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Physics of psychophysics: Large dynamic range in critical square lattices of spiking neurons
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Psychophysics tries to relate physical input magnitudes to psychological or neural correlates. Microscopic
models to account for macroscopic psychophysical laws, in the sense of statistical physics, are an almost
unexplored area. Here we examine a sensory epithelium composed of two connected square lattices of stochastic
integrate-and-fire cells. With one square lattice, we obtain a Stevens’s law ρ ∝ hm with Stevens’s exponent
m = 0.254 and a sigmoidal saturation, where ρ is the neuronal network activity and h is the input intensity
(external field). We relate Stevens’s power-law exponent with the field critical exponent as m = 1/δh = β/σ .
We also show that this system pertains to the directed percolation (DP) universality class (or, perhaps, the
compact-DP class). With two stacked layers of square lattices and a fraction of connectivity between the first
and second layer, we obtain at the output layer ρ2 ∝ hm2 , with m2 = 0.08 ≈ m2, which corresponds to a huge
dynamic range. This enhancement of the dynamic range only occurs when the layers are close to their critical
point.

DOI: 10.1103/PhysRevResearch.2.033057

I. INTRODUCTION

Psychophysics is perhaps the oldest experimental part of
psychology, starting with the pioneering work of Fechner in
1860 [1]. Its main aim it to describe how sensation is related to
the input level reaching a sensory organ. Psychophysical laws
are emergent properties of neuronal networks [2]. A funda-
mental problem in these laws is that they relate several orders
of magnitude of input to few orders of magnitude of output.
This means that biological sensors have a huge dynamic range
(DR), which they should have since natural stimuli vary by
orders of intensity. For example, several experimental results
can be fitted by a Hill curve [3],

S(I ) = Smax cIm

Smax + cIm
, (1)

where S(I) is the sensation level (to be measured in some
scale, Smax is a saturation level, c is a constant, and I is the
input level). For moderate input such that cIm � Smax, we
have the famous Stevens’s power law [2–7]:

S(I ) = cIm, (2)

where m is the so-called Stevens’s psychophysical exponent.
If m < 1, we have a compressive curve with a large dynamic
range.
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It is not clear how to get this result because sensory neurons
at the periphery have a small dynamic range. In a sense, we
have a problem typical of statistical physics: how to construct
a microscopic model (here based in neurons) that explains a
high-level phenomenological law as a collective phenomenon.

The idea that certain parts of the brain can benefit from op-
erating near the critical point of a continuous phase transition
has been around for some time now [8–13]. In particular, it
has been shown that criticality enables a network of excitable
elements with small DR to present a large dynamic range
as a collective property, both at the theoretical [14–23] and
experimental [17,24–26] levels.

A result very similar to the Hill curve is predicted by
some computational models [14–16], but without a simple
analytic form as Eq. (1), suggesting that the use of a Hill
curve in psychophysics is only a phenomenological or fitting
procedure that cannot be obtained from first principles. This
view of a large dynamic range as a collective or emergent
property (critical or not) of networks of excitable cells is
relatively new [27–30].

The standard textbook model to account for a large DR
constructed from small DR units is some variation of re-
cruitment theory: sensory neurons, which present sigmoidal
responses with short DRs but different response thresholds,
are combined to produce a total output with a large DR. In
these models, the value of exponent m is not predicted or
constrained (see, as examples, [3,31,32]). Recruitment theory
has a major flaw: for a wide range of stimulus to be perceived,
an equally wide variety of receptor expression in sensory cells
must occur. Experimentally, however, receptor overexpression
is only about two- or threefold [31], so it is plausible to
assume that this is not the main mechanism responsible for
the phenomenon [15]. Also, the model mechanism is some-
what oversimplistic: a simple linear sum of sigmoids with a
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distribution of cells fitted by hand to produce a more or less
acceptable power law in some input range.

In a sense, recruitment theory is a curve-fitting exercise
with sigmoids, not a predictive theory. For example, it does
not predict the possible values for Stevens’s exponent m (as
will be done here); this exponent is only a fitting parameter
which is unable to give deep insight into the underlying
neuronal network model. On the other hand, in our theory,
m relates to the statistical physics field critical exponent as
m = 1/δh.

Here we offer a modern view about psychophysical laws:
any network of excitable cells, indeed any excitable media
[14,16,27], produces a Stevens’s response S ∝ Im for mod-
erate I (and a Hill’s-type saturation afterwards). This is an
intrinsic and basic collective property of excitable cells. So,
we need not devise some tricky mechanism to obtain Stevens’s
law; it is there from start, as a basic property of any network
of excitable cells.

In this paper, we study stochastic integrate-and-fire neu-
rons interacting in two coupled square lattices that would be a
toy model for a biological sensor. We assume that the coupling
inside the square lattices is done by electric synapses, as
observed say in the retina or the olfactory bulb. We show
that in each layer, there occurs a continuous phase transition
from a silent phase to an active phase. This is called an
absorbing phase transition: the absorbing phase corresponds
to silence or zero activity, from which the system cannot
spontaneously escape. The active phase emerges with a given
critical exponent from the critical point. Almost all such
transitions pertain to the ubiquitous directed percolation (DP)
class [33,34] or, perhaps, the so-called compact DP (C-DP or
Manna) class, which, in the square lattice (d = 2), has specific
critical exponents that define its universality class.

Our 2d result is not surprising since the mean-field DP
exponent mMF = 1/δh = 1/2 has already been found for
complete graphs and random networks [14,35,36]. How-
ever, our 2d DP exponent m ≈ 0.254 means that S ∝ I0.254,
which is a huge improvement over the mean-field S ∝ I0.5

result.
The second square lattice layer is put after the first one,

with a small fraction p of electrical synapses between them.
The aim of constructing such a retinalike two-layered sensor
is to show that other Stevens’s exponents can be obtained by
changing the network topology. This has already been demon-
strated for random networks [37], where the second layer
presented Stevens’s exponent mMF

2 = 1/4 = (mMF)2 (the in-
dex in m2 refers to the second layer output). Here we obtain
a similar result, but with a huge dynamic range given by
m2 = 0.078 ≈ m2; that is, an input range of O(1012) (similar
to the difference between luminosity at midnight and noon)
can be mapped onto an O(1) output.

II. MODEL AND METHODS

We use a stochastic leaky integrate-and-fire (LIF) neuron
originally proposed by Gerstner and van Hemmen [38], rigor-
ously investigated by Galves and Löcherbach [39] and Ferrari
et al. [40], and simplified in Refs. [35,41,42]. Time is discrete
and updates are done in parallel. For a discussion about LIF
discrete-time models, see Refs. [43–45].

The membrane potential of a neuron situated at the ith line
and jth column is given by

Vi j[t + 1] = μVi j[t] + Ii j[t] + 1

4

4∑
kl∈V

Wi j,kl Xkl [t],

⇐⇒ Xi j[t] = 0, (3)

Vi j[t + 1] = 0, ⇐⇒ Xi j[t] = 1. (4)

Here, Xi j[t] is a binary state variable (X = 1 = spike,
X = 0 = silence). A neuron stays in its active state for only
one time step, assumed here as the typical spike width of 1
ms. If at a given time t the neuron with indexes i j fires, its
membrane potential is reset to zero, given by Eq. (4), and
otherwise the neuron will follow Eq. (3). The parameter μ ∈
[0, 1] is a leakage term which controls how much the neuron
remembers from its previous voltage Vi j[t], and Ii j[t] is the
external input. Neurons interact in the two-dimensional lattice
where each one is connected to its four nearest neighbors
(the von Neumann four-sites neighborhood is V). The strength
of the (electric) synapse between the postsynaptic neuron i j
and the presynaptic neuron kl (with k = i and l = j ± 1, or
k = i ± 1 and l = j) is denoted by Wi j,kl . We use periodic
boundary conditions.

In this stochastic model, the firing of a neuron is proba-
bilistic and given by a firing function �:

P(Xi j[t] = 1|Xi j[t − 1] = 0) = �(Vi j[t]). (5)

Notice that this form emphasizes that the neuron has
one time step of absolute refractory period, although this
is implicit because we assume �(V = 0) = 0. The function
� needs only to be a sigmoidal function. For mathematical
convenience, we use the so-called rational function [41,42],

�(V ) = �(V − θ )

1 + �(V − θ )
	(V − θ ). (6)

Here, θ is a firing threshold below which the neuron cannot
fire, i.e., �(V ) = 0 for V < θ . The � parameter in Eq. (6) is
the neuronal gain. Notice that both the gain � and threshold
θ are parameters experimentally related to the phenomenon
of firing-rate adaptation [46,47]. Although not implemented
here, a homeostatic dynamics in the individual synapses Wi j,kl

and thresholds θi j can be used to self-organize the network
towards the critical state [36]. So, in our discussion about
maximizing the dynamic range at criticality, we will assume
that such homeostatic mechanisms can operate in our network.

For a meticulous analysis of the mean-field approximation
regarding this model, we refer to [35,41,42]. We will show
that the system undergoes an absorbing second-order phase
transition if the external field and the firing thresholds are
equal, θi j = Ii j ; see [36]. This apparent fine-tuning condition
will be discussed in Sec. IV. If θi j �= Ii j , the transition is of
first order [35,41].

The activity of a network with N neurons is, at any time,

ρ[t] = 1

N

∑
i j

Xi j[t], (7)
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and it can be measured by

ρ(w, �) = 1

t f − ti

t f∑
t=ti

ρ[t], (8)

where (ti, t f ) marks a large time interval in the simulation
far from transient states. The time average ρ(W, �), given
by Eq. (8), is used as our order parameter, and the average
synaptic weight W = 〈Wi j,kl〉 and average gain � = 〈�i j〉 are
our control parameters. We notice that if at a given time step
we have ρ[t] = 0, then a random site is chosen and its state
is put as Xi[t + 1] = 1. This is done to get the network out of
the absorbing state.

We define another quantity, the order parameter fluctua-
tions 
ρ, related to the fluctuations of the activity ρ,


ρ = N (〈ρ2〉 − 〈ρ〉2). (9)

In order to evaluate how the neuron model responds to
external stimulus when interacting in a layered system, one
needs to know how a single 2d lattice of neurons works.
First, with � = 1 fixed, we explore the effect of the control
parameter W to roughly determine where the phase transition
occurs, i.e., we need to know where the subcritical, critical,
and supercritical regimes are. Then, we can refine our mea-
surements and explore the critical region for systems with
different sizes N and use finite-size scaling techniques [48]
to better determine the critical point of the transition Wc, the
order parameter critical exponent β, and the susceptibility
critical exponent γ ′.

In the vicinity of the critical point, ρ and 
ρ should scale
as

ρ ∝ |W |β, 
ρ ∝ |W |−γ ′
, (10)

where W is the reduced control parameter W = (W −
Wc)/Wc.

We then proceed to our bottom-up psychophysics ap-
proach, where we build a sensor with two layers of neurons.
Each layer is a square lattice. The first one is stimulated
by the external stimulus, modeled as a Poisson process. The
probability per time step of a neuron being activated is

λ = 1 − e−r . (11)

Here, r is a stimulation rate. Neurons in the first layer can
either fire due to synaptic excitation from neighbors or with
probability λ due to the input Poisson process.

On the second layer, we randomly chose p = 0.1N neurons
to connect to the first layer. These neurons receive an input
Ii j[t] = JX 1

i j[t], where X 1
i j is the neuron of the first layer;

that is, both connected neurons of the first and second layer
share the same indexes i j. The value J used was high enough
to guarantee that the connection between layers always pass
information; that is, if a neuron in the first layer spikes, then
the neuron connected to it in the second layer also forcibly
spikes. The electric synapses J are unidirectional; that is,
activity in the second layer does not excite back the first layer.

We ran simulations for various system sizes in the three
regimes, always stimulating neurons from the first layer with
rates ranging from r = 10−6 up to r = 0.1. We will show that
in the critical region, the activity ρ in each layer can map

stimulation rates r with large dynamic range. For the first
layer,

ρ1(r) ∝ rm, (12)

and for the second layer,

ρ2(r) ∝ [ρ1(r)]m ∝ rm2
. (13)

Critical systems in the presence of an external field h
have a well-established behavior. For a small field, the order
parameter scales as a power law,

ρ(h) ∝ hβ/σ , (14)

where β is the order parameter critical exponent and σ is
the critical exponent associated with the mean cluster size. If
we identify the stimulation rate r as the external field h, it is
possible to write Stevens’s exponent m of Eq. (12) as

m = β

σ
. (15)

Equation (14) is valid for asymptotically small fields, h →
0. This means that the relation between exponents (15) is valid
as long as the stimulation rate r of the Poisson process (11) is
small.

To quantify how each layer responds to the stimulation, we
follow the dynamic range definition of Kinouchi and Copelli
[14]. We measure the individual activity of each layer as a
function of the stimulus rate r. We then calculate the dynamic
range 
h of each layer for the three regimes:


h = 10 log10

( r0.9

r0.1

)
, (16)

where the values r0.9 and r0.1 are the stimulation rates which
evoke the activities ρ0.9 and ρ0.1. These activity values are
obtained through the equation ρx = ρ0 + x(ρmax − ρ0), where
the values ρmax and ρ0 are just the largest and smallest (not
necessarily zero, due to self-sustained supercritical activity)
response of a layer. The dynamic range is a measure that
relates, in decibels, the largest and smallest inputs that the
system can map in the output.

III. RESULTS

A. The 2d lattice with leakage μ = 0

For the 2d network, we first present curves ρ(W ; N ) for
different square and rectangular lattices (from here, we fix
� = 1 without loss of generality); see Fig. 1(a).

The solid line has the form

ρ(W ; N → ∞) ∝ W
β
, (17)

with the 2d critical point Wc = 1.74. We can see that this curve
produces a very good fit of the data for large N if we use the
tabulated 2d DP critical exponent β = 0.583 [49]. We also
plot the fluctuations 
ρ(W ; N ) as a function of the control

parameter W in Fig. 1(b). We obtain a good fit 
ρ ∝ W
−γ ′

for large networks if we use the 2d DP tabulated exponent
γ ′ = 0.2998 [49].

The significance of the DP transition for our neuronal
network model is the following. The model admits a silent
phase (ρ = 0) but, with increasing coupling, there occurs a
change of phases. This could be an oscillatory phase or a
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FIG. 1. (a) Order parameter ρ(W ; N ) for systems of different sizes close to the critical region. (b) Order parameter fluctuations 
ρ(W ; N )
for various system sizes near the critical region. For growing lattices, the data approximates the mean-field result (solid line).

coexistence with two fixed points for the same coupling (a
nontrivial ρ phase and the trivial ρ0 absorbing phase). This
last case is achieved by a discontinuous (first-order) phase
transition.

In our case, we found a continuous (second-order) transi-
tion from the absorbing state ρ0 to an active phase ρ at a criti-
cal point Wc. As discussed in Sec. II, critical exponents can be
defined only for continuous transitions. The found exponents
enable us to classify our transition as pertaining to the directed
percolation (DP) universality class, or perhaps the compact
DP (Manna) class. This is not so surprising because almost all
continuous transitions from a single absorbing state pertain
to such classes and follow the so-called Janssen-Grassberger
conjecture [33,34]. What perhaps is a bit curious is that such
a conjecture works in a model with somewhat complicated
elements such as our stochastic LIF neurons.

We tried, however, to obtain the critical exponents in an
independent way. In the critical region, both ρN and 
ρN are
strongly dependent on the system size N . To get around the
fact that we are far from the thermodynamic limit, we use
finite-size scaling techniques. First, we rescale ρ and 
ρ:

ρ(W ; L) = L−β/ν⊥Gρ (L1/ν⊥|W |), (18)


ρ(W ; L) = Lγ ′/ν⊥G
ρ (L1/ν⊥|W |), (19)

where L = √
N is the characteristic square network size, ν⊥

is the spatial correlation length critical exponent, and Gρ

and G
ρ are scaling functions. Then, we plot ρ and 
ρ

as functions of the characteristic system size L for different
values of W . When W = Wc, the reduced control parameter
is W = 0. The rescaled parameters ρ and 
ρ are then power
laws which depend only on L,

ρ(0; L) = L−β/ν⊥Gρ (0), (20)


ρ(0; L) = Lγ ′/ν⊥G
ρ (0). (21)

The fine determination of Wc, β, γ ′, and ν⊥ can be done
with standard finite-size techniques, as delineated above.

However, this is not our main concern here since that would
require much more computational effort and is not the main
subject of the paper. By now, it is sufficient to show that the
critical exponents of our stochastic integrate-and-fire neuronal
network are compatible with the 2d DP class or with the 2d
compact-DP class (Manna class); see Table I.

First, simulation results for large N , varying W , indicate
Wc → 1.74 ± 0.01. Then, a simple fit of the data in Fig. 1(a)
to Eq. (10) yields β ≈ 0.564 ± 0.05. By using Eqs. (20) and
Fig. 2 fits, we obtain β/ν⊥ ≈ 0.77 and γ ′/ν⊥ = 0.50, that is,
ν⊥ ≈ 0.73 ± 0.06 and γ ′ ≈ 0.37 ± 0.04; see Table I. We also
have obtained, from the dependence on the external field at
the critical point, m = 1/δh = 0.254 ± 0.005; see Sec. III C.
From the equality δh = σ/β [49], we obtain σ = 2.22 ± 0.05.
We observe that the errors are not statistical, but simple fitting
errors; see Table I.

We also present a data collapse by plotting curves Lβ/νρ ×
L1/ν |W | and L−γ /ν
ρ × L1/ν |W |; see Fig. 3. Beside showing
an agreement of the exponents, the collapse gives the scaling
functions Gρ and G
ρ . The obtained critical exponents, the
data collapse of the ρN (W ) and 
ρN (W ) curves, and the
Janssen-Grassberger conjecture [33,34] seem to be enough
reasons to consider that our stochastic leaky integrate-and-fire
neuronal network indeed belongs to the DP or the C-DP
universality classes (the exponents of these two classes are

TABLE I. Critical exponents (directed percolation and Manna
exponents from [49]).

2d exponent

Results DP Manna

β 0.56 ± 0.05 0.5834 ± 0.0030 0.624 ± 0.029
ν⊥ 0.73 ± 0.05 0.7333 ± 0.0075 0.799 ± 0.014
γ ′ 0.37 ± 0.05 0.2998 ± 0.0162 0.367 ± 0.019
m = 1/δh 0.25 ± 0.05 0.268 ± 0.001 0.280 ± 0.014
σ = β/m 2.29 ± 0.05 2.1782 ± 0.0171 2.229 ± 0.032
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FIG. 2. (a) Order parameter ρ and (b) 
ρ as a function of L. Inverted triangles mark the critical point Wc = 1.74. Red lines are curve fits
to measure the exponent ratios of Eq. (20): β/ν⊥ ≈ 0.77 and γ ′/ν⊥ ≈ 0.50.

very similar and it is difficult to determine the class only from
the numerical results; see Table I).

B. The case with leakage μ > 0

The leakage parameter μ in Eq. (3) is the ingredient that
makes our neuron different from a simple binary automaton
and to be defined as an integrate-and-fire element. The neuron
has memory of its previous inputs because it forgets its
membrane potential with a timescale given by μ.

We found that μ > 0 changes the location of Wc [Fig. 4(a)].
In the mean-field case, we obtain analytically that Wc(μ) =
(1 − μ)Wc(0), with Wc(0) = 1 (for � = 1) [35,42]:

ρ(μ) =
[
C(μ)

W − Wc(μ)

Wc(μ)

]β

, (22)

where C(μ) is independent of W . This means that if x =
W − Wc(μ), the function y(x) = [Wc(μ)/C(μ)]βρ(μ) is inde-
pendent of μ.

We searched for a similar result for our square lattice,
but now with Wc(μ) = (1 − μ)Wc(0) = (1 − μ)1.74. We find
that the collapse is not good (not shown), meaning that the
mean-field result Wc(μ) = (1 − μ)Wc(0) does not generalizes
to the 2d case. However, by using the measured 2dWc(μ) from
Fig. 4(a), we obtain a very good data collapse; see Fig. 4(b).
This collapsed data means that leakage μ > 0 does not change
the universality class of our system.

C. Dynamic range of the first layer

As can be seen in Fig. 5(a), the value of the exponent
m ≈ 0.254 ± 0.005 is close to the expected value m = β/σ =
0.268 ± 0.001, if we use the DP class tabulated values for β

and σ . Assis and Copelli [16] found comparable values for the
Stevens’s exponent m for a susceptible-infected-recovered-
susceptible (SIRS) model in the square lattice.

As already observed, from our data, we obtain σ =
β/m = 0.63/0.254 = 2.48 ± 0.05. By using the tabulated
β = 0.5834, we get a better value, σ = 2.29 ± 0.01, to be
compared with the DP value, σ = 2.1782 ± 0.0171 [49].

FIG. 3. (a) Data collapse for the order parameter Lβ/ν⊥ρ(W ) and (b) fluctuations L−γ ′/ν⊥
ρ.
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FIG. 4. (a) Curves ρ(W, μ) for increasing μ from right to left and N = 512 × 512; (b) data collapse using x = W − Wc(μ) and y =
[Wc(μ)/C(μ)]βρ(μ).

To understand how much the regimes influence the re-
sponse, consider Fig. 5(a). In the subcritical regime, since the
coupling between neurons is small, the external input does
not propagate and the system response is linear. The same
thing happens in the supercritical regime, but for a different
reason: in this case, we have self-sustained activity and small
inputs are lost in a noisy environment. It is only close to
criticality (a few percent from Wc) that both small and large
stimulus alike can be mapped in the output [14,16–21,24]. The
dynamic range 
h of the first layer can be seem in Fig. 5(b).
At criticality, one can obtain a 
h ≈ 32 dB for L = 256, and
this value can be higher for larger networks.

D. Dynamic range of the second layer

Like the case of the first layer, we present examples of the
response function ρ2 in the three regimes; see Fig. 6(a). The fit
for the critical power law gives m2 ≈ 0.078 (the index refers
to the second layer). This accords with the expected value

for the exponent of Eq. (13), which is m2 = m2 = 0.072, if
we assume that the first layer represents the external input
for the second layer. Here, a fraction p = 0.1 of the neurons
of the first layer is connected randomly to the second layer
by forcing synapses; that is, if the corresponding first neuron
spikes, the connected neuron in the second neuron spikes after
a time step.

The dynamic range of the second layer in the subcritical
and supercritical regime is low for the same reason that they
are small in the first layer. However, in the critical regime,
the dynamic range of the second layer is huge [above 40
dB; see Fig. 6(b)] and sufficient to account for the exquisite
performance of biological sensors.

E. The effect of the interlayer connectivity p

As observed, for small interlayer connectivity p = 0.1,
the second layer exponent seems to preserve the relation
m2 = 0.072 ≈ m2 = (1/δh)2 [48,50]. However, for larger p,

FIG. 5. (a) First layer activity ρ(r,W ) as a function of stimulation rate r. The red line (Wc = 1.742) is the power law with exponent
m = 0.254. Network size N = 256 × 256. (b) Dynamic range for the first layer, for several values of W and systems with increasing sizes
from bottom to up.
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FIG. 6. (a) Second layer neuronal activity ρ2(r,W ) as a function of stimulation rate r at the first layer. The red line (Wc = 1.75) refers to
the power law given by Eq. (13) with m2 = 0.078. Network size N = 256 × 256. (b) Dynamic range for the second layer, for several values of
W and increasing sizes from bottom to up (the first layer has N = 256 × 256 neurons).

we deviate from this behavior; see Fig. 7 for simulations with
0.05 � p � 0.5.

We must remember here the origin of the increase of
dynamic range in networks of excitable cells (in contrast
to pools of isolated cells in recruitment theory). Networks
enable signal amplification, that is, the stimulation of one
cell by an input signal can produce a cascade of firings
in neighbors (a branching process). This branching of the
original signal means that small signals are amplified, in-
creasing the response to them. On the other hand, the
saturation due to very large input is delayed because the
branching processes interact and, since the cells have re-
fractory periods, the activity is suppressed [27–29]. This
occurs both for subcritical and supercritical networks (their
DR is always better than a pool with the same number

of isolated neurons), but the optimal point is the critical
one [14,15].

A very low p means that the layers are uncoupled, so the
signal amplification mechanism does not work. On the other
hand, a large connection p means that the activity of the first
layer, which is already increased, is heavily communicated to
the second layer. Each neuron that receives a synapse is now
the source of a new branching process. This means that high p
induces saturation in the second layer, increasing its Stevens’s
exponent m2.

Indeed, from Fig. 7(a), it is possible to see that m2(p) is a
monotonically growing function of the connectivity p. This
variation, however, is not so large (0.07 < m2 < 0.10); see
Fig. 7 inset. From Fig. 7(b), we see that the dynamic range
for various p is not sensitive to such small variation.

FIG. 7. (a) Stimulus and response curves for various values of interlayer connectivity fractions p that increases from bottom to up. The
inset presents the exponent of the power law ρ ∝ rm2 as a function of p. Simulation was carried using a 128 × 128 bidimensional network for
each layer and fixed synaptic weight close to the critical point W = 1.75. (b) Dynamic range for various values of p for the second layer of a
bilayered system, where each one consists of a 128 × 128 two-dimensional network.
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IV. HOMEOSTATIC CRITICALITY

Up to now, we have shown that critical networks have
maximal dynamic range. However, we have not discussed how
biological neuronal networks could tune themselves towards
criticality. In a series of publications [22,35,36,41,42,51],
we have explored such homeostatic mechanisms, which im-
plement the so-called self-organized quasi-criticality (SOqC)
scenario [52,53].

Homeostatic criticality means that the critical point turns
out an attractor for some adaptive dynamics of the system. In
contrast to conservative SOC models such as sand piles, where
the self-organization depends on dissipation on the borders
of the system that have no explicit equations for that, SOqC
models such as forest-fire models or neuronal networks have
explicit drive and dissipation mechanisms.

For example, let us consider activity-dependent synapses
[22,36,54] such that they depress by a factor u when the
presynaptic neuron fires (due to vesicle depletion) and recover
toward a baseline level A with a characteristic time τ :

Wi j,kl [t + 1] = Wi j,kl [t + 1] + 1

τ
(A − Wi j,kl [t])

− uWi j,kl [t]Xkl [t] (k ∈ V ), (23)

where k, l are the site neighbors of neuron i, j. Here, the drive
is the recovering mechanism and the dissipation is due to the
short-term depression. It is possible to show that with this
dynamics and for large τ , the average value W [t] = 〈Wi j,kl [t]〉
goes towards Wc.

We have noticed before that the second-order phase tran-
sition only occurs when θ = I , where θ = 〈θi j〉 and I = 〈Ii j〉
are the average threshold and average input. This condition,
for neuronal networks, seems to be a fine tuning. However, if
we think that the field h = I − θ is the average suprathreshold
current, the condition of zero field h = 0 is a natural requisite
for continuous phase transitions in statistical physics.

So, inspired in firing-rate adaptation mechanisms that pos-
tulate dynamic thresholds [46], we propose the following
homeostatic dynamics:

θi j[t + 1] = θi j[t] − 1

τθ

θi j[t] + uθ θi j[t]Xi j[t], (24)

where now the signs are inverted, and therefore the dissipation
is due to the 1/τ decay and the drive (growth of the threshold)
occurs when the neuron spikes. It is also possible to show that
this adaptive dynamics leads to θ [t] = 〈θi j[t]〉 → I , that is,
h → 0. An experimental prediction of this mechanism is that
in critical neuronal networks with power-law avalanches, the
neurons mostly adapt their firing thresholds to their external
inputs.

So, with these two homeostatic mechanisms, the critical
point W = Wc, h = hc = 0 in the phase diagram of the sys-
tems turns out an attractor of the overall dynamics. Simula-
tions of these homeostatic mechanisms in the 2d lattice are

somewhat out of the scope of this paper, but full results will
be presented in future work.

V. DISCUSSION AND CONCLUSION

The biological motivation for our the model is the
retina, where both lateral and vertical coupling by electric
synapses (gap junctions) occur, forming neuronal networks
with stacked layers [55]. All these electric synapses are
plastic, from the millisecond to the minute timescales [56],
which opens the possibility of homeostatic tuning to criticality
[36,42], as supposed here. Moreover, there is experimental
[57,58] and computational [59] evidence that disruption of
electric synapses diminishes the sensitivity and degrades the
retina dynamic range. We emphasize that we worked here with
stochastic integrate-and-fire neurons, not cellular automata as
done in [14–16,22,28,30,37], generalizing thus these results
to biologically more realistic elements.

By studying the critical exponents at the second-order
phase transition, we found that 2d lattices of stochastic
integrate-and-fire neurons are compatible with the directed
percolation universality class. We then proposed the topology
of two coupled square lattices to increase the dynamic range
of a retinalike sensor. The first one receives Poisson inputs
at rate r, and represents it as a neuronal activity ρ1 ∝ rm,
with m = 1/δh = β/σ = 0.268. This activity is passed, by a
fraction p of neurons, to the second layer which then presents
an output activity ρ2 ≈ rm2 . The final Stevens’s exponent of
the system is m2 = 0.078 ≈ m2 = (β/σ )2 = 0.072. Thus, the
exponent relation given by Eq. (15) proposed in [14] seems
to be valid, regardless of topology, as long as the stimulus
intensity is moderate: the power-law response is valid only
before a saturating regime (Hill’s-like curve) also found in
biological sensors.

It is possible to show that 1d systems (a ring of neurons)
pertain to the 1d DP class [16,60] (or perhaps the 1d Manna
class). In this case, we have a very large dynamic range
due to the expected value m = β/σ = 0.276486/ 2.554216 =
0.108247. This means that an input range of O(1015) units
can be mapped to an output range of O(100). Although such
low-dimensional topologies perhaps have no applications in
biology, it is conceivable that artificial sensors with a huge
dynamic range could be constructed based in these principles.
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