both of which are finite as long as
the magnitudes of singlet and triplet are not fine tuned to be

equal. All the states, along with their order parameters and
properties, are summarized in Table I.

We finally comment on the nature of the thermal phase
transition for the different superconducting states once fluc-
tuations of the order parameter are taken into account. Ne-
glecting stray fields, the transition into the singlet phase A's
is expected to be a Berezinskii-Kosterlitz-Thouless (BKT)
transition with quasi-long-range order of the complex-valued
order parameter A® below the transition temperature. For the
triplet states, it is important to keep in mind that d cannot
even have quasi-long-range order as it transforms as a three-
component vector under spin rotation. For the unitary triplet
state [with order-parameter manifold (S, x §1)/Z;] a BKT
transition of the composite charge-4e order parameter d”d
is possible and is associated with the (un)binding of half
vortices. This is different for the nonunitary state [with order
parameter manifold S3/Z, >~ SO(3)] where d Td = 0 and no
BKT transition into a quasi-long-range-ordered superconduc-
tor is expected. For the case of the two consecutive transitions
in Fig. 2(b) with § < 0, we first expect a BKT transition into
a singlet phase followed by a crossover at which the triplet
vector becomes nonzero.

However, we point out that, even in the simplest case of
the singlet A"s, there are significant corrections to the BKT
transition resulting from stray fields and mirror vortices [71],
which make the observation of a pristine BKT transition in a
(charged) superconductor difficult. We believe that the current
status of experiments does not allow one to exclude pairing
phases that will not exhibit quasi-long-range order and a BKT
transition in the limit of infinite system size.

4. Expectations within mean-field theory

Lastly, we evaluate what a naive mean-field computation is
expected to yield. In fact, from Eq. (17), we already know
that the prefactor of the term |d* x d |2 in Eq. (20) must
be positive within mean-field theory and, therefore, it holds
that b, > 0. For completeness, we mention that in the mean-
field approximation b; = 0, as shown in Appendix A. Conse-
quently, a single-band mean-field computation will generally
favor Fig. 2(a) over Fig. 2(b); in other words, only half of the
phases proposed in this section can be found in mean field,
which we also indicate in the last column of Table I.

However, there is no fundamental mechanism prohibiting
the mixing of singlet and triplet via two transitions (see, e.g.,
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[72]) and there are multiple reasons why we can effectively
have b, < 0 (and b; > 0 to ensure stability): for instance,
strong residual interactions and fluctuations have been shown
to modify the values of the quartic terms in the free energy
significantly [43,73], thereby stabilizing phases that are other-
wise not possible in the mean-field approximation. Given the
small bandwidth and the underlying strong-coupling features
of the problem [5-9], it is plausible that there are sizable cor-
rections to mean-field theory. In addition, we recognize that
there are other corrections arising from interband pairing, and
that disorder can also dress the Ginzburg-Landau expansion.
Moreover, it is unclear whether adding frequency dependence
to the gap function could be of relevance.

In Sec. V, we will analyze the impact of ferromagnetic
fluctuations, which are expected to be relevant for graphene
moiré systems [4,51-53,61-63], and find that these generi-
cally decrease the value of by; if sufficiently strong, these
fluctuations will favor the phase diagram in Fig. 2(b).

C. In the presence of a magnetic field

We now generalize the Ginzburg-Landau expansion to also
include the coupling to a Zeeman field M, = (M7, Mé, M)
and an (in-plane) orbital coupling M, = (M}, M;;). Both of
these terms can either be due to an applied external magnetic
field or due to the correlated insulating state. This enables
us to discuss (i) the behavior of the superconducting critical
temperature 7" as a function of an external magnetic field in
the absence of any ferromagnetic moments associated with the
correlated insulating state [case I defined in the introduction].
At the same time, we can study (ii) how the transition temper-
ature and the order parameter of superconductivity is affected
by the potentially coexisting ferromagnetic order [case II].

1. Leading superconducting transition

We first turn our attention to the leading superconducting
transition with the highest temperature 7.; potential subse-
quent superconducting transitions at lower temperatures are
addressed later in Sec. III C2. For the goal of studying the
first transition, we can restrict ourselves to quadratic order in
the order parameter. Only keeping terms up to quadratic order
in the magnetic field as well, we obtain

Fu ~ a(T)(| A > +d'd) + Sa(|A°)? —d'd)
+28¢; Mz - Im(d*A*) +ic,M7 -d* x d
+ (e3M% + ,MB) (A +d'd)
+ (8csM7 + 8cgMp)(|A°)> —d'd). (24)

While the prefactors da, 8¢y, 8cs, and §cg are necessarily zero
in the limit J/ — 0, where the SU(2), x SU(2)_ symmetry
becomes exact, all remaining terms can be nonzero (and dif-
ferent in their values) at J = 0. Notice that the third term has
not been considered in [57]; this term arises only when both
singlet and triplet are allowed for and leads to the admixture
of a unitary triplet state with a singlet superconductor. The
vanishing of da and écg at J = 0 is an obvious consequence
of the enhanced SU(2);x SU(2)_ symmetry. To see that
dcy also has to vanish as J — 0, let us take M along the
z direction; this breaks SU(2); x SU(2)_ down to O(2)4 X

0(2)_, i.e., the system is only invariant under cz, — €% cy,.
Performing this transformation with ¢, = 0 and ¢_ = 7 /2,
we get (A%, d;) — (id,, iA®) and, hence, §c; — —dc;. With
the same argument, it can be proven that dcs has to go to zero
as J — 0. In Appendix A, we show that §¢; = 0 in mean-
field theory within the single-band description, even when
SU2)+x SU(2)— is broken; this results from an emergent
valley-exchange symmetry within the single-band mean-field
approximation.

In discussing the highest critical temperature and the cor-
responding order parameter for Mz, M # 0, it is instructive
to first look at the linear-in-field terms in Eq. (24). We find

two different cases. If |coMyz| + 8a > /(8ci1Mz)? + §a?, one
obtains a pure triplet state of the type Ai‘vzo(l, i, 0). Choosing

My = Mze, with M; > 0, the triplet vector is given by d =
(0, 1, sign(c,)i)T and the critical temperature is

T. = Teo + (8a + |c2Mz|) /. (25)
Else, if |co2Myz| + 8a < \/(8ciMz)? + 8a?, one finds an ad-

mixture of singlet and triplet with order parameter
) C1 M, 7

A=Ay, d=ieA . (26)
V(6c1Mz)? + 8a? — Sa
The transition temperature in this case is
T, =T,.o+ vda*+ (sciMz)?*/a. 27

We see from Eq. (26) that there is an approximately equal
mixing of singlet and triplet for |8¢;|Mz > |§a| while in the
opposite limit, |§c1|Mz < |8al, either singlet or triplet dom-
inates depending on whether §a < 0 or da > 0. The relative
phase of /2 between singlet and triplet makes the pairing
state break time-reversal symmetry as is required in order to
couple linearly to magnetic moments.

To understand how the approximate SU(2); x SU(2)-
symmetry can naturally explain the linear-in-magnetic-field
behavior, we first consider case I, i.e., there is already mi-
croscopically coexisting ferromagnetic order (or there is at
least a significant coupling between superconductivity and the
ferromagnetic moments) at 7.*. Then, Mz and M, should be
thought of as the combination of the applied external magnetic
field and the ferromagnetic order parameter. In this scenario,
it is apt to assume |§a| < max(6c;Mz, coMz) and we gener-
ically obtain a linear increase of the critical temperature with
magnetic field [see Egs. (25) and (27)]. If ¢; > ¢, we obtain
the nonunitary triplet state with d o (1, i, 0)”, which we
expect close to the J = 0 line, while §c; > ¢; leads to the
admixture of singlet and triplet with d o (1,0, 0)". As 8¢,
vanishes for J/ = 0 and in single-band mean-field theory (even
when J # 0), we expect the former scenario to be more likely,
which will favor the nonunitary triplet state as the leading
instability.

In the case of scenario I, we should view Mz and M, in
Eq. (24) as resulting entirely from the Zeeman and orbital
coupling of the external magnetic field alone. For large mag-
netic fields where |§a| <« max (§¢iMz, coM7y), the same con-
clusions as above will apply and 7, will generically vary lin-
early with the field. However, for sufficiently small magnetic
fields, we have |§a| > max(§ciMz, coMz). In this limit, only
da > 0 favoring the nonunitary triplet pairing Af,;v:()(l, i,0)
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is consistent with the transition temperature changing linearly
with magnetic field. Alternatively, the system could ultimately
be in a singlet state at My = 0 (i.e., da < 0) but the magnitude
of Sa is sufficiently small such that the “rounding off” of
T (Mz) at low M cannot be seen in experiment.

2. Quartic terms and subleading transitions

Having examined the first superconducting transition that
takes place upon cooling the system down starting from the
normal state, we now assess whether and what type of subse-
quent superconducting transitions can occur. In this context,
we need to include terms quartic in the superconducting order
parameter and extend Eq. (24) to

Fiu ~ (a(T) 4 8a)| &) + (a(T) — 8a) Y |di|?
s==+,0

+28c MzIm(dg A°) + oMz (|d_|* — |d*)
+ (b1 + b)) (|A°)* + |do|*) + (b1 +2b2)(1d 1 |* + 1d_|*)

+2(b1 +202)| A Y 1d,|* — 4boRelddd”]
s==+,0

+ 2b,Re[(A*)* ((dg)* + 2d7d*)]

+ 2by|dy P|d_ 1> 4 2(by + 2b2)|do*(|d 1 |> + |d_|*),
(28)

where we kept only the terms linear in magnetic field, took
M, along the z axis, and reexpressed the triplet in the
form d = dy(1,i,0)/~2 +d_(1, —i,0)/~/2 + dy(0,0, 1).
This parametrization is more convenient in the presence of
a magnetic field than that used in Eq. (20). Additionally, we
have neglected the impact of the magnetic field on the quartic
terms.

Taking §c¢; = O (as it has to vanish for J = 0), the
different possible phase diagrams are summarized in Fig. 3.
The possibility illustrated in part (c) of Fig. 3 corresponds to
the picture put forward by Ambegaokar and Mermin [74] for
He? in the presence of a magnetic field, which might very well
also apply to twisted double bilayer graphene [52,57]. The
difference with [74] is that we do not get a third transition
since we work with a one-dimensional IR of the spatial point
group.

However, there are three other options, depicted in
Figs. 3(a), 3(b), and 3(d), that we cannot easily exclude given
the experimental data: owing to the strong-coupling properties
of the problem at hand, a nonunitary triplet state might be
dominant at M7 = 0, as seems to be the case in LaNiC, [69]
and is favored by our fluctuation approach of Sec. V; under
this condition, only one transition is expected even when
My # 0 [see Fig. 3(d)]. It could also be that singlet dominates
without a magnetic field instead. We can see in Figs. 3(a) and
3(b) that, in these two cases, triplet shows up and 7, increases
linearly when Mz > 2|8a|/c,. The small value of AT./T. o
estimated in Eq. (19) suggests that resolving this initial region,
where T is constant as a function of Mz, is experimentally
challenging.

(a) (b)

TA TA
giTE; % singlet
% ’g singlet triplet
& singlet 3 + triplet (1,4,0)
triplet = (1’_?_’8)1- 0)
(1,0,0)+(1,zx,0)\ £ o N
0 My 0 My
(c) (d)
TA Ty

}/

triplet
(1,7,0)

triplet
(1,4,0)

triplet
(1,0,0)+(1,i,0)

triplet (1,0,0)
triplet (1,i,0)

0 M, 0 My,

FIG. 3. Phase diagram as a function of temperature 7" and Zee-
man field M, = Mze, when (a, b) singlet dominates at low fields
and (c, d) triplet dominates, which we determine by minimizing
Eq. (28). Thin (thick) black lines correspond to second (first) order
transitions. The phases for M; = 0 are indicated in red and we
recover the four different possible temperature dependences of Fig. 2.
Recall from Sec. III B 4 that b, > 0 and, thus, (a) or (c) is expected
in mean-field theory. However, as we will see in Sec. V, strong
ferromagnetic fluctuations will favor b, < 0 and, hence, (b) or (d). As
symmetry requires §c; to be proportional to Hund’s coupling J, we
have set 8¢; = 0 here. For nonzero 8¢, the singlet superconducting
phases will contain an admixture of unitary triplet as described by
Eq. (26) and a first-order transition into a singlet state (with unitary
triplet admixture) will be possible at lower temperatures and nonzero
Zeeman field in part (c). Note that the transition temperature from the
normal state into the singlet superconductor is constant as we neglect
here the nonlinear coupling to the magnetic field. A discussion of the
latter can be found in Sec. III C 3.

3. Nonlinear couplings in a magnetic field

We finally come back to the quadratic couplings to the
magnetic field, associated with the terms with prefactors c3 4
and §cs 6 in Eq. (24). We first notice that this will lead to
an additional quadratic suppression of the leading transition
temperatures in Fig. 3; in particular, the transition temperature
into the singlet state in part (a) and (b) will not be field
independent any more. More interestingly, the suppression
of singlet and triplet is enforced to be nearly identical for
small J due to the SU(2)+ x SU(2)_ symmetry, 8¢cs6 <K €3.4.
Resultantly, if the effective J relevant for superconductivity is
indeed small, the nonlinear terms oxc M % M 20 are not expected
to affect the competition between singlet and triplet signifi-
cantly and the qualitative form of the phase diagrams in Fig. 3
is not modified.
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IV. COMPLEX REPRESENTATION OF C;

In this section, we extend our previous analysis to the com-
plex IR E of the spatial point group C3. Time-reversal symme-
try necessitates treating the representation and its complex-
conjugate partner on an equal footing. Alternatively, one can
think of a two-dimensional (2D) (reducible) representation
with partner functions transforming as x and y under Cs.

Akin to our discussion earlier, we first study the case
of nonzero Hund’s coupling, J # 0, with point group G, in
Eq. (3), which enables us to distinguish between singlet and
triplet pairing. After discussing all symmetry-allowed singlet
and triplet states separately, we will derive the phase dia-
grams analogous to Fig. 2: we will examine how these states
“connect” when adiabatically changing Hund’s coupling from
negative to positive values, and whether singlet and triplet can
mix when J is small and the SU(2), x SU(2)_ symmetry is
only weakly broken.

A. Nonzero Hund’s coupling

To proceed with singlet pairing, we parametrize My, in
Eq. (9) according to

My = Y 1, (X + in Yoy, (29)
n==%

while Mj_ is determined by the Fermi-Dirac constraint (10);
X and Y; are real-valued functions that are continuous on
the Brillouin zone and transform as k, and k, under C3. A
one-parameter family of possible choices for the lowest-order
functions (i.e., with minimal number of sign changes in the
Brillouin zone) is given by

X, Yol = Ry(x", v, ")’ (30a)

with arbitrary ¢ € [0, 27), where Rq; is a 2 x 2 matrix de-
scribing rotations by angle ¢, Ry = ¢'%%, and

2

X(l) - =

k V3
2

r® = 5(sin ky + cos(v/3k,/2) sin(k,/2)).  (30c)

sin(+v/3k,/2) cos(k, /2), (30b)

Both X; and Y; have to vanish at I', K, and K’ as these
momenta are invariant under Cs. Further, both X; and Y;
must have lines of zeros going through these high-symmetry
points; the orientation of these lines is, however, not fixed
due to the absence of additional reflection or in-plane rotation
symmetries—this is different from the situation for twisted
bilayer and trilayer graphene in Sec. VI. For Eq. (30), the
orientation of these zeros changes with ¢.

With the parametrization defined in Eq. (29), the relevant
symmetries act as follows:

(31a)
(31b)

j2m
C: (4, n-) — (wng, 0'n), w=e's,
O: ,n-) — =, n}).

It readily follows from Eq. (31) that the most general free
energy up to quartic order reads as

F~a(ns* + -1 + by (ns 1* + In—15* + b5 Ins [*In—I*.
(32)

The sign of b} therefore distinguishes between two different
singlet phases: if b5 > 0, we have (14, n-) = (1, 0), which
corresponds to

Myy = Xi + i Yi)oy,. (33)

Exactly as in Sec. IIl, we always show only one out of
the many symmetry-equivalent representations of the order
parameter—instead of using a general parametrization of a
phase—to make the notation and the discussion of properties
of the superconducting state more easily accessible. The state
in Eq. (33) breaks time-reversal symmetry but preserves Cs
(and spin-rotation symmetry). We refer to this state as a
chiral singlet superconductor and denote it by E'(1,i) in
the following. It is fully gapped (unless the Fermi surfaces
go through the ', K, or K’ point) and has been investigated
extensively in the recent literature on pairing in twisted bilayer
graphene [12,21,27,30,33,36,37,40,42,44].

Conversely, if b} <0, we find that || = |n_| at the
minimum of Eq. (32). As the relative phase ¢ between 7.
and n_ = n, e is not fixed by Eq. (32), one might naively
conclude that higher-order terms have to be considered. In
fact, in sixth order, there is indeed the contribution

ciRe[n} () + e Imlni ()], caeR, (34)
and the relative phase ¢ will depend on ¢ /c,. However, upon
reinserting n_ = e’ into Eq. (29), we notice that ¢ % 0
simply corresponds to rotating the basis functions Xj and Y
into each other, which does not change their transformation
behavior under C; [¢ is directly related to ¢ in Eq. (30a)].
Consequently, we can set ¢ = 0 without loss of generality,
which implies

M,, = A X,0,. (35)

This state, which we call E!¥(1, 0), breaks Cs but preserves
time-reversal symmetry; this is the nematic singlet phase.

Within a single-band mean-field description (see Appendix
A), we find b} = b5/2 > 0. As such, mean-field theory gener-
ically favors the chiral singlet superconductor over the ne-
matic state E'*(1, 0); this has been noted before in the context
of twisted bilayer graphene [44] and [43] discusses how strong
fluctuations can stabilize the nematic phase.

Turning to triplet pairing, we now modify the parametriza-
tion (29) to

3
My =) 1, +ino,, (36)

n==+ v=1

where X; and Y; are defined exactly as before. For sim-
plicity, we introduce the complex-vector notation, d, =
M1 M2 77,,”3)7-, u = =£. The representations of the symme-
tries now read as

CG:dy,d) — (wd,,w'd_), (37a)
O:(dy.d ) — @ .d"), (37b)
SUQ), : dy,d_) — (Rdy,Rd_), (37¢)
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with R € SO(3) and w = €' >
expansion is given by

2
F~a Z did, + b, <Z d;dﬂ) +bydid, )d d )
n==x

+oldld P+ bdd P ldid, P (38

u==

. The most general free-energy

up to quartic order, where b’/ € R; the different symmetry-
allowed phases follow from the stable minima of the free en-
ergy. When minimizing Eq. (38), we take into account that the
relative phase between d . and d_ can always be absorbed into
aredefinition of the basis functions X} and Y, as for the singlet
above. In total, we find eight distinct triplet states which we
label by E*(a) through E(h). Phase diagrams describing
which of these phases is realized for a given configuration of
the quartic couplings b’j can be found in Appendix C; here, we
list all the phases, describe their properties, and refer to Fig. 4
for an illustration of their respective spectra and densities of
states.

(a) This state, labeled as E3(a), can be represented by
d, =d_ = (1,0, O)T with the associated order parameter
M+ = Xj o,. More physically, it corresponds to a nematic
unitary triplet phase. It preserves time-reversal symmetry, but
breaks both SU(2), spin-rotation symmetry [down to O(2)]
and Cj rotational symmetry. This state has two symmetry-
enforced nodal points at each Fermi surface around the K,
K’, or T point. Owing to the lack of any reflection sym-
metry (see the discussion of D3 in Sec. VI below), the po-
sitions of these nodal points are not pinned to any specific
direction.

(b) One representative configuration of this phase is given
byd, = (1,—i,0)7/2 and d_ = (1,i,0)7 /2; it can thus
be seen as a helical triplet, consisting of two time-reversed
copies of states with opposite chirality. The order parameter
can be more explicitly written as My, = Xgo, + Yio0,, which
can alternatively be thought of as a 2D analog of the Balian-
Werthamer state of the B phase of superfluid *He [75]. This
state, denoted by E*(b) in the following, only has point
nodes at ', K, and K’, i.e., it is expected to exhibit a full
gap for generic Fermi surfaces not going through these high-
symmetry points. It preserves time-reversal symmetry. While
this state breaks spin-rotation symmetry as well as Cs, the
product of Cs and a rotation in spin space along o, with angle
27 /3 is preserved; this can be viewed as the spontaneous
formation of spin-orbit coupling.

(c) Here, we can write d. = d_ = (1,i,0)7 /2; hence,
My = Xi(ox +ioy). This is a nematic nonunitary triplet
state which breaks time-reversal symmetry and Cs;. One spin
species will be gapless while the other will have nodal lines
(i.e., point nodes on the Fermi surface).

(d) The triplet vectors in this phase can be written as
d, =(1,0,0)",d_ = 0leading to My, = (Xz + iYy)o,. As
one of the two chiralities is preferred over the other (|d. | #
|d_]), this state can be referred to as chiral unitary triplet. It
is a 2D analog of the A phase of 3He [75]. It breaks SU(2),
spin-rotation symmetry [down to O(2)] and time reversal,
but preserves C;. Except for I', K, and K’, this state has
no symmetry-imposed nodal points. In fact, its spectrum is

X

o
-
-

T (meV)

0 0.5 1.0 1.5 2.0

FIG. 4. (i, ii) The lowest lattice harmonics of the basis functions
[Eq. (30)]. (a)—~(h) The momentum dependence of the gap and the
density of states, g(E ), for the pairing phases, E* (a) through E3 (h).
The Bogoliubov—de Gennes excitation spectrum is calculated using
the band structure of the system predicted by the continuum model
[58], assuming a pairing term of the form of Eq. (9) with an overall
scale of Ay = 4 meV. The nodal points/lines are demarcated in dark
blue; note that the states (b), (d), (g), and (h), taking « = 7 /4, are
fully gapped; (a) and (f) have nodal points; and (c) and (e) have nodal
lines, as is also visible in g(E).

identical to that of the helical triplet £ (b), which is why we
group these two states together in Fig. 4.

(e) For this state, we have d. = (1,i,0)7,d_ =0, i.e.,
My = X +iYi)(o, + o). It consists of only one of the
two time-reversed copies with opposite chirality of the E> (b)
state discussed above and, thus, is a chiral nonunitary triplet
state. This state can be seen as an analog of the A; phase
of 3He [75]. It preserves Cs, but breaks SU(2), spin-rotation
symmetry [down to O(2)] and time reversal. Here, one of
the spin components will be gapless while the other is fully
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gapped (as before, except for the high-symmetry points I', K,
and K’ which are generically not on the Fermi surface). Note
that although the spectrum of this state is not strictly identical
to that of the nematic nonunitary triplet E>(c) we grouped
them together in Fig. 4 as their respective plots are practically
indistinguishable; this is related to the fact that, in both cases,
the low-energy spectrum is dominated by the Fermi surface of
one of the spin species.

() In this phase,d . = (1,0, 0)",d_ = (0, 1, 0), implying
My, =X+ il)o, + (X — iYk)oy. The state can, thus, be
thought of as a superposition of two chiral unitary triplets with
orthogonal spin polarizations or, when inserted into Eq. (9),
as Cooper pairs of electrons with spin polarization || (11)
and orbital basis function X; + Y (X; — Y). Time-reversal,
(3, and spin-rotation symmetry are all broken. The excitation
spectrum is given by Ei(k) = \/.53134_ +2(Xx £ Y)?, so it is
characterized by “two gaps,” given by | Xy £ Y|, both of which
are forced to vanish at two points for each Fermi surface
enclosing K, K’, and I". While the number of nodes of this
state and of E> (a) are the same, the spin degrees of freedom
on the Fermi surface have nodes at the same two momenta for
E3(a). For E3( f), however, the two spin species have nodal
points at different momenta.

(2 Denoted by E%(g), this phase has
d, = cos() (1,i,0)" /y/2, d_ = sin(«) (0, 0, 1)", where
the parameter o varies continuously with b’j in the part
of the phase diagram where this state is realized. The
corresponding order parameter can be written as My =
cos(ar) (X + i Yi)(o, + ioy)/v/2 + sin(e) Xy — i¥e)o,, 0 <
a <m, and can be viewed as a superposition of a
chiral nonunitary triplet state and a unitary state with
opposite chirality. This state breaks time-reversal symmetry,
spin-rotation invariance, and Cs; but preserves the product
of C; and spin rotation by angle 27 /3 along o. So, similar
to the state £ (b) above, this state spontaneously entangles
rotations in spin and real space and its spectrum [see Fig. 4(g)]
is G5 invariant. It is fully gapped (again, as long as the Fermi
surfaces do not go through I, K, and K’), with two different
gaps [(1 £ go)(XZ + Y2)1'/%, where g, = cosay/1 + sin” a.

(h) Finally, for the triplet phase E*(h), one has d, =
(cosa, 0, isina)’, d_ = (0, cosa, —isina)”, which yields
My = cos(a)[(Xx + i Yy)o, + (Xx — i Yi)oy] — 2 sin(a) Y0
It can be seen as a superposition of the states E(a) and
E3(f) to which it reduces for o = /2 and 0; it will have
two nodal points for « close to these limiting cases, but can
be fully gapped for other values of «. For o # 7 /2, this state
breaks time-reversal, C3, and spin-rotation symmetry.

In Appendix A, we show that b} =05/2 = -b,/2 =
—2b > 0 and b, =0 within a single-band mean-field de-
scription. Minimizing Eq. (38) yields that the phases E3 (b)
and E3(d) have the lowest energy and are exactly degenerate
for this configuration of quartic couplings. This degeneracy
within mean-field theory, which was noted before in [19], will
be lifted by corrections resulting, e.g., from residual interac-
tions. In Sec. V, we will find that E3 (b) (E% (d)) is favored in
the presence of ferromagnetic spin (orbital) fluctuations. We
will also see that significant fluctuations can stabilize phases
other than the two, E3(b) and E* (d), favored in mean-field
theory.

B. Approximate SU(2),. x SU(2)_

After having classified singlet and triplet separately, we
now focus on small Hund’s coupling for which SU(2); x
SU(2)_ is an approximate symmetry, and singlet and triplet
are nearly degenerate at the quadratic level of the free energy.
This requires studying them on an equal footing and gener-
alizing the parametrization in Eqgs. (29) and (36) to include
both singlet and triplet, i.e., extending the summation over v
inEq. 36)tov =0, 1, 2, 3. In analogy with Sec. Il A, we use
2 x 2 matrices and write

M, =Y X +inY)A,.

pu==

3
A= 0, (39
v=0

It is easy to see that the symmetries act according to

C}: (A+,A7) — (COA#,,C()”“A,), (403)
O: (A, AL) — (AT, AD), (40b)
Gi: A, — e_i“’+"’AMei“’—'”, (40c¢)

where, recall, G{ = SU(2); x SU(2)_. Imposing SU(2); x
SU(2)_ as an exact symmetry, the most general free energy
up to quartic order reads as

2
) b
Fr~a)y ulala,]+ f(Z tr[ALAM]>
pu==

p==

b, A
+ D) Z tr[ALA” Apd,l
n==%

b N b 2
+ ftr[A;Aﬂtr[AT_A_] + Z“]tr[ALA_]\

b .
+ ?S(tr[ALA+AT_A_] +ulA_ATAL ALY, @D

At first glance, one might think that there are additional
terms with extra factors of oy, similar to the last term in
Eq. (12). However, as before, all of them can be related
to combinations of the terms already present in Eq. (41) as
outlined in Appendix C.

Following the procedure applied in Sec. III to the one-
dimensional IR A, we now add a small quadratic term,
sa Z,L(|AZ|2 - d;du), where A} and d, are the singlet and
triplet component of A, in Eq. (41), i.e,, A, = U()A‘; +o0o-
d,. This term breaks SU(2); x SU(2)_ and, hence, makes
singlet and triplet inequivalent. It allows us to study which of
the different singlet and triplet states defined above can mikx,
and to identify “Hund’s partners,” i.e., which states transform
into each other when changing the sign of Hund’s coupling J
and, accordingly, of §a. This generalizes the phase diagrams
in Fig. 2 and Table I to the complex representation.

We find that, out of the eight different triplet states E (a)
to E(h), only two—E3(a) and E*(d)—do not allow for
a singlet-triplet admixture when reversing the sign of J (or
da) so that singlet has the higher transition temperature. The
reason for the absence of an admixture is the same as sketched
by way of example in Sec. III B: besides pure singlet and
pure triplet terms, the quartic terms in Eq. (41) also contain
couplings between singlet and triplet, as is readily seen by
inserting the parametrization A, = ooA; +o-d,, p ==
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(the full expansion can be found in Appendix C). At the first
transition, one of either singlet or triplet becomes nonzero
and, hence, “renormalizes” the quadratic term of the other
channel. In some cases, this renormalization can prohibit the
presence of a second transition. In the case of phases E*(a)
and E*(d), we just obtain the pure singlets E'(1,0) and
Els (1, i), respectively, without a second transition. The easiest
way to interpret why we do not have an admixture in these
cases is to look at the associated SO(4) parent states: the
two triplets correspond to (n4;d) = (n—;d_) = (0;1,0,0)
and (n4+;dy) = (0;1,0,0), (n—;d_) = 0, respectively. Both
of these configurations can be ‘“rotated” into the pure
singlets (n4;d+)=(m-;d_)=(1;0,0,0) and (ny;ds)=
(1;0,0,0), (n—;d_) =0viaaSU(2), x SU(2)_ transforma-
tion.

For all other triplets, Hund’s partner is an admixed phase.
Specifically, as regards E*(b) and E(c), Hund’s partner
is an admixture of a nematic singlet state and a nematic
unitary triplet E (a), with different relative phases and spa-
tial orientations: for the former, the order parameter can be
written as i Y00 + nXio,, where n describes the temperature-
dependent strength of mixing, while it is Xy (oo + noy) for
the latter. On any Fermi surface around one of the high-
symmetry points I', K, or K’, these two states have zero
and two nodal points, respectively. Again, the form of the
admixed state can be understood from the representation of
the triplet state in terms of (»,;d,). For instance, we have
(n4:d4) = (031, —i,0), (n-;d_)=(0;1,i,0) for E*(b),
which is equivalent to (ny;d+)=(1;1,0,0), (n_;d_) =
(—1;1, 0, 0) after applying an appropriate SU(2), x SU(2)_
transformation.

Likewise, Hund’s partners of E* (e) and E* (f) are admix-
tures of a chiral singlet and a unitary triplet state with the
same and opposite chirality, respectively. The associated order
parameters can be written as (X + i ¥x)(0p + n o) and (Xi +
iYy)oyg + n(Xg — i Yi)o,. While the first of the two states has
two fully established gaps, given by (1 + 77)«/Xk2 + Yk2 (with
=+ referring to the spin species), the other has two gaps,
|Xk| and Y|, with distinct momentum dependencies; it, thus,
exhibits two point nodes per Fermi surface which occur at
different positions for the two spin species, similar to the
associated triplet phase E(f).

In general, admixing a singlet component at a second tran-
sition to a triplet state is less likely to occur as a singlet state
has less options to “adapt” (the order parameter comprises two
complex numbers for E) than a triplet state (for which the
order parameter comprises six complex numbers). While this
is not possible for the one-dimensional representation A (see
Fig. 2), the IR E does allow for this scenario but only for the
triplet states E*(g) and E* (h): for small a < 0, we find a
second transition where an additional chiral (nematic) singlet
component is admixed to E*(g) (E* (h)). As both pure triplet
states can be fully gapped, the same holds for the admixed
phases. The admixture of the extra singlet component does not
change the symmetries of £ 3 (g)and E 3s(h) listed in Sec. IV A
above. Reversing the sign of §a to small positive values,
we obtain the same admixed phase. The only difference is
that the first transition is a singlet transition into a chiral
(nematic) phase and the secondary triplet E3f(g) [E3(h)]
becomes nonzero at a lower transition temperature.

(@ , (v)

Anti-Hund's

Hund's

Anti-Hund's

Hund's

E'(0,4) E® (b)
+ E3(a)
| ~
(043 dy) Al 1;0,0,0) ) (ne;dy) = (+1;1,0,0) ]

(n-;d-) =(-1;1,0,0)

FIG. 5. The two possible phase diagrams of the complex rep-
resentation close to mean-field theory, using the labeling of states
defined in the main text and Table II. All transitions are second order,
except for the one indicated by the thick line, which is first order. In
Sec. V, we show that part (b) [part (a)] is favored when taking into
account corrections to mean-field theory coming from ferromagnetic
spin [orbital] fluctuations.

The key results of this section, the pure triplet/singlet
states and the possible admixed phases for small J along
with their order parameters and properties, are summarized
in Table II. As already discussed above, several states are
degenerate within single-band mean-field theory. Depending
on the form of the corrections to mean-field theory lifting
this degeneracy, there are two possible phase diagrams, shown
in Fig. 5. Interestingly, we observe that the chiral singlet,
E's(1, i), is not the only possible phase close to mean-field
theory for anti-Hund’s coupling: as can be seen in Fig. 5(b),
a secondary phase transition into the nematic mixed singlet-
triplet state E'5(0, i) + E*(a) is predicted. It is a fully gapped
state with an anisotropic gap, v'n?X? + Y7, breaking rota-
tional symmetry. Note that this route to a nematic supercon-
ducting state, indications of which are provided by recent
experiments [76], is distinct from that of other works [43,77].
Of course, sufficiently large corrections to mean-field theory
can in principle yield any of the phases listed in Table II; we
will come back to these corrections in Sec. V below.

Let us finally discuss the impact of fluctuations of the order
parameter on the thermal phase transitions. As readily follows
from the respective order-parameter manifolds, the singlet
phases in Table II exhibit a conventional BKT transition, the
triplets (a), (b), (d), (f), (g), and (h) will be charge-4e super-
conductors where only spin-rotation invariant combinations
of the triplet vector assume quasi-long-range order at finite
temperature, and the triplets (c) and (e) will only display a
crossover. However, as pointed out above, none of these three
classes of transitions can currently be excluded based on the
experimental data.

C. Behavior in a magnetic field

Finally, we turn our attention to the behavior of the pairing
states of the complex representation in the presence of a
Zeeman field, Mz, and in-plane orbital coupling M, along
the same lines as Sec. III C. From Egs. (31) and (37), it follows
that there are three possible coupling terms linear in the field
and quadratic in the superconducting order parameter given
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TABLEII. Summary of possible pairing states transforming under the complex representation E of C;. The labeling of the pairing states and
their symmetry properties can be found in the main text. The states are ordered by pure singlet, triplet, and admixtures of singlet and triplet. The
latter are only expected generically when the SU(2)_ x SU(2),. symmetry is weakly broken. We use X and ¥} to denote real-valued continuous
functions on the Brillouin zone that transform as k, and k, under C; [see, e.g., Eq. (30)]. The temperature-dependent coefficient 1 describes
the admixture of a triplet/singlet pairing at a second transition to a purely singlet/triplet one. Furthermore, a, b € R vary continuously with
system parameters. The minimal number of nodes on any Fermi surface enclosing the T', K, or K’ point is indicated in the column “Nodes.”
As before, two states are referred to as Hund’s partners if they transform into each other under reversing the sign of Hund’s coupling (see,
e.g., Fig. 5). As singlet and triplet mix for both § > 0 and § < 0, there are no Hund’s partners for £ (g) and E3 (h); the corresponding mixed
phases, contained in the last two lines of the table, are their own Hund’s partners.

Pairing My, Nodes Hund’s partner MF/FM
E(1,0) X090 Two points E3(a) X/
E'(1, i) (X +1Y)00 Zero E%(d) VI
E3(a) Xy0, Two points E's(1,0) X/X
E(b) Xe0, + Yo, Zero E'(0, 1)+ E»(a) v /X
E3(c) Xy (o, + iay) | gapless/two points E'(1,0) + E¥(a) X/
E*(d) Xi +iYy)o, Zero E(1,10) VIV
E3s(e) Xk + i Yy) (o, + ioy) | gapless/zero ES(1,i) + E*() X/
E¥(f) X + i Yo, + X — i Yi)o, Two points EN(1, —i) 4+ E>(d) X/X
E*(g) aXy + i Yi)(oy + ioy) + b(Xi — i Yi)o, Zero X/X
E3(h) alXx + i Yoy + (X — iYi)o,] + bYio, Zero X/X
E'(0, i)+ E»(a) i Yoo + nX0, Zero E%(b) v X
ES(1,0)+ E*(a) X (09 + no,) Two points E*(c) X/
E'(1,i)+ E*(d) (X + i Yi) (o0 + noy) Zero E*(e) X/
E's(1,—i) + E*(d) Xk +1Ye)oo + n(Xe — i Yi)ox Two points E*(f) X/X
E¥(g)+E"(1, —i) aXy + i) (o, + ioy) + (Xx — i Yi)(bo, + noy) Zero ES(1, —i)+ E*(g) X/X
E3(h) + E'(1,0) al(X + i Yo, + X — i Yi)o,] + bYeo, + nXkoo Zero Es(1,0) + E*(h) X/X

by

AFjy ~Mz - [8c Im(d},n,,) + 5 uRedin,)]
i
+ickMy - Zd; xd,.

n

(42)

Notice that, exactly as for the IR A, there is no linear coupling
to the in-plane orbital field, which is prohibited by time-
reversal and C; rotation symmetry. While the first term in
Eq. (42) is again forced to vanish for / — O [for the same
reason as dc; in Eq. (24)], the second singlet-triplet-mixing
coupling, cg , 1s not constrained to be zero for J/ = 0. However,
the emergent symmetry in the single-band mean-field descrip-
tion of Appendix A leads to ¢ = 0, so it is natural to expect
cb « ¢ such that the last term in Eq. (42) describes the
dominant linear coupling to the magnetic field—even when J
is small. As expounded in Appendix A, the expression for ¢
is identical in form to that for ¢, in Eq. (24). As such, the linear
increase of the (first) superconducting transition temperature
with small magnetic fields seen in experiment does not permit
one to distinguish between the IRs A and E.

There is one difference between the pairing states of the
two IRs worth mentioning here: while the form of the leading
triplet vector in a magnetic field is completely fixed to be
d « (1,i,0)7 for the one-dimensional IR A, the complex IR
allows for either the nematic nonunitary E 35(¢) or the chiral
nonunitary E3(e) pairing for nonzero M;. Which of the
two is realized depends on the value of the quartic terms in
Eq. (38): if &, + b4 > 0, the state E3(e) will be preferred
while the opposite sign corresponds to E*(c). Within single-

band mean-field theory, we find ¥, = 0 and b} > 0, which
leads to phase E%(e). In the next section, we will see that
additional ferromagnetic fluctuations will further enlarge the
positive value of &, + b, and, consequently, not affect the
mean-field prediction that E3 (e) is the leading triplet state
with the highest transition temperature in the presence of a
magnetic field.

V. FLUCTUATION-INDUCED SUPERCONDUCTIVITY

Among the plethora of possible superconducting phases
outlined in this paper, only a few can be realized in single-
band mean-field theory (see Tables I, II, and IV). This origi-
nates from the fact that, within single-band mean-field theory,
the ratio of the quartic terms is fixed and only one state or
two degenerate states can occur for each IR. However, the
presence of sizable correlations in the nearly flat bands of
graphene moiré systems is expected to give rise to signifi-
cant corrections to mean-field theory. This has recently been
demonstrated for the case of charge-density-wave fluctuations
in twisted bilayer graphene [43], and in the context of nematic
fluctuations in the iron-based superconductors [73]. In this
section, we study how corrections associated with ferromag-
netic fluctuations will split the mean-field degeneracies and,
if sufficiently strong, realize phases distinct from mean-field
theory.

To this end, we will first focus on spin fluctuations. This
is prompted by experiments [51-53], which indicate a spin-
polarized correlated insulating state in twisted double bilayer
graphene, and by the fact that the superconducting phase
emerges when doping out of this polarized state. Likewise,
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we also expect ferromagnetic fluctuations to play an important
role in twisted bilayer [4,61,62] and trilayer graphene [63]. In
particular, in the latter two systems, however, these fluctua-
tions will likely not only be of spin but also of orbital origin.
This is why we will also discuss orbital fluctuations.

As it is known to capture the essential physics [43,73],
we focus in the main text on a phenomenological Ginzburg-
Landau-like approach (that does not explicitly take into ac-
count fluctuations with nonzero momentum and frequen-
cies), but provide a systematic microscopic derivation in
Appendix B1. Representing the ferromagnetic spin moment
in valley v = &+ by m,,, we parametrize its contribution to the
free energy as

1 o . x x
fm=5;(x Dy, - m,, x=<5x X>. 43)

In this expression, ¥ plays the role of the spin susceptibility
(with |§x| < x to ensure stability) and we expect éx > 0
close to a phase where the spin moments in the two valleys are
aligned. The ratio ) /x controls how strongly the SU(2) x
SU(2)_ symmetry is broken down to SU(2);.

A. Trivial representation

Focusing first on the one-dimensional IR A of C3, the mag-
netic moments couple to the superconducting order parameter
in Sec. III according to

Fpa=1c, )y m,-[id* xd —2vRe(d*A")],  (44)
v==%

where we have retained only the couplings invariant under
SU2)+x SU(2)- and assumed that §x # 0 in Eq. (43) is
the main symmetry-breaking perturbation. Upon making the
association My = Zv m,, we notice that c¢; is the same pref-
actor as in Eq. (24). In the same vein as [43], we integrate
out the massive fluctuations of m,. As a consequence of the
coupling (44), this yields corrections to the terms quartic
in the superconducting order parameters in Eq. (20), which
can be conveniently split into two categories. First, there are
corrections that preserve the SU(2);x SU(2)_ symmetry;
these can be restated as renormalizations of the coefficients
b, and b, in Eq. (20). Corrections of the second type break
this symmetry, violating the form of the free-energy expansion
(20). More explicitly, the renormalization of the free energy
F in Eq. (20) due to the presence of ferromagnetic spin
fluctuations can be compactly stated as

F = Flyops, — Ssld* x dI, (45)

where §; = —8 = 2¢3(x —8x) > 0 and 85 = 2c38x. As
required by symmetry, the contribution 3 of the second cate-
gory breaking the SU(2)4 x SU(2)_ symmetry is proportional
tody.

We start with the limit |6 x| < x, where the structure of
Eq. (20) is asymptotically preserved and the form of the two
possible phase diagrams in Fig. 2 is unchanged. Since 8, < O,
strong ferromagnetic fluctuations will change the sign of b,
from its positive mean-field value to negative and, as opposed
to mean-field theory, favor the phase diagram in part (b) of
Fig. 2 over part (a). We point out that naively taking Eq. (45)

alone would render the quartic free-energy expansion unstable
for large enough x. However, denoting the mean-field value of
b, by bg, there exists a regime, bg /2 < c2x < b, for which
by < 0 due to fluctuation corrections and the free energy in
Eq. (20) is stable. For larger values of x, we can imagine
adding the sextic term c(tr[AiA +])3 to the free energy to
restore stability.

When §x is of order yx, the ferromagnetic fluctuations
described by Eq. (43) induce considerable SU(2), x SU(2)_
symmetry-breaking interactions. The presumed sign §x > 0
brings about a further enhancement of the term —|d* x d|?
[as is obvious from Eq. (45)], which favors nonunitary triplet
pairing relative to the SU(2); x SU(2)_ invariant form of the
free energy in Eq. (20). Given that x < x, strong ferromag-
netic fluctuations are still expected to change the sign of b,
relative to mean-field theory. The additional effect of § x lies
in effecting an additional first-order transition to a nonunitary
triplet state in a third transition at lower temperatures for
anti-Hund’s coupling in Fig. 2(b).

We have thus shown that significant ferromagnetic fluctu-
ations can reverse the predictions of mean-field theory, and
favor the nonunitary triplet state A*(1, i, 0) and the admixed
singlet-triplet phase A's 4+ A% (1, 0, 0) in Table 1.

B. Complex representation

The same analysis can be performed for the complex IR E
of Sec. IV. In this case, the most general SU(2), x SU(2)_
invariant coupling between the superconducting order param-
eter and the spin fluctuations allows for two independent
coupling constants, cx € R, and has the form

Fin=>"Y c,um, lid, xd, —2vRed}n,)]. (46)
pn==+v==%

Integrating out m,, we again obtain corrections to the free
energy which are quartic in the superconducting order pa-
rameter. In the limit of SU(2), x SU(2)_ invariance, § x = 0,
these corrections can be represented by renormalizations of
the couplings, b; — b; + §b;, in Eq. (41) with

8by = —8by = x (c% +¢2)/2 > 0,
by = —x (cy —c_)* <0,

8by =0,

8bs = —x cqpc—.

(47)

To study the ramifications of this result, we first consider
the limit of weak fluctuations, for which §b; in Eq. (47) are
much smaller in magnitude than the mean-field value of b,.
Albeit small, the corrections 8b; are crucial here due to the
exact degeneracy of the states £ (b) and E* (d) in mean-field
theory observed earlier. From Eq. (41) with the replacement
b; — b; + &b, we find the free-energy difference of these
two states to be

Fruwwy = Fena) = —5x(cr —c-)’@}d,)* <0, (48)

n R

thereby generically favoring E*(b) along with its Hund’s
partner E'5(0, i) + E* (a), defined in Table II; in other words,
the phase diagram in Fig. 5(b) is favored over that in part (a).
In the one-band description of Appendix B2, it always holds
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that c; = c_, which is, in turn, a consequence of an emergent
valley-exchange symmetry. However, multiband effects are
expected to be present [8] and to lead to nonzero |cy — c—| K
|c4+|, which is enough to lift the degeneracy according to
Eq. (48).

Next, we turn to the limit of strong ferromagnetic fluctu-
ations, where the mean-field values of b; have to be treated
as perturbations to the large 8b; in Eq. (47). As x — oo,
we find that, out of the triplet states in Table II, E(e) has
the lowest energy unless ¢, = c_ or c; = —c_. We know
that ¢, =~ c_ and, hence, can safely neglect the latter. For the
former option, E*(e) is found to be degenerate with E3 (c);
however, for large but finite y, the additional contribution
to b; from mean-field theory lifts this degeneracy, always
selecting E(e). Out of the multitude of possible pairing
states in Table II, strong ferromagnetic fluctuations thus favor
the chiral nonunitary triplet state E (e) and the mixed singlet-
triplet phase E I+(1, i) + E3(d). Which of these two states is
realized depends on whether singlet or triplet has the higher
transition temperature (the sign of éa).

C. Orbital fluctuations

Anticipating its relevance for twisted bilayer and tri-
layer graphene, here, we extend the previous analysis to
the case of orbital ferromagnetic fluctuations. Due to the
two-dimensional nature of the system, the in-plane orbital
moments, My = (M)‘,Mé), and the out-of-plane moment
Mg, behave quite differently. Beginning with the complex
representation, we already know from Sec. IV C that there is
no linear coupling to M; however, the superconductor can
couple to M}, as

Fiin=ct Y uMy(n,* +d}d,). (49)
n==+

For concreteness, one might think of M{, as valley fluctua-

tions, associated with ), cz 7,¢;, but our analysis is more gen-
eral. Taking an energetic contribution quadratic in M, similar
to Eq. (43) and integrating over M?, we obtain a correction to
the free energy that can be conveniently expressed as

by — by —68b, bz — b3+45b, b>0, (50)

in Eq. (41). It is easily seen that taking this as a small correc-
tion to mean-field theory will now favor the phase diagram in
Fig. 5(a) over that in part (b). On the other hand, in the limit
of strong orbital fluctuations, the chiral unitary, E 3(d), and
the chiral nonunitary triplet, E* (e), (along with their Hund’s
partners) will be favored. This degeneracy will be lifted by the
subleading ferromagnetic spin fluctuations, which favor the
latter state, E (e) (and its Hund’s partner), as readily follows
from Eq. (47). In the trivial representation, orbital fluctuations
have no impact on which of the two possible phase diagrams
in Fig. 2 is realized. This results from the fact that neither M
(see Sec. IIIC) nor M}, can couple linearly to the supercon-
ducting states and their rotational invariant quadratic forms
(M5, )> and M 20 can only couple to |A*|?> 4 dd. Consequently,
the energetic correction obtained by integrating out the orbital
fluctuations will also only depend via |A%|> +d d on the
superconducting states and, as such, not affect the value of
b, in Eq. (20) and Fig. 2.

D. In a magnetic field

Finally, we come back to the impact of fluctuation correc-
tions on the leading triplet phase in the presence of a magnetic
field. As we have seen in Sec. IV C, the superconducting
state with the highest transition temperature in the presence
of a sufficiently strong magnetic field will be a triplet phase
due to the linear coupling in the second line of Eq. (42).
At the mean-field level, b, + b > 0, which prefers E*(e)
over E%(c) as the order parameter of this phase. Using the
relations in Eq. (C6), it is straightforward to rephrase the
fluctuation corrections (47) and (50) of b; in terms of &, —
b, + &b, in Eq. (38). This yields 8by + 8by = x(cy —c_)* >
0 and 8% + §b, = 48b > 0 for spin and orbital fluctuations,
respectively. We conclude that, as expected, ferromagnetic
fluctuations do not change the mean-field prediction in this
case and E*(e) is the dominant triplet order parameter in
the presence of a magnetic field, for both strong and weak
ferromagnetic fluctuations, and in their absence.

VI. ADDING FURTHER SYMMETRIES

In this section, we will analyze how the results presented
above are modified once the additional symmetries, twofold
rotation, C,, perpendicular to the plane of the system, and
in-plane rotation symmetry, C,,, are added. As shown in
Figs. 1(b) and 1(c), these symmetries are relevant as ei-
ther exact microscopic or approximate emergent symmetries
of twisted bilayer graphene and ABC trilayer graphene on
hexagonal boron nitride, both of which exhibit superconduc-
tivity [2,48].

A. Consequences of a C, rotation symmetry

One crucial difference in twisted bilayer compared to
twisted double bilayer graphene is that the former has an
approximate C, symmetry [15] that mixes the two valleys, i.e.,
the system is (approximately) invariant under

G — 1.0 . D

To relate to our notation used above, we assume that it is
sufficient to focus on a single band for describing supercon-
ductivity in twisted bilayer graphene as well. This is quite a
natural assumption and, unless stated otherwise, we expect
our conclusions to hold when additional bands are taken into
consideration.

This (approximate) symmetry has attracted a lot of at-
tention in the recent theory literature [13,14,17,22] of the
system since it, combined with time reversal and C;, leads
to a C4® symmetry, which is responsible for not only the
presence of (nearly gapless) Dirac cones at K and K’ but
also the (approximate) vanishing of Berry curvature in twisted
bilayer graphene. If the twist axis goes through the center
of a hexagon, the system has Cg rotation even as a micro-
scopic symmetry. We note in passing that the (nearly) flat
bands obtained in [57,58] for double bilayer graphene do not
feature any Dirac cones but have well-separated conduction
and valence bands that are characterized by nonzero Chern
numbers (at least in some parameter regime); this strongly
indicates that C, is not an approximate symmetry in twisted
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double bilayer graphene since C,® would enforce zero Berry
curvature.

In a similar fashion, [50] has argued that the twofold
symmetry (51) is also an approximate symmetry for ABC
trilayer graphene on hexagonal boron nitride, although it is
clearly not a microscopic symmetry of the system, as can be
seen in Fig. 1(c).

All things considered, it is currently not known whether an
approximate C, symmetry is relevant for superconductivity in
twisted bilayer and ABC trilayer graphene. Therefore, we will
now discuss what changes for the possible superconducting
instabilities once we assume that the Hamiltonian is also
invariant under the transformation in Eq. (51).

The C, transformation plays a special role in two dimen-
sions as it is equivalent to k — —k and can, thus, significantly
affect superconducting instabilities [78]. In graphene moiré
superlattices, it also relates the two valleys and “interferes”
with the Fermi-Dirac constraint (10): decomposing the pairing
into singlet and triplet,

My, = 25,00A° + Aby0 - d, (52)

Eq. (10) implies that A;, = A*,, and A, = —A",.. Con-
sequently, it holds (as long as the pairing matrix elements
between different bands can be neglected) that

Gy (A%, d) — (A, —d), (53)

i.e., all representations even (odd) in C, must be pure singlet
(triplet) states and vice versa. This has a few implications
worth mentioning. First, even if C; is not a good symmetry
(say, it is significantly broken by interactions), SU(2), spin-
rotation invariance requires that the first transition must be
into a pure singlet or triplet state and, hence, the pairing
must be either even or odd under C,. In this sense, we
can still distinguish between p-wave and d-wave pairing
despite the presence of C, symmetry-breaking interactions.
We emphasize that mixing will only be possible via multiple
superconducting transitions (associated with admixtures of
singlet and triplet) or interband pairing. The latter is expected
to be quite weak given that the typical splitting between the
bands at half filling (at least a few meV [5]) is about or more
than an order of magnitude larger than the superconducting
critical temperature (~0.15 meV according to [2]).

Secondly, if we do have an enhanced SU(2), x SU(2)_
symmetry (or are close to it), singlet and triplet are (nearly)
degenerate. This forces the corresponding IRs of the spatial
point group Dg of the system, which behave identically under
the subgroup D3 but are even and odd under C,, to be
(nearly) degenerate at the quadratic level of the Ginzburg-
Landau expansion. For instance, A; and B; of D¢ have to be
degenerate, as summarized in Table III. Without a Zeeman
field, an extra C, symmetry with action in Eq. (53) also has
no consequences for the higher-order terms in the free energy
since spin-rotation invariance necessitates that all of these
terms are even in the triplet vector. The only difference arises
in the presence of a Zeeman field or magnetic fluctuations:
with C, symmetry, it must hold that §c; =0 in Eq. (24)
and BCf =0 in Eq. (42) even when the SU(2); x SU(2)_
symmetry is broken. Furthermore, a C, symmetry implies
cy = c_ in Eq. (46). For this reason, weak ferromagnetic
spin fluctuations do not lift the degeneracy of mean-field

TABLE III. Character table of the point group D; together with
the corresponding basis functions and IRs of D¢ for singlet/triplet
pairing.

E 2C; 3Gy, Basis functions IRs of Dg
A 1 1 1 X2 4y /y(3x* — y?) A1/B;
A 1 -1 z/x(x* = 3y%) A3/B;
E 2 -1 0 Qry,x?—y)/(x,y) Ey/E

theory if we impose an exact C, symmetry and other types
of fluctuations have to be considered. Recall, however, in both
trilayer and twisted bilayer graphene, C, should only be con-
sidered as an approximate symmetry and terms breaking this
symmetry will lead to c; # c_, thus lifting the degeneracy of
mean-field theory by, e.g., favoring Fig. 5(b) over Fig. 5(a).
Note that the C, symmetry also forces 5 in Eq. (49) to vanish
for MF, corresponding to valley fluctuations. As such, the
approximate C, symmetry does not specify whether spin or
valley fluctuations are expected to be the dominant source of
lifting the mean-field degeneracy. It only indicates that strong
ferromagnetic fluctuations are most likely dominated by spin
fluctuations.

In summary, when classifying superconducting states in
twisted bilayer graphene or ABC trilayer graphene on hexag-
onal boron nitride in the absence of a Zeeman field, it is
unimportant whether an approximate C, symmetry is relevant
or not: singlet and triplet will always be even and odd under
it. We can thus work with D5 (instead of Dg) without loss of
generality in the following. The only difference with twisted
double bilayer graphene (with finite displacement field) is an
extra twofold rotation symmetry, C,,, along the y axes [see
Figs. 1(b) and 1(c)]. Its action on the electronic operators
reads as

G, :

v

T, Copkes (54)
where Coyk = (—ky, k). The upshot of this additional symme-
try for the possible superconducting instabilities is clarified in
the next subsection.

B. D; versus C;

Due to the additional C,, symmetry, D3 is a non-Abelian
group and has three IRs—two one-dimensional and one two-
dimensional representations (refer to the character table in
Table III). It is convenient to begin with the one-dimensional
IRs A and A, and take J # 0. Since C,, interchanges the
valleys, its action on the intervalley pairing order parameter
(52) can be written as

C2y : ()‘Iscv’ )‘;cv) - ()“S—ngkv’ _)“t—Czykv)' (35)

So, we see that a singlet (triplet) state transforming under
A1 (Az) has no nodes while a singlet (triplet) in the A, (A})
channel has symmetry-imposed nodes on the line k, = 0 and
along the directions rotated by £ /3. This creates six nodal
points on any surface enclosing the I" point.

We can also readily understand from Eq. (55) how the
one-dimensional representations “connect” at the SU(2); x
SU(2)_ point: at the high-symmetry point, A}, = A}, ergo A}S
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TABLE IV. Summary of the different intervalley pairing states classified by the IRs of the point group Ds. The notation closely parallels
that of Table II. Here, we use )»,‘c and )»,zc to denot_e conyinuous functions on the Brillouin zone that are even and odd under (ky, k,) — (k., —k,),
respectively, and are both invariant under Cs, Aj = Aé} & Furthermore, X and ¥;? are rotated basis functions defined in Eq. (56); for instance,

a possible choice for twisted bilayer graphene with Brillouin zone in Fig. 1(b) is given by (Xi, )" = Riz1¢)2(X, 0 Yk“))T with Xk(l), Yk“) in
Eq. (30a). To keep the notation short, each line with reference to ¢; or ¢, corresponds to two distinct states with ¢; = 0, 7 /3 and ¢, = 0, 7 /2.
The indicated number of nodal points refers to a Fermi surface enclosing the I" point.

Pairing Mg, Nodes around I' Hund’s partner MF/FM
Ap 100 None A3(1,0,0) IV
Ab 2200 Six points A3 (1,0,0) IV
A¥(1,0,0) Ao, Six points Ay VX
A3(1,0,0) A0 None Ap v /X
AP (1,,0) A (o, + ioy) | gapless/six points A +A%(1,0,0) XV
AY(1,i,0) M (o +ioy) | gapless/none Al +A3(1,0,0) X/
Al +A2(1,0,0) M (00 + (0, + i0y)) None AY(1,i,0) XV
Ay +A3(1,0,0) Ae(oo + n(oy + iay)) Six points AP (1,i,0) X/
E'(1,0),, X' oo Two points E*(a), X/
E(1,10) X2+ Yoo Zero E*(d) VIV
E3(a),, X! oy Two points E'(1,0),, X/X
E3(b) X0, + Yo, Zero (E'(0,0) 4+ E*(a))y, v /X
E3(c),, X7 (oy + ioy) | gapless/two points  (E's(1,0) + E*(a)),, X/
E*(d) X0 +iY)o, Zero E(1,i) v /X
E3(e) (X,? + iYkO)(O'x + ioy) | gapless/zero ES(1,i) + E»(d) X/
E*(f)y, X +i¥P)o, + (X —iYP)o, Two points (E's(1, —i) + E*()),, X/X
E*(g) a(X +iY0) (o, +io,) + bXY — iY0)o, Zero X/X
E*(h),, alXY + Yo+ (X —iY)o,] + by o, Zero X/X
(E'(0, 1)+ E*(a)),, iY oo + Xl o, Zero E*(b) v /X
(E'5(1,0) + E*(a)),, X7 (00 + 107) Two points E*(c),, XV
ELS(1, i)+ E>(d) X2 +iY2) (oo + noy) Zero E%(e) X/
(EB(1, —i) + E*(d)),, X2 +iY)oo + n(X? — Yo, Two points E3(f)y, X/X
E*(g)+ E'(1, —i) a(X{ +i¥) (o, + i) + (X — i Y)(bo: + 10y) Zero EN(L,—i)+E*(@9)  X/X
(EX(1,0)+E>(),,  al(X)+ ¥ o + (X¢'— i¥ o, ] + bY 0. + nX{" 0y Zero (E¥(h)+E"(1,0)),  X/X

and Agf or A;S and A?S must meet at the J = 0 line in Fig. 2.
We summarize these observations in Table IV.

In addition, for the case of the two-dimensional representa-
tion E of D3, the C;, symmetry has nontrivial consequences.
Once again, we take J % 0 which permits us to study singlet
and triplet independently. As singlet pairing has already been
analyzed in detail for twisted bilayer graphene (see, e.g.,
[30]), we are chiefly concerned with the triplet states here.
We parametrize the triplet pairing as in Sec. IV A with the
sole distinction being that the basis functions X; and Y3 are
now constrained by the symmetries of D3; we choose them to
obey X_c, x = —Xi and Y_c, x = ¥, while transforming as k,
and k, under Cz. A possible choice is given by Eq. (30) with
¢ = /2 for the Brillouin zone of twisted bilayer graphene in
Fig. 1(b). With these conventions, the triplet vector transforms
according to (d4,d_) — (d_,d ) under C,,. This does not
further constrain the quartic terms in the free energy (38),
wherefore we can use the analysis of Sec. IV A for the point
group Cs, bearing in mind the caveat that the relative phase,
@, between d and d_ cannot be absorbed in a redefinition
of the basis functions Xj and Y; any more due to the extra
Gy, symmetry. While ¢ has no consequences for E*(d) or
E*(e) and can be absorbed by performing a spin rotation for

the phases E* (b) and E* (g), it describes different phases for
all other stable minima of Eq. (38), and we have to go to higher
order in the free-energy expansion to determine its value.

Consider E* (a) for instance. Writingd ; = (1,0, 0)” and
d_ =¢%(1,0,0)7, it is easy to verify that the most general,
¢-dependent sextic term to the free energy must have the
form c; cos(3¢) with ¢; € R. This derives from Eq. (34)
where the C,, symmetry forces ¢, to vanish. We thus find
¢ =2nn/3,ne Z, for c; <0 and ¢ =7m/3 4+ 2nn/3 when
c1 > 0. These two minima correspond to two different states,
which can be compactly represented by defining the “rotated”
basis functions

T ipo,
(X2 Y =RypXi, Yo', Ry =€, (56)

with Xy and ¥ as introduced above. The order parameters are
Miy = X0, and X, 0, = (v/3X + Yi)o,/2 for ¢; < 0 and
c1 > 0, respectively. We denote these two states by E 3 (a)o
and E* (a)%, respectively. The first state, £ 3 (a)o, preserves
Gy, but breaks C3 rotation symmetry, and has a nodal line
which is, as opposed to the states in Sec. IV A, pinned to k, =
0. The other state, E* (a)%, however, breaks C;, and the nodal
line is not pinned to the k, axis.
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The remaining triplet states E*(c), E*(f), and E* (h) of
Sec. IV A can be analyzed in the same way. In all cases,
we find two states corresponding to two different discrete
values of the relative phase ¢ between d and d_: for E(c)
and E*(h), we find ¢ = 0 or /3 as before, whereas E (f)
requires even higher-order terms in the free-energy expansion,
yielding ¢ = 0 or /2. In analogy to E* (a)y, we label the
states by E 3*(c)(/,, E3(f )y, and E 3S(h)w; their order param-
eters are the same as those of the corresponding states in
Sec. IV A but with the rotated basis functions in Eq. (56) using
the respective value of ¢. Taken together, we obtain 12 triplet
states for D3, which are summarized in Table IV, instead of
only eight for the point group Cs.

Finally, we can also ask how the different states behave for
small J, i.e., whether singlet and triplet can mix and which
phases are Hund’s partners. Exactly as illustrated above for
the pure triplet phases, we have to consider higher-order terms
that determine the relative phase between the chiral, u =
+, and antichiral, u = —, basis functions. As this analysis
closely parallels our previous discussions, we just present
the result in Table IV. In total, there are ten symmetry-
inequivalent mixed singlet and triplet phases. Seven of them
are only possible if a < 0 (singlet dominates); the remaining
three can be realized for either sign of §a.

VII. DISCUSSION AND CONCLUSION

In this paper, we have presented a systematic classifica-
tion and analysis of superconducting instabilities in graphene
moiré systems. To this end, we have focused on zero-
momentum Cooper pairs formed out of electrons in dif-
ferent valleys. Intervalley pairing is expected to be the
dominant pairing channel as time reversal relates the two
valleys. We have first analyzed singlet and triplet pair-
ing separately since spin-orbit coupling is expected to be
very weak in graphene. However, theoretical estimates of
the interaction terms of twisted bilayer [13], double bi-
layer [57], and trilayer [50] graphene indicate that these
systems are approximately invariant under independent spin
rotations in the two valleys, leading to an (approximate)
SU2); x SU(2)- symmetry and the (near) degeneracy
of singlet and triplet pairing. For this reason, we have
also classified the pairing instabilities close to this high-
symmetry point, analyzing which triplet state transforms
into which singlet phase upon changing the sign of the
interactions breaking the SU(2); x SU(2)_ symmetry.
We have further derived the conditions under which sin-
glet and triplet can mix despite the absence of spin-orbit
coupling.

As it has the fewest symmetries, we first considered twisted
double bilayer graphene, for which there are also clear experi-
mental indications of triplet pairing [51,52]. Here, a displace-
ment field, which is required to stabilize the superconducting
state, reduces the point group to C;. The pairing states and
their properties associated with the real representation A and
the complex representation E of C3 are summarized in Tables I
and II, respectively.

Being one dimensional and real, A only allows for one sin-
glet, a unitary and a nonunitary triplet phase, and one mixed
phase. The latter is expected to be relevant only if SU(2)4 x

SU(2)_ is weakly broken and the two consecutive transitions
in the schematic phase diagram of Fig. 2(b) are very close.
Using the values of the coupling constants in [57], we estimate
the splitting to be about two orders of magnitude smaller
than the critical temperature and, hence, hard to see exper-
imentally [70]. Whether renormalization-group corrections
could enhance the impact of these weak symmetry-breaking
perturbations at energies of order of the transition temperature
is an open question, which we leave for future work. The gap
structure of the four phases transforming under A is quite
different: while the nonunitary triplet is gapless for one of
the spin species, the singlet and unitary triplet have a single,
fully established gap, and the mixed phase has two finite but
distinct gaps for the two spin species. We have further shown
that single-band mean-field theory will generically favor the
phase diagram in Fig. 2(a) over Fig. 2(b). However, the small
bandwidth and strong-coupling nature inherent in the problem
makes the applicability of mean-field theory questionable and
can lead to significant corrections which might eventually
select other phases. We have illustrated these corrections for
ferromagnetic fluctuations, expected to be relevant for twisted
double bilayer graphene [51-53], twisted bilayer [4,61,62],
and ABC trilayer graphene [63]. We find that the resulting
corrections will, as opposed to mean field, generally favor the
phase diagram in Fig. 2(b) over that in Fig. 2(a).

The complex representation allows for many more states:
two pure singlets, eight triplets, and, if SU(2); x SU(2)_ is
only weakly broken, six distinct mixed phases. As compiled
in Table II, all of these three classes of states allow for nodal
points and fully gapped phases. However, only the triplets can
have nodal lines (residual ungapped Fermi surfaces of one
spin species). Only one out of the two different triplet states
of the IR A allows for an admixture of singlet and triplet for
weak anti-Hund’s coupling but, in contrast, six out of the eight
triplets transforming under E do so.

Out of the possible pairing states in Table II, single-band
mean-field theory favors the two triplet states E(b) and
E*(d) along with their respective Hund’s partners—the ne-
matic mixed phase E's(0, i)+ E(a) and the chiral singlet
E's(1,i). We show the associated phase diagrams in the
vicinity of mean-field theory in Figs. 5(a) and 5(b). We have
discussed how additional weak ferromagnetic spin (orbital)
fluctuations can lift the exact degeneracy of E3 (b) and E> (d),
generically favoring the former (latter) and, hence, the phase
diagram in Fig. 5(b) [Fig. 5(a)]. In the limit of strong ferro-
magnetic fluctuations, we obtain the chiral nonunitary triplet
E3(e) or, for weak anti-Hund’s coupling, the mixed singlet-
triplet state E's(1, i) + E 3s(d) as the dominant instability.

Motivated by the experimentally observed [52] linear in-
crease of the transition temperature with an in-plane magnetic
field in twisted double bilayer graphene and signs of mag-
netism in bilayer and trilayer graphene, we have also mapped
out the possible phase diagrams in the presence of a magnetic
field. As expected, if the SU(2); x SU(2)_ symmetry is
significantly broken, the linear increase is only consistent
with triplet pairing. For pairing in the A channel, there are
two possible phase diagrams, shown in Figs. 3(c) and 3(d),
depending on which triplet state is realized in the absence
of a magnetic field. The magnetic field fully determines the
form of the leading triplet state to be A*(1,i,0) in the A
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channel. For order parameters transforming under E, there are
two possibilities for the leading triplet state, E(c) or E (e),
in a magnetic field; which of the two is realized depends on
the value of the quartic couplings in the free energy. Both
mean-field theory and ferromagnetic fluctuations favor the
E3(e) state. If, however, SU(2); x SU(2)_ is only very
weakly broken, singlet pairing as the dominant instability
of the system is also consistent with the linear increase of
the critical temperature; the two possible phase diagrams for
the case of pairing in the IR A are illustrated in Figs. 3(a)
and 3(b).

We have also derived (within mean-field theory) the key
couplings, ¢, in Eq. (24) and ¢§ in Eq. (42), between the
superconducting order parameter and the magnetic field B
that determine the slope of the increase, AT, of the critical
temperature with magnetic field. We found that they have the
exact same mathematical form; as such, the behavior AT, ~
2upB, with Bohr magneton pp, seen in experiment [52], is
equally surprising for both pairing channels and does not favor
one channel over the other. In both cases, this might either be
accidental or due to quantum critical scaling [57].

We have also studied, in Sec. VI, the changes in the
classification when there is an extra in-plane rotation sym-
metry, C,,, and a twofold rotation, C,, perpendicular to the
plane. These two symmetries are relevant (either as exact or
emergent symmetries) to twisted bilayer graphene and ABC
trilayer graphene. We find that, while the C, symmetry has
no consequences for the classification, C,, not only pins the
nodes of certain pairing states along high-symmetry lines but
also leads to more pairing states as summarized in Table IV.

This paper further illustrates that graphene moiré systems
provide a very rich playground for novel strongly correlated
superconducting phases. We hope that our systematic analysis
of pairing in the absence and presence of magnetic fields will
help future theoretical and experimental studies to pinpoint
the microscopic form of the superconducting state.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under Grant No. DMR-1664842. M.S. also ac-
knowledges support from the German National Academy
of Sciences Leopoldina through grant LPDS 2016-12. We
thank Andrey Chubukov, Eslam Khalaf, Alex Kruchkov, Subir
Sachdev, Harley Scammell, and Ashvin Vishwanath for help-
ful discussions.

APPENDIX A: MICROSCOPIC GINZBURG-LANDAU
EXPANSION

In this Appendix, we derive the prefactors of the various
free-energy expansions in the main text within mean-field the-
ory. Unless stated otherwise, we use a single-band description.

1. Without a magnetic field

We imagine performing a mean-field decomposition in the
Cooper channel and keeping only the singlet and triplet pair-
ing of the dominant IR. The ensuing mean-field Hamiltonian

for the one-band model has the form

— i
MF — Zékvckavckav
k

+ Z Clt(r-&-[(Alsc to- dk)iory]gﬁo'/cik(f,—’ (Al)

k
where &, = £_;_ due to time-reversal symmetry. In Eq. (A1),
we have omitted a constant term, which is quadratic in the su-
perconducting order parameter and does not affect the quartic
terms we derive below. Upon integrating out the fermions in
Eqg. (A1) and expanding the resulting free energy in the super-
conducting order parameter, the Ginzburg-Landau expansion
coefficients can be obtained order by order.

Starting with the one-dimensional real IR A of C;, we
write A} = AL A, dy = ALd, where X} and A} are momentum-
dependent basis functions that are invariant under Cs. Using
the generalization of Eq. (20) to parametrize the free energy,

F ~aT)(|A°] +d'd) + sa(|A°) —d'd) + | A’

+1d'd)’ + psld* < d’ + p|A°Pd'd
+ysRe[(A*)’d"d"], (A2)

which allows us to account for a nonzero J making singlet and
triplet nonequivalent, we find
AL,

n=F[xl
1121552 )2 (355)?
va=4F[|M[ [l ] v =2F[() ()]

To keep the expressions compact, we have defined the func-

V2=V = (A3)

(A4)

tional
d’k
Flfi : TZ / : . (A5)
(27[) wy, + %-kJr)
When J = 0, we have A} = )L;( and, hence, obtain
i=v2=yv3=v4/4=y5/2>0, (A6)

which is compatible with the prefactors in Eq. (20) as required
from the SU(2); x SU(2)_ symmetry. On top, y; = y3 is an
additional constraint arising from the mean-field approxima-
tion (and not related to an exact symmetry). In terms of the
prefactors in Eq. (20), it sets b; = 0, as stated in the main text.
The positive sign of the coefficients in Eq. (A6) implies that
mean-field theory always favors part (a) in the phase diagram
in Fig. 2.

Similarly, we can study the complex representation of
C; introduced in Sec. IV of the main text. Using the
representation in Eq. (29) for the singlet pairing, A} =
> o M (X + i Ye), it is straightforward to show that

F[x2 +12)°] >0

for the coefficients b}, in Eq. (32). Being positive, these

coefficients favor the chiral superconductor £ (1, 1) as was
observed earlier as well [43,44].

Finally, repeating this procedure for the triplet state with
parametrization (36), dy = ZM d, (X +inYy), the coeffi-
cients in Eq. (38) evaluate to

b, = /2 = —by/2 = =205 = 2 F[(X2 + ¥2)’] > 0,
b, = 0. (A%)

b =b5)2 = (A7)
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The triplet states E3(b) and E3(d) will have the lowest
energy for this configuration of quartic coefficients as argued
in the main text. The degeneracy between these two states is
lifted by corrections beyond the mean-field approximation,
such as the ferromagnetic fluctuations of Sec. V. In the
presence of a magnetic field, Eq. (A8) uniquely determines
the chiral nonunitary triplet E(e) as the leading instability
(see Sec. IVC).

2. Coupling to a magnetic field

In this subsection, we will analyze several important cou-
pling terms between the superconductor and the magnetic
field from a weak-coupling perspective. The microscopic form
of the coupling to the Zeeman, Mz, and in-plane orbital field,
M, reads as

— i +
HB - chavaac’cka’v ’ MZ + ng(k)ckavckav ’ MO’
k k

(A9)

where we have absorbed the g factor of the Zeeman coupling
into the definition of M. This is not possible for the orbital
coupling, as its g factor g, (k) depends significantly on mo-
mentum. The form of g,(k) is determined by microscopic
details such as the Bloch states. All we need here is that
g,(k) = —g;(—k), as follows from time-reversal symmetry
(5), and we refer to [57] for a microscopic derivation of its
momentum dependence.

Let us first note that even when the actual interacting
multiband system is not invariant under C, the single-band
mean-field Hamiltonian, Hyg + Hp, is left invariant under the
action of C; in Eq. (51) if we further setd, — —dj in Eq. (A1)
and My — —M . This emergent symmetry is a consequence
of the special role of C; in two dimensions as it acts on k in the
same manner as time reversal and, as such, can have crucial
consequences for superconducting pairing [78].

In the present case, this symmetry implies that the coupling
terms §c; in Eq. (24) and 8c§ and ¢ in Eq. (42) will
vanish within single-band mean-field theory as is also readily
confirmed by explicit calculation; we emphasize, however,
that this is not an exact statement and we have checked that
a multiband mean-field description allows for nonzero values.
Nonetheless, we view the vanishing of these coupling in the
weak-coupling single-band limit as an indication that they are
likely small in the system.

Finally, the couplings of the Zeeman term to the triplet
vector in Eqgs. (24) and (42) are also not constrained by the
emergent C, symmetry. We find these to be nonzero and given
by

¢, = 4 F[ [1[].

o3 = —4 &, (X + %)),

(A10a)

(A10b)

respectively. Our main observation here is that the forms of
¢, and % are identical: the nonuniversal part is a momentum
integral which, in both cases, is weighted by a function that
is invariant under C; and has no symmetry-imposed nodes on
the Fermi surface. Accordingly, it is not possible to distinguish

between the IRs A and E based on the slope of the increase of
T* in small magnetic fields.

APPENDIX B: FLUCTUATION CORRECTIONS
TO MEAN FIELD

In this Appendix, we provide further details on Sec. V.

1. Microscopic derivation

In this first part, we will derive, from a microscopic
description of the system, that the prediction of the phe-
nomenological approach of the main text provides the leading
correction to the free energy of the superconductor in the limit
where the mass of the fluctuations approaches zero.

To this end, we will use the field-theoretical formalism and
describe the system by the action

S=8+S8n+Sp+ Sy, (B1)
which consists of several contributions. First,
&=/¢¢mﬁ@mm (B2)
k

is the free-electron contribution (with Grassmann fields ¢
and ¢, in analogy to the operators in the main text), where
Jo---=TY, ... with fermionic Matsubara frequen-
cies w, =T (2n+ 1), and k = (k, w,) comprising momen-
tum and frequency. The second term,

SCA = ‘/];CZU-&-[(A/\; +o- dk)ia)’]a,a’cikn/—’

describes pairing, similar to the second line of Eq. (Al),
where we omitted the term proportional to the order parameter
squared, since it is irrelevant for the free-energy contribution
at quartic order in the superconducting state. The ferromag-
netic fluctuations in valley v with associated bosonic fields
b = (9, o (8 )T are described by the action

(B3)

&=%L%M¢Wm1@mu (B4)
where g = (q, €2,,) is the bosonic analog of k, i.e., 2, =27 Tn
are bosonic Matsubara frequencies. Physically, j(q, i2,)
plays the role of the (analytic continuation of the) dynamical
spin susceptibility [as compared to the static one in Eq. (43) of
the main text]. We will focus here on the SU(2); x SU(2)_
symmetric limit, where [%(g)]lyy = 8v.vx(g), and take the
conventional Ornstein-Zernike form
X%
Q2+ (vg)? +m?’
with velocity v and mass m (related to the correlation length,
&, as £ = v/m). Finally, the spin fluctuations couple to the
electrons as described by the last contribution,

_ T
Sep = g//ckwa{m,ckw(,,v Py
kJq

with a coupling constant g that, of course, can be absorbed
into xo (or vice versa), but we will keep g explicit here.

We follow [43] and focus on the leading-order correction
of the coupling g (second order, o g°) to the free energy,

x(q,i2,) = (B5)

(B6)
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FIG. 6. Diagrammatic representation of the four different types
of fluctuation corrections quartic in the superconducting order pa-
rameter (schematically represented by dashed lines and A, A*) to
leading order in g in Eq. (B6). The solid black lines with arrows are
the bare electronic Green’s functions, associated with S, and the
wavy lines denote the bosonic propagator defined in Eq. (BS). The
diagram in (a) reproduces the contribution of the “phenomenological
approach” of the main text, whereas the remaining diagrams in
(b)—(d) are subleading in the limit m — O.

F[Ak, dy], but emphasize that our expressions will differ
from those of [43] as we consider a different type of fluctua-
tions (centered around zero rather than finite momenta). These
corrections are derived systematically by first integrating out
the fermions, expanding the action to quadratic order in the
bosonic fields ¢,,, which is sufficient to quadratic order in g,
and integrating out the massive bosons.

We are interested in terms quartic in the superconducting
order parameter, leaving us with the four distinct types of
contributions in leading order in g which are represented
diagrammatically in Fig. 6. As indicated, the first diagram,
in Fig. 6(a), only involves the zero-momentum and zero-
frequency, ¢ = 0, fluctuations and it exactly captures the
contributions of the simplified approach discussed in Sec. V
of the main text.

The remaining diagrams—the self-energy in Fig. 6(b), the
ladder in Fig. 6(c), and the vertex correction in Fig. 6(d)
to the mean-field box diagram—are fundamentally different:
the loop integrals involve integration over finite frequency
and momentum of the bosonic fluctuations. As such, it is
intuitively clear that they are less singular in the limit m — 0
than the first diagram in Fig. 6(a), which is proportional to
x(g=0,iQ,=0)= m~2. In fact, these additional contribu-
tions can be shown to diverge with log(m) for small m. To
illustrate this, let us consider the diagram in Fig. 6(b), which
is proportional to

o[ [ fk)
b kJq Q% + (U‘I)z + m2 l(a)n + Qn)

, (B7
_Ek+q,+ ( )

where we introduced the function

iw, + &yt
(@2 +82,)°

that only depends on the fermionic momenta and frequencies.
Here, A; represent the basis functions of the involved super-
conducting order parameters. In the following, we will cut off
the g integral by A /v and expand &;14 ~ & + v - g, allowing

Jo(k) = (B8)

7 ()" () 2k

us to write
Xo/v?
d EdE——————
/ Z/ (p/ Q2+ E2 + m?
k
« - fo(k) _ ’ (B9)
l(a)n + Qn) - §k+ + UkE Cos @

with the dimensionless velocity ratio ¥y := |vg|/v. Since

|w,| = wT and we work at finite temperature (given by the
critical temperature of superconductivity), the term in the
second line of Eq. (BY) is finite in the limit £ — 0. The inte-
gral, thus, diverges as log(m) at small E (infrared), as stated
above. The other two diagrams in Figs. 6(c) and 6(d) can be
analyzed in the same way and are also found to be subdomi-
nant as m — 0 compared to the one in Fig. 6(a). This justifies
the approach of Sec. V microscopically.

2. Enhanced symmetry in the one-band description

In the last part of this Appendix, we discuss why ¢, >~ c_
in Eq. (46) is expected. From the previous subsection of
this Appendix, we know that the results of the main text on
fluctuation-induced superconductivity are captured by zero-
momentum and zero-frequency fluctuations. Writing m, :=
®,—0, in Eq. (B6) and generalizing to a momentum- and
valley-dependent coupling constant, we here consider

Hm = Z g];’(k)cliavamr’ckgv -my, (BIO)
kv

where g7'(k) = g7(—k) as a consequence of time-reversal
symmetry and we have, as before, assumed that we can focus
on a single isolated electronic band. It is easy to see that
Hwmr + H,m, with Hyr in Eq. (A1), is again invariant under
the C, symmetry in Eq. (51) if we further replace

d, - —d,, m, > my. (B11)
While Eq. (44) is automatically invariant under Eq. (B11), the
coupling for the two-dimensional representation in Eq. (46)
is invariant only if c; = c_. Consequently, multiband effects
are required for nonzero c; — c_, wherefore we expect its
value to be much smaller than ¢, + c_, as stated in the main
text. We also checked by explicit calculation that ¢ # c_
possible in a multiband description.

APPENDIX C: DETAILS FOR THE COMPLEX
REPRESENTATION

In this Appendix, we present additional details of the dif-
ferent phases transforming under the complex representation
E of C3.
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FIG. 7. Phase diagram for the free energy in Eq. (38). The different triplet states labeled (a) to (h) are defined in the main text in Sec. IV A.

As a starting point, it is helpful to chart out a phase diagram
describing which of the triplet phases E*(a) to E%(h) is
realized as a function of the quartic terms 4! , ; 4 5 in Eq. (38).
Upon recognizing that b} does not affect the form of the order
parameter (but is assumed to be chosen so as to guarantee the
stability of the expansion), we can conveniently display the
phases as a function of b; /151, j = 3, 4,5, discussing the two
possible signs of , separately. Such a phase diagram is drawn
in Fig. 7.

AF, = |tr[ayA+ayAZ]|2,

As the main text contends, there are no independent terms
involving o, to add to the SU(2); x SU(2)_ invariant form
of the free energy in Eq. (41). To see this, we note that
it suffices to consider terms involving both A, and A_
since terms with only A, (or A_) have already been ad-
dressed in Sec. III A. Among the terms that mix A and
A_, the following are consistent with time-reversal and C;
symmetry:

AF, = u[A o, AT A" o AT+ u[AT o, A% AT o A ],

AF; = tu[A o, AT Ao, AT+ u[AT o, A% AT o AL

However, all of these terms can be reformulated as

AF = [ AT A Ju[AT AT+ [efAL AP — AT AL AT AT+ ufA_AT A ALD,
AF, =2u[AL A Ju[AT A — (AT AL AT A T+ u[A_AT AL AT,

AF; =2/u[ALA_T? — (u[AT AL AT A T+ ula_AT AL ALY,

so they do not constitute independent terms to add to Eq. (41).

%

(CH

-0y

(€2
(C3)

(o))

In concluding this Appendix, we present the explicit form of the free energy (41) in terms of singlet and triplet components.
Inserting Ay, = 0pAj, + 0 -d,, p == in Eq. (41) and adding SU(2); x SU(2)- symmetry breaking only at the level of the
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quadratic terms, one arrives at
2 2
Fr~al)y (|A;]2 +deM) +day. (]A;}Z - deﬂ) + B (Z |A;]2> + Bl A% PIAY P + Bs (Zdzdu>
" u u Iz

+ Bu(dd )d d_) + psldd_IP + Boldd_IP+ Y |djd, |+ sy | A dld,
"

12

+ B0 Y |AL[dLd, + roRe[A% A dTd ] + priRe [Z (Afj)zdﬁdﬂ:| + BroRe[(A% A% y'd'd_], (C5)
Iz I
where i = — for © = + and vice versa. Due to the fewer number of independent parameters in Eq. (41), there are many relations
between the different coefficients By, ..., 812, namely,
Bi=bi+by, Pr=b3+bs+2bs—by), Bz=0b1+2by, Ps=0bs+2bs—4b,
Bs =bs+2bs, Po=—2bs, P7=—by, Ps=2b1+2b),
By =2(by +bs) + b3, Pio=2bs+4bs, Pi1 =2by, P12 =4bs. (C6)

It is not difficult to observe that the five different purely triplet quartic terms, 8;—3 45,7, are all independent. Consequently, we

can parametrize all 12 8; in terms of the five purely triplet terms and realize all of the triplet states of Sec. IV A.
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