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Generic phase diagram of spin relaxation in solids and the Loschmidt echo
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The spin relaxation time in solids is determined by several competing energy scales and processes, and distinct
methods are called for to analyze the various regimes. We present a stochastic model for the spin dynamics in
solids which is equivalent to solving the spin Boltzmann equation and takes the relevant processes into account
on an equal footing. The calculations reveal yet unknown parts of the spin-relaxation phase diagram, where
strong reversible spin dephasing occurs in addition to spin relaxation. Spin-relaxation times are obtained for
this regime by introducing the numerical Loschmidt echo. This allows us to construct a generic approximate
formula for the spin-relaxation time, τs, for the entire phase diagram, involving the quasiparticle scattering rate,
�, spin-orbit coupling strength, L, and a magnetic term, �Z due to the Zeeman effect. The generic expression
reads as h̄/τs ≈ �L2/(�2 + L2 + �2

Z).
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I. INTRODUCTION

The emerging field of spintronics [1,2] envisions to employ
the electron spin as an information carrier instead of the usual
charge degree of freedom, thus allowing for more efficient and
high-performance future informatics devices. This potential
leads to renewed efforts for both the theoretical understand-
ing of spintronics relevant phenomena [2,3] and also the
exploration of novel materials for this purpose. In particular,
two-dimensional materials, such as graphene [4], appear to be
excellent spintronics candidates [5–7].

Whether a material can be successfully employed in spin-
tronics is decided by the magnitude of the so-called spin-
relaxation time, τs, and the related spin-diffusion length, δs.
These are the analogous quantities to the charge-carrier life-
time and carrier diffusion length in semiconductors. There
is an overall consensus that spin relaxation is dominated
by spin-orbit coupling (SOC) effects [2,3]. The Elliott-Yafet
[8,9] and Dyakonov-Perel (DP) [10,11] theories explain spin
relaxation in metals and semiconductors with and without
inversion symmetry (e.g., GaAs), respectively. Although these
two descriptions are formulated differently, these were re-
cently brought to a common mathematical basis [12].
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Modern advances in the description of spin relaxation aim
at accurately determining τs with first-principles methods in-
cluding the details of the crystal, band structure, and electron-
phonon coupling [13–17]. However, it turned out recently
that conventional spin-relaxation theories require refinement
[12,18,19], which also affects the first-principles descriptions.
A representative example is the case of graphite, where first-
principles prediction gives a temperature dependence of τs

that is opposite to the experimentally observed one [15].
Spin-relaxation time (and the corresponding spin-

relaxation rate, �s = h̄/τs) is strongly influenced by the
momentum scattering time, τ (or the strength of quasiparticle
scattering, � = h̄/τ ), by the magnitude of an external
magnetic field and by the spin-orbit coupling. The magnetic
field induced Zeeman splitting is characterized by �Z and
the SOC strength is characterized by its Fermi surface
averaged effective matrix element, L, but it can be associated
with a built-in, SOC-related magnetic field. The different
spin-relaxation regimes are summarized in Fig. 1 along with
the corresponding band structure.

The DP regime is highlighted in the figure, which oc-
curs when � � (L,�Z). This is the historically best known
[10,11] and experimentally most intensively studied regime
in zinc-blende-type semiconductors [20,21]. The large mag-
netic field limit �Z � (�, L) was studied experimentally in
Ref. [20] and described theoretically in Refs. [18,22,23].
Finally, the large L regime was qualitatively described in
Ref. [2] to give rise to a strongly nonexponential spin decay
or dephasing. This latter regime was experimentally observed
in high-mobility GaAs [24,25].

The decay of spin coherence can be due to irreversible and
reversible processes. The former involves a memory loss and
an entropy increase, whereas the latter does not involve a full
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FIG. 1. (a) Phase diagram of spin relaxation for materials with-
out inversion symmetry. The DP [10,11] regime is indicated by a
shaded box in the bottom left corner. The other known result for the
�–�Z line (Ref. [18]) is also given. The large L regime leads to a
nonexponentially dephasing regime [2,19], which is tackled herein.
(b) Energy level schemes for the different relaxation regimes; the
gaps, spin degeneracy, and the quasiparticle spectral function are
indicated. Vertical and tilted arrows depict spin and SOC eigenstates,
respectively.

memory loss. The concept of the Loschmidt echo [26] was in-
troduced for such situations in a famous Gedankenexperiment
to allow separation of the two effects. In practice, the most
successful realization of the Loschmidt echo is the spin echo
[27].

The presence of reversible dephasing smears the irre-
versible effects and the determination of the spin-relaxation
time. This motivated us to develop a numerical approach to the
dynamics of spins of noninteracting electrons, which includes
momentum scattering and spin precession under the action of
an external and the SOC-related magnetic fields. The method
provides the quantum trajectories [28–30] for individual spins
and is shown to be equivalent to the exact solution of the spin
Boltzmann equation. Spin-relaxation time can be obtained
even in the presence of strong reversible dephasing with the
introduction of a numerical Loschmidt echo. This allowed us
to construct the full phase diagram of (�, L,�Z) and we find
that a generic formula

�s ≈ �
L2

�2 + L2 + �2
Z

(1)

fits well the data for the entire phase diagram.

II. RESULTS AND DISCUSSION

The stochastic model

We consider the time evolution of electrons in the presence
of spin-orbit coupling and scattering on impurities, the two
basic ingredients for spin relaxation. The total Hamiltonian
reads as

H = H0 + Himp + HSOC + HZ. (2)

Here, the kinetic energy (H0) and impurity potential (Himp)
leave the spin intact, and the latter is responsible for the
finite lifetime of electrons. The spin-orbit coupling term,
HSOC = ∑

k b(k) · σ, and the Zeeman term, HZ, due to an
external magnetic field, involve the electron spin, and the
explicit structure of b(k) is determined by the actual spin-orbit

FIG. 2. (a) Quantum trajectories of three individual spins on
the Bloch sphere (dotted curves are trajectories on its back). All
spins are polarized at t = 0 to sz = 1, and they evolve under the
action of the external and SOC magnetic field. Elapsed time between
two momentum scatterings follows a Poisson distribution with an
expectation value of τ . (b) Time evolution of the s component for
individual spins and the dashed curve is the ensemble-averaged time
evolution of sz.

coupling process. Fabian et al. (Ref. [31]) showed that a
proper description of spin dynamics can be obtained by
treating the electron spin quantum mechanically and the
electron momentum quasiclassically. The Liouville–von Neu-
mann equation leads, for the above Hamiltonian, to the so-
called spin Boltzmann equation [31]:

∂ρk

∂t
− 1

ih̄
[HSOC + HZ, ρk] =

∑
k′

Wkk′ (ρk′ − ρk), (3)

where ρk is the 2 × 2 spin density matrix, which describes
the spin of an electron with wave number k. The second term
on the left side gives spin evolution under the action of the
spin-orbit coupling and Zeeman terms. Wkk′ is the k → k′
scattering probability per unit time due to impurity potential
which obeys the detailed balance. The spin expectation value,
sk = Tr[ρkσ], satisfies

∂sk

∂t
= �(k) × sk +

∑
k′

Wkk′ (sk′ − sk). (4)

Here, we introduced the �(k) Larmor (angular) frequency,
given by HSOC + HZ = h̄

2 �(k)σ, which reflects that the elec-
tron spins precess under the action of the external and SOC-
related, built-in magnetic fields. In principle, the numerical
solution of Eq. (4) could provide the full spin dynamics
for various values of the momentum scattering rate, external
magnetic field, and SOC strength.

Our stochastic or Monte Carlo (MC) model considers a
spin ensemble with different k’s where all spins are initially
polarized along the z axis on the Bloch sphere. The spins
evolve independently and they undergo Larmor precession
between two momentum scattering events. Momentum scat-
tering randomizes k and precession continues with a new
Larmor precession vector. The elapsed time between two
momentum scatterings follows a Poisson distribution, with an
expectation value of τk = (

∑
k′ Wkk′ )−1. Figure 2 shows the

quantum trajectories [28–30] of three individual electron spins
on the Bloch sphere along with the ensemble-average value
of sz.
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FIG. 3. (a) Comparison of the numerical solution of the spin
Boltzmann equation and the Monte Carlo–based method for more
than a thousand allowed k states, which is equivalent to the thermo-
dynamic limit. Wkk′ is constant for all k, k′ for the uniform scattering
and it is weighted with cosθ (θ being the angle of k and the z
direction) in the nonuniform case. (b) The same comparison but the
number of allowed k states is five, which are given in the text. For all
calculations � = 1, � = 1, and L = 1 was used.

The time evolution of an individual spin in state k during a
short �t time interval is

sk(t + �t ) =
(

1 − �t

τk

)
Uk(�t )sk(t ) + �t

∑
k′

Wk′ksk′ (t ),

(5)
where Uk(�t )sk(t ) = sk(t ) + �t�(k) × sk(t ). The first term
on the right-hand side describes when the spin, sk, does
not scatter out from k during �t . The second corresponds
to scattering-in from k′ states. Assuming detailed balance
(Wk′k = Wkk′ ) and retaining terms in the first order of �t
yields directly the spin Boltzmann equation of Eq. (4) in the
infinitesimal limit of the time step. We note that this con-
sideration essentially mimics the derivation of the Lindblad
equation in Ref. [32], and the dynamics of a spin coupled to
a Markovian bath are also treated in standard textbooks such
as, e.g., Ref. [33].

In Fig. 3, we compare the result of the Monte Carlo
calculations with the solution of the spin Boltzmann equation.

Figure 3(a) gives two examples: one with a uniform scattering
(i.e., Wkk′ constant for all k, k′) and one with a nonuniform
scattering. For the latter, Wkk′ is weighted by cosθ , where θ is
the angle between k and the z direction. The calculations were
performed for more than 1000 allowed k states which were
spread uniformly over the Fermi surface.

Figure 3(b) shows the result of both types of calculations
for five allowed k states only: the “North Pole” (NP), “South
Pole” (SP), and three points along the “Equator” (E1, E2,
and E3) which form an equilateral triangle on the Fermi
surface. Again, Wkk′ is constant for the uniform scattering
and WNP→SP : WNP/SP→E = 3 : 1 for the nonuniform scattering
model.

Remarkably, we find no difference between solving the
spin Boltzmann equation and the result of the Monte Carlo
model for either case. Therefore the Monte Carlo model gives
an accurate description of the spin dynamics, irrespective of
the k distribution and the uniformity of the scattering.

Besides being equivalent, the MC method is numerically
more effective as the Larmor precession between scattering
events can be calculated analytically without resorting to
numerics. In contrast, solving the spin Boltzmann equation
for a large magnetic field (external or SOC related) requires
the use of a small time discretization.

The most important advantage of the MC method is that
it tracks the individual quantum trajectories of electron spins,
whereas the spin Boltzmann equation inherently provides the
ensemble-average values only, similarly to the Schrödinger
equation. The MC method is particularly advantageous when
we are interested in single events and quantum leaps hap-
pening in individual quantum systems, e.g., in mesoscopic
systems where statistical fluctuations are important in under-
standing and analyzing individual measurements [30]. We em-
ploy the MC method in the following to study yet unexplored
parts of the spin-relaxation phase diagram as a function of
(�, L,�Z).

III. THE RELATION BETWEEN THE SPIN BOLTZMANN
EQUATION AND THE BLOCH EQUATIONS

The phenomenological Bloch equations describe the time
evolution of a spin ensemble under the action of an external
DC magnetic field and an additional AC magnetic field.
The latter is used in magnetic resonance experiments and is
usually polarized perpendicularly to the DC field. The Bloch
equations are written for the magnetization M, which is the
ensemble-averaged magnitude of the spin magnetic dipole
moments per unit volume. These read

dMx(t )

dt
= γ [M(t ) × B(t )]x − Mx(t )

T2
,

dMy(t )

dt
= γ [M(t ) × B(t )]y − My(t )

T2
,

dMz(t )

dt
= γ [M(t ) × B(t )]z − Mz(t ) − M0

T1
.

(6)

Here, the Larmor vector due to the external magnetic fields
(either DC, AC or both) is identified as �(t ) = γ B(t ), where
γ is the gyromagnetic ratio of electrons. The T1 and T2 are
the so-called longitudinal and transversal relaxation times. M0
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appears when the DC magnetic field is along the z axis. The
phenomenological relaxation times describe that following
an excitation the respective magnetizations return to their
equilibrium values, which is M0 for the Mz component and
0 for Mx and My. In a zero external magnetic field, the T1 and
T2 distinction vanishes.

We recognize a clear analogy between the spin Boltzmann
equation and the Bloch equations. Although the spin Boltz-
mann equation contains the external magnetic field and the k-
dependent built-in SOC-related magnetic fields altogether, the
latter give rise to the phenomenological relaxation times (T1

and T2) in combination with the momentum relaxation events
(which are described by the Wk′k terms in the spin Boltzmann
equation. The external magnetic field appears unchanged in
the Bloch equations.

Strictly speaking, this is only valid for the case when
the spin magnetization decays exponentially according to the
spin Boltzmann equation. However, the effect of reversible
dephasing can be also included in the Bloch equations by
introducing, e.g., spatial dependence of the local DC magnetic
fields (e.g., due to the inhomogeneity of the magnet) or parti-
cle orientation dependent γ (or g factor) in a powder sample.
The spin Boltzmann equation can also be amended with the
diffusion term, whose analog is known as the Bloch-Torrey
equations.

Nonexponentional spin relaxation

We apply the MC method for the Dresselhaus SOC Hamil-
tonian in three dimensions, where the Larmor (angular) fre-
quency vectors read in k space [k = (kx, ky, kz )]

b(k) = L′

2k3
F

[
kx

(
k2

y − k2
z

)
, ky

(
k2

z − k2
x

)
, kz

(
k2

x − k2
y

)]
, (7)

where L′ is the strength of the SOC in energy units and kF is
the Fermi wave number. The Fermi surface averaging of L′
gives L2 = L′2 4

35 .
We first consider a zero magnetic field, i.e., �Z = 0. The

condition of the DP description [10,11] is � � L, when the
MC method gives spin relaxation with a single exponent as
�s = L2

�
. However, the situation drastically changes when L is

the leading term and a nonexponential spin decay is observed.
This regime was first described in Ref. [2]: it was pointed out
that a significant reversible dephasing, rather than relaxation,
takes place on a timescale of 1/�
, where the latter is the
spread in the Larmor frequency distribution. The qualitative
reason for reversible dephasing is that the spins precess by
a large angle, 
τ � 1, before a momentum scattering takes
place (
 is the mean value of the Larmor frequency). The
reversible dephasing is in fact a procedure without memory
loss, which is followed by a truly irreversible spin decay after
several τ elapses [34,35].

The corresponding spin decay is shown in Fig. 4(a) (solid
black line). The simulation was performed for an ensemble
of N = 105 electrons and a nominal value of the Larmor
precession frequency of h̄
/� = L′/� = 100. Clearly, the
data shows a rapid reversible dephasing, which is followed by
an exponential-like tail for longer times. Its Fourier transform,
S (ω), is presented in Fig. 4(b): it shows a peak function at
ω = 0 and two side-lobe structures, which are due to the

FIG. 4. (a) Spin decay for a spin ensemble which is spin polar-
ized at t = 0 (black solid line) and is under the action of a strong
Dresselhaus SOC, which leads to reversible dephasing. Loschmidt
echoes (red, blue, and green lines) are generated by inverting the
Larmor frequency vectors at t = τ/2, τ , and 1.5τ and these are
observed around t = τ, 2τ , and 3τ , respectively. The envelope of
these echoes is depicted with a dashed orange line. (b) Fourier
transform of the spin decay and the Loschmidt echo envelopes. Note
that the latter contains a single peak, centered at ω = 0, whereas the
earlier has a peak at ω = 0 and two side-lobe structures (shown on a
magnified scale), which reflect the Larmor frequency distribution in
the Dresselhaus SOC.

distribution of the Larmor frequencies in the Dresselhaus
SOC.

The simultaneous presence of reversible dephasing and
relaxation is encountered in magnetic resonance and is tackled
with the concept of spin echo [36,37], which is discussed in
detail below. The spin echo is a specific case of the Loschmidt
echo [26]. In our case, the Loschmidt echo can be numerically
introduced by inverting the �(k) vectors at a given instant and
observing the recovery of the ensemble spin value. Figure 4(a)
shows three such echoes which were generated by inverting
the �(k) vectors at three different instances. The envelope
of the echoes is also shown in the figure. We developed
a numerical method [38] to obtain the Loschmidt echo en-
velopes without needing to calculate the echoes at each time
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points. The corresponding Fourier transform, S (ω), of the
Loschmidt echo envelope is shown in Fig. 4(b): as expected,
it shows a single peak at ω = 0 which contains all the spectral
weight from the two side lobes. We highlight an interesting
analogy of the present calculations with magnetic resonance:
the timescale of reversible spin dephasing corresponds to T ∗

2
(often referred to as reversible “relaxation time”) and the
envelope to the T2 spin-spin relaxation time (also known as
irreversible relaxation time).

Inverting the SOC-related Larmor frequency vectors is
not practically conceivable in bulk solid state realizations.
However, inverting an external electric field induced SOC,
such as the Bychkov-Rashba SOC in two-dimensional hetero-
layers, may be feasible. Determination of the Loschmidt echo
envelope allows us to determine the “true,” i.e., irreversible
spin-relaxation time. The data shows an exponential time de-
pendence of the Loschmidt echo envelope over several orders
of magnitude (shown in Ref. [38]) except for the beginning of
the envelope for τ � 1 where it starts with zero derivative due
to geometric reasons.

IV. THE LOSCHMIDT ECHO IN MAGNETIC RESONANCE

It is a common challenge in magnetic resonance that
reversible dephasing and spin-relaxation processes are si-
multaneously present. The so-called spin echo, which is a
realization of the Loschmidt echo, is employed to tackle
this problem. Most generally, one encounters three different
timescales in magnetic resonance: T ∗

2 , T2, and T1. Of these,
T1,2 are irreversible relaxation processes and T ∗

2 is related to
the reversible dephasing processes [36,37]. The distinction
between T1 and T2 stems from the fact that a magnetic field
is applied, which inevitably leads to a distinction between
relaxation processes for the magnetization components which
are parallel (the T1 processes, also known as longitudinal
relaxation time) and perpendicular (the T2 processes, also
known as transversal relaxation time) to the external magnetic
field. In zero magnetic field, this distinction vanishes.

The Bloch equations [36] describe the motion of spins
in a DC magnetic field, applied along the z axis, which is
accompanied by a circularly polarized AC magnetic field
(with polarization plane perpendicular to z). In equilibrium,
the magnetization of the spin ensemble, M, is stationary along
the z axis with a value of M0. When the AC magnetic field is
applied in a pulsed manner, the magnetization is rotated away
from the z axis and starts to precess around z with the Larmor
frequency ωL = γ B (B is the magnetic field and γ is the so-
called gyromagnetic ratio of the studied spin system, e.g., γ ≈
2π × 42.6 MHz/T for protons and γ ≈ 2π × 28.0 GHz/T for
electrons).

In a typical experiment, an AC irradiation is applied with
an angular frequency matching ωL and a pulse duration which
is sufficient to rotate M into the (x, y) plane. This is known
as a π/2 pulse, as the magnetization is rotated perpendicular
to z. Then the (x, y) and z components of the nonequilibrium
spin magnetization decay to the respective equilibrium values
(0 and M0) with T2 and T1 relaxation times. However, in most
cases the (x, y) components vanish much earlier than T2 due
to reversible dephasing: local magnetic field inhomogeneities
are present which lead to a distribution in ωL. The inhomo-

FIG. 5. (a) Schematics of the reversible dephasing process in
NMR experiments and the method of spin echo. The figure assumes
a right-handed precession direction with ωL. The spin magnetization
lies in the plane perpendicular to z after a π/2 pulse when reversible
dephasing due to a spread in the Larmor frequencies starts: spins in
blue and red precess faster or slower than ωL, respectively. After an
evolution time of τecho, a π pulse is applied which rotates the spins
around an axis perpendicular to z′. Clearly, the blue and red spins are
now behind or before the average spin direction and as a result these
are aligned coherently after another τecho time, when the spin echo
occurs. (b) The corresponding NMR signal. Note the sign reversal of
the NMR signal for this particular type of the spin echo.

geneities are caused by either defects or impurities (these are
the leading cause in solid state NMR) or by the inevitable
inhomogeneity of the magnet (this is the leading cause in
high-resolution or liquid NMR) [37].

This process is usually described in a frame of reference
which rotates with the mean value of the Larmor (angular
frequency), ωL, around the z axis and is schematically shown
in Fig. 5(a). The coordinate axes of the rotating frame of
reference are denoted by x′, y′, and z′ (z′ is identical to the
z axis). The M0 magnetization lies in the (x′, y′) plane after a
π/2 pulse, where reversible dephasing starts. In the rotating
frame of reference, some spins have angular frequencies
which are larger (the blue arrows in the figure) or smaller
(the red arrows in the figure) than ωL. The resulting net
magnetization vanishes on a timescale of T ∗

2 ≈ 1/�ωL, where
the latter is the spread in the Larmor frequencies. Another
pulse is applied after a so-called “evolution time,” τecho, which
rotates the spins by π . The figure depicts the location of
the spins which precess faster (blue arrows) and slower (red
arrows) than the average after the π pulse. Clearly, after
a waiting time of another τecho the spins are aligned again
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FIG. 6. (a) Schematics of the T2 measurement. NMR spin-echo
experiments are performed with varying time delay between the π/2
and π pulses. The individual echoes have a linewidth of 2T ∗

2 but the
resulting spin-echo envelope follows e−t/T2 . (b) The corresponding
Fourier transform (FT) NMR signal reflects this behavior: it contains
a broad signal whose width is 1/T ∗

2 and it consists of individual spin
packets whose width is 1/T2. Note the conceptual similarity of the
present figure to Fig. 4.

coherently with a direction opposite to their original coherent
direction.

Figure 5(b) also shows the corresponding NMR signal: the
initially decaying signal is partially recovered, i.e., an echo
is observed at 2τecho when the π pulse is applied at τecho.
The reason why the NMR spin echo is observed, is that the
reversible dephasing is not accompanied by a memory loss,
thus each spin “remembers” the magnitude of its Larmor
frequency. However in reality, memory loss is also present
on the spin-relaxation timescale, T2, where typically T ∗

2 �
T2. In NMR, the physical origin of T2 can be dipole-dipole
interaction (this is the leading mechanism in solid state NMR)
or molecular diffusion (this is the leading mechanism in high-
resolution or liquid NMR) [37].

Figure 6(a) shows the schematics of the T2 measurement:
spin-echo experiments are performed consecutively (in differ-
ent pulse sequence runs, each starting from the equilibrium
M0 ‖ z′) with varying τecho. The envelope of the observed

echoes follows e−t/T2 , which allows for the determination
of T2, which is a true, irreversible relaxation time, clearly
distinguishable from the reversible dephasing. After Fourier
transformation [shown in Fig. 6(b)], the NMR signal has a
large linewidth of 1/T ∗

2 (in frequency units) which consists of
so-called spin packets [39], whose linewidth is 1/T2. Clearly,
both Figs. 6(a) and 6(b) are similar to Figs. 4(a) and 4(b),
respectively.

V. EFFICIENT CALCULATION OF THE LOSCHMIDT
ECHO ENVELOPE IN OUR NUMERICAL STUDIES

We outlined above how individual Loschmidt echoes can
be obtained by inverting the SOC-related Larmor precession
vectors. In principle, the envelope could be obtained from
such individual echoes by varying the time delay of the
reversal. Clearly, this procedure requires one to calculate
a full ensemble-averaged time evolution and repeating this
calculation over and over for each time-delay point. How-
ever, it turns out that the envelope itself can be obtained
more effectively when we are not interested in the individual
Loschmidt echoes. It turns out that this calculation is not more
time-consuming than calculating a single time decay of the
spin ensemble.

The schematics of the method is depicted in Fig. 7. It is
based on keeping track of the rotation operator (which is a 3 ×
3 matrix), U (t1, t2), which describes the evolution of a single
spin at t1 to a time point of t2. Although momentum scattering
happens in random time intervals, U (t1, t2) can be constructed
for any t1 and t2, which also involves the randomizing nature
of the momentum scattering, which changes the direction of
the Larmor precession. However, it is practical to predefine an
equidistant array of time steps for which the envelope is to be
calculated.

In addition to keeping track of the rotation operator under
the action of the Larmor precession with randomized k values,
we keep track of the rotation operators which would act for
the inverted Larmor precession vectors. This is denoted by
U ′(t1, t2). Figure 7(a) depicts the action of these two types of
operators by arrows.

Next, we consider an individual Loschmidt echo where
the SOC-related Larmor vectors are inverted at a flip time
of tflip. Figure 7(b) depicts that the echo can be obtained for
any arbitrary time t from the action of U (0, tflip), followed
by U ′(tflip, t ), i.e., their product. Figure 7(c) describes the
efficient method to obtain the Loschmidt echo envelope at
an arbitrary techo = 2tflip. It requires the subsequent action of
U (0, tflip), U ′−1(0, tflip), and U ′(0, techo) since the identity

U ′(tflip, 2tflip) = U ′−1(0, tflip)U ′(0, 2tflip) (8)

holds. Clearly this method involves a larger memory use but
it substantially accelerates the calculations. In the end, the
Loschmidt echo envelope for each individual spin needs to
be ensemble averaged to obtain the final result.

Figure 8 shows the time dependence of the Loschmidt
echo envelope and the spin-decay signal for longer times on
a semilogarithmic plot (vertical axis is logarithmic). Note
that both signals decay exponentially for longer times. The
apparent noise in the signals for longer times could in princi-
ple be reduced by increasing the ensemble.
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FIG. 7. Schematics of the efficient Loschmidt echo envelope
calculation. (a) The Larmor precession acts as a transformation
operator, U (t1, t2), on an individual spin. This can be obtained
for an equidistant array of time values, even in the presence of
momentum scattering which provides a new random k that alters
the spin precession direction. U ′(t1, t2) is obtained for the inverted
Larmor precession vectors. (b) The time trace of an individual
echo with flip time tflip could be obtained at any time t by acting
on the spin with U (0, tflip), followed by U ′(tflip, t ). (c) The echo
envelope at a time point techo = 2tflip is obtained from the product
U (0, tflip)U ′−1(0, tflip )U ′(0, techo).

FIG. 8. Time dependence of the Loschmidt echo envelope and
the spin-decay signal for longer times on a semilogarithmic plot.
Note the exponential decay for both the spin-decay and the
Loschmidt echo envelope signals.

FIG. 9. (a) Phase diagram of the spin-relaxation rate, �s,sim, for
the Dresselhaus SOC as a function of L/� and �Z/�. The data are
normalized by �L2. (b) Ratio of the approximate generic formula of
�s,approx = �L2

�2+L2+�2
Z

and �s,sim. Note that this ratio is around unity,

which justifies the use of the generic formula.

A. The generic phase diagram of spin relaxation

The calculated spin-relaxation rate, �s,sim, is plotted for
the entire phase diagram as a function of L/� and �Z/�

in Fig. 9(a). �s,sim values are obtained by fitting exponential
time dependences to the Loschmidt echo envelopes, which are
obtained from our MC calculations. The data are normalized
by �L2; without this normalization, the value of �s,sim changes
by eight orders of magnitude for the given range. We note that
the cyclotron orbital motion of k in high magnetic field was
neglected in the calculations; however, we believe that this
could be straightforwardly implemented.

Figure 9(b) shows the ratio of the suggested generic for-
mula �s,approx = �L2

�2+L2+�2
Z

and �s,sim obtained from the MC
calculations. A good agreement is found between the MC
simulations and the generic formula for the entire phase
diagram, the difference not being larger than a factor of 2. This

033058-7
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FIG. 10. Ratio of the recommended generic formula for the spin-
relaxation rate and that obtained analytically for the 2D electron gas
with the Bychkov-Rashba SOC.

strongly argues for the existence of a generic formula and for
the validity of the presently suggested form. We believe that
a similar formula is valid for an arbitrary SOC distribution
while some multiplying factors (around unity) can be present
in it.

B. Validation for an analytically solvable model

We also verified the validity of the suggested generic
formula for a specific spin-relation example which is exactly
solvable. Burkov and Balents [40] studied a two-dimensional
electron gas with a lateral electric field, which induces a
Bychkov-Rashba-type SOC. They presented an analytic result
for the spin-relaxation rate using a many-body approach for
arbitrary values of �, L, and �Z. Details of the analytic
calculations in the various regimes are somewhat involved and
are presented in the Supplemental Material [38]. In Fig. 10, we
show the ratio between the approximation formula in the main
text and the herein presented simulated values. The agreement
between the two kinds of data is close to unity and does not
deviate from it more than a factor 2.

This agreement provides additional support for the valid-
ity of the recommended generic formula. We believe that

besides the aforementioned multiplying factors, the formula
may serve with a strong predicting value for the spin-
relaxation and spin-transport [41,42] properties in future spin-
tronics materials. In addition, it describes well the general
trends for the spin-relaxation rate versus its parameters, which
can help to identify the relevant model of a relaxation mech-
anism. Although we did not cover the case of spin relaxation
in systems with inversional symmetry (the Elliott-Yafet the-
ory [8,9]), the recently discovered equivalence between the
Dyakonov-Perel and Elliott-Yafet Hamiltonians [12] allows
for a straightforward application of the present result for the
Elliott-Yafet case.

VI. CONCLUSIONS

In conclusion, we studied the spin dynamics in zinc-
blende semiconductors with the Dresselhaus spin-orbit cou-
pling. We presented a model, which directly provides the
quantum trajectories of individual spins and is equivalent
to solving the spin Boltzmann equation. The method could
be readily generalized for interacting electrons where its
advantage, in terms of calculation efficiency, prevails. We
identified a nonexponential, spin-dephasing regime of spin
dynamics, which occurs due to a strong SOC. We tackled
reversible dephasing with the introduction of a Loschmidt
echo. This allowed us to determine the spin-relaxation time
for the entire spin-relaxation phase diagram involving the
strength of the quasiparticle scattering rate, spin-orbit cou-
pling, and the Zeeman interaction. We found that a simple
and compact form approximates well τs. The validity of the
formula was also confirmed for the two-dimensional electron
gas with a lateral electric field (i.e., with a Bychkov-Rashba
SOC) for which the spin-relaxation time could be determined
analytically.
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