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Effect of mediated interactions on a Hubbard chain in mixed-dimensional fermionic cold atoms
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Cold atom experiments can now realize mixtures where different components move in different spatial
dimensions. We investigate a fermion mixture where one species is constrained to move along a one-dimensional
lattice embedded in a two-dimensional lattice populated by another species of fermions, and where all bare
interactions are contact interactions. By focusing on the one-dimensional fermions, we map this problem
onto a model of fermions with nonlocal interactions on a chain. The effective interaction is mediated by the
two-dimensional fermions and is both attractive and retarded, the form of which can be varied by changing the
density of the two-dimensional fermions. By using the functional renormalization group in the weak-coupling
limit and ignoring the retardation effect, we show that the one-dimensional fermions can be controlled to be in
various density-wave, or spin-singlet or spin-triplet superconducting phases.

DOI: 10.1103/PhysRevResearch.2.033054

I. INTRODUCTION

Cold atom systems have proven to be an invaluable tool
in studying a wide range of quantum many-body phenomena.
Even a single species of atoms can exhibit various quantum
states such as Bose-Einstein condensates (BECs) [1,2], Mott
insulators [3], or unitary Fermi gases [4–7]. The complexity of
cold atomic systems can be greatly enhanced by mixing dif-
ferent atoms. For example, a degenerate Fermi gas immersed
in a BEC can be realized with isotopes of Li atoms [8–10]
or with different atomic species [11,12]. A two-species Fermi
gas was first realized with Li and K atoms [13], and has
been studied extensively [14–16]. The controllability of inter-
species interactions permits these ultracold atomic mixtures
to become valuable platforms to study novel many-body
phenomena such as an impurity problem [17,18], polaron
formation [19,20], or lattice gauge theories [21,22].

The development of experimental techniques to create
species-specific lattice geometries has further extended the
possibilities of the mixed atomic gases [23,24]. For example,
in a recent experimental work, a bosonic mixture of 41K
and 87Rb atoms is confined in two dimensions and in three
dimensions, respectively [25]. In light of this experimental
success, several other experimental works [26,27] have been
conducted to create Fermi-Bose mixtures. We also note that
a 3He - 4He solution provides effectively mixed-dimensional
Fermi gases [28]. Theoretical works on mixed-dimensional
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systems predict phenomena such as Efimov effects [29,30],
mediated pairing [31–35], or a topological superfluid [36,37].

Motivated by this progress, we propose in the present paper
to investigate a Fermi system composed of c-type and f -
type species confined to one dimension and two dimensions,
respectively (Fig. 1). We assume a contact interaction in
the one-dimensional (1D) system while ignoring the inter-
action between the two-dimensional (2D) particles. Through
the interspecies contact interaction, the f particles induce a
mediated interaction of the Ruderman-Kittel-Kasuya-Yosida
type [38–40] among the c particles. The momentum structure
of the effective interaction is determined by the filling of the f
particles and thus can be used as a tuning knob to manipulate
the quantum phases in the 1D system.

In the weak-coupling limit, we investigate the ground
state phase diagram by a functional renormalization group
(fRG) [41–47]. This treatment enables us to go beyond the
standard g-ology and bosonization methods [48] by includ-
ing the curvature of the band dispersion and the momen-
tum dependence of the coupling constants. We identify the
dominant instability by looking at the flow of the coupling
constants and show that the resulting phase diagram includes
charge-/bond-/spin-density waves and spin-singlet/-triplet
superconductivity. We find that formally irrelevant terms can
play an important role in determining the dominant pairing
phase, and also lead to a dominant bond-wave order instability
among the many competing ones in a small region of the
phase space. When the filling of the c particles is away from
half filling, the density-wave instabilities are replaced by the
superconducting instabilities. This demonstrates a possible
means of manipulating exotic quantum phases such as bond-
density waves or spin-triplet pairing in a mixed-dimensional
setup.

The remainder of our paper is organized as follows. Sec-
tion II introduces the model that we consider and discusses the
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FIG. 1. Schematic of the model that we consider. The one-
dimensional optical lattice is in contact with the two-dimensional
lattice at y = 0.

mediated interactions in the 1D system. In Sec. III, we briefly
summarize the functional renormalization group method as
applied to our model, and explain how we determine the phase
diagram. Section IV shows the flows of the coupling constants
and the phase diagrams. Section V presents our conclusions.

II. MODEL

The 1D system that we consider is given by

Hc = −tc
∑

〈xx′〉,σ
(c†

x,σ cx′,σ + H.c.)

+Uc

∑
x

nc
x,↑nc

x,↓ − μc

∑
x,σ

nc
xσ , (1)

where c(†)
xσ is the annihilation (creation) operator of a c fermion

with spin σ at site x, and tc is the hopping between nearest-
neighbor sites 〈x, x′〉 on a regular lattice. Uc is the on-site
Hubbard interaction between particle densities nc

xσ = c†
xσ cxσ ,

and μc is the chemical potential. Similarly, the 2D system of
the noninteracting f fermions is given by

Hf = −t f

∑
〈r,r′〉,σ

f †
rσ fr′σ − μ f

∑
r,σ

n f
r,σ , (2)

where f (†)
rσ is the annihilation (creation) operator of a f

fermion with spin σ at site r = (x, y), and t f is the hopping
between nearest-neighbor sites 〈r, r′〉 on a square lattice. The
two species interact at y = 0 with spin-independent density-
density interaction Uc f ,

Hc f = Uc f

∑
x,σ,σ ′

nc
xσ n f

x,y=0,σ ′ . (3)

We consider N0 and N2
0 sites for c and f particles with a

periodic boundary condition with a lattice constant a = 1. The
Fourier transforms are given by

cxσ = 1√
N0

∑
k∈BZ

eikxckσ ,

frσ = 1√
N2

0

∑
p∈BZ

eip·r fpσ , (4)

which give rise to the 1D and 2D dispersion relations ξ c
k =

−2tc cos(k) − μc and ξ
f
p = −2t f [cos(px ) + cos(py)] − μ f .

Next, we construct a path integral partition function over
Grassmann fields [8], and seek an effective 1D action. The
total action of the 1D and 2D fermions with imaginary time τ

and inverse temperature β is given by

S =
∫ β

0
dτ

⎡
⎣∑

k,σ

c†
kσ

(τ )∂τ ckσ (τ ) + Hc(τ )

+
∑
p,σ

f †
pσ (τ )∂τ fpσ (τ ) + Hf (τ ) + Hc f (τ )

]
. (5)

With the Fourier series in Matsubara frequencies ωn =
π (2n + 1)/β (n ∈ Z) as

fpσ (τ ) = 1√
β

∑
n

e−iωnτ fnpσ , (6)

we can cast the quadratic action of the 2D fermions into a
matrix form,

S2D =
∑

n,n′,p,p′,σ

f †
npσ

[ − G−1
0 + M

]
(np);(n′ p′ ) fn′ p′σ , (7)

with a Green’s function matrix G0 and an interaction part M,

[G0](np);(n′ p′ ) = 1

iωn − ξ f (p)
δnn′δpp′ ,

[M](np);(n′ p′ ) = Uc f

N3
0 β

∑
m,k,σ

c†
mkσ

cn−n′+m,px−p′
x+k,σ . (8)

After integrating out the 2D fermions, the effective action for
the 1D fermions becomes

Seff = Sc − 2 Tr ln
[ − G−1

0 + M
]

= Sc − 2 Tr ln
[ − G−1

0 (1 − G0M )
]

= Sc + 2
∞∑

n=1

Tr[(G0M )n]

n
+ const, (9)

where the factor of 2 accounts for the spin of the f parti-
cles, taken here to be spin-1/2. The first-order term in the
expansion gives the correction to the chemical potential of
the 1D fermions, which we assume to be included in μc in
the following. Summation over ωn in the second-order term
generates the effective interaction,

Tr[(G0M )2]

= U 2
c f

N6
0 β

∑
l̃,p,p′

⎡
⎣nF

(
ξ

f
p
) − nF

(
ξ

f
p+p′

)
iω̃l + ξ

f
p − ξ

f
p+p′

×
∑

m,m′,k,k′,σ,σ ′
c†

mkσ
cm−l̃,−p′

x+k,σ c†
m′k′σ ′cm′+l̃,p′

x+k′,σ ′

⎤
⎦, (10)

where ω̃l = ωn′ − ωn is a bosonic Matsubara frequency, and
nF(ξ ) is the Fermi distribution function. If we consider t f 

tc 
 1/β, we can ignore the retardation effects, and only
the ω̃l = 0 component is important. In this limit, we can
write a mediated interaction for the c fermions, Eq. (10), in
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FIG. 2. Mediated interaction U ′(q) in Eq. (11) in units of U 2
c f /t f .

As the chemical potential of the f particle increases, the dominant
component shifts from U ′(π ) to U ′(0).

momentum space as

Hmed = 1

2N0

∑
k,k′,q,σ,σ ′

U ′(q)c†
kσ

c†
k′σ ′ck′+qσ ′ck−qσ ,

U ′(q) = 2U 2
c f

∫ π

−π

d pd p′
y

(2π )3

nF
(
ξ

f
p
) − nF

(
ξ

f
p+(q,p′

y )

)
ξ

f
p − ξ

f
p+(q,p′

y )

, (11)

where the strength of the mediated interaction scales as
U 2

c f /t f .
We plot the induced interaction in Fig. 2 for various fillings

of the 2D system. In what follows, the mediated interaction for
momentum transfers consistent with the marginal scattering
processes [4,9] plays the key role in the development of
various quantum phases of the system. At μ f = 0, |U ′(π )| >

|U ′(0)|. However, as we increase μ f , U ′(0)/U ′(π ) becomes
larger, and around μ f ≈ 1.8t f , the magnitudes of U ′(0) and
U ′(π ) switch; this signals the appearance of different leading-
order instabilities, as will be shown below. With the original
interaction Uc included, the 1D system now has the total
interaction V (k1, k2, k3) as

V (k1, k2, k3) = Uc + U ′(k3 − k2), (12)

where the fourth momentum (not explicitly written above) is
automatically determined by the momentum conservation. It
follows that by varying the interactions Uc and Uc f and the
2D filling μ f , we can control U ′(0) and U ′(π ) to any negative
value, while the overall strength of the interaction must be
small enough for the perturbative scheme to be valid.

III. METHOD

Based on the effective interaction, phase diagrams are
obtained by a fRG scheme. Here, we briefly outline the
standard N-patch scheme [41,43–45,47], which we employ in
this work. We divide the Brillouin zone into Npatch patches
as shown in Fig. 3, where the patch momenta {k̄n} are
equally spaced. The interaction is now approximated as
V (k1, k2, k3) → Vn1n2n3 , where ni is the patch that ki belongs
to. Naively, the total number of coupling constants is N3

patch =

FIG. 3. Patching scheme for the functional renormalization group.

27 000. However, we can reduce this number by using the
symmetry of the Hamiltonian to 3735. The RG equation
is obtained after integrating out the high-energy degrees of
freedom around the ultraviolet cutoff 
. By parametrizing the
cutoff as 
(l ) = 
0e−l with the initial value of the cutoff

0, the coupling constants at lower energies are obtained by
integrating the RG equations [45,47],

∂Vn1n2n3

∂l
= −

∑
n

�̇−(n, qpp)
(
Vn1n2nVn4n3n + Vn2n1nVn3n4n

)
+

∑
n

�̇+(n, qfs )
(
2Vnn4n1Vnn2n3 − Vn4nn1Vnn2n3

− Vnn4n1Vn2nn3

)
+

∑
n

�̇+(n,−qfs )
(
2Vnn1n4Vnn3n2 − Vn1nn4Vnn3n2

− Vnn1n4Vn3nn2

)
−

∑
n

�̇+(n, qex)Vn3nn1Vn2nn4

−
∑

n

�̇+(n,−qex)Vn1nn3Vn4nn2 , (13)

where qpp = k̄n1 + k̄n2 , qfs = k̄n3 − k̄n2 , and qex = k̄n1 − k̄n3 .
�̇±(n, q) is a differential of a bubble integral over frequency
ω and momentum k inside the nth patch,

�̇±(n, q) = ±


∫
ω

∫
k∈n

Ġ(ω, k)G[±ω,±(k − q)], (14)

with G(ω, k) = �(|ξ c
k | − 
)/(iω − ξ c

k ). Here, the free propa-
gator is used, since we ignore the self-energy correction along
the RG flows.

A RG flow is started from an ultraviolet cutoff 
0 = 2tc
and integrated until one of the coupling constants becomes
∼20tc or 
 = 10−6t . The former indicates an ordering in-
stability, while the latter indicates no instability, i.e., the
Luttinger liquid fixed point. To determine the dominant in-
stability, we extract the coupling constants at the Fermi level
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FIG. 4. Phase diagrams for μc = 0 (half filling). The rectangular
region in (a) is enlarged in (b) to zoom into the CDW-SDW boundary,
showing the narrow BCDW phase.

as

g1 = V (L, R, L),

g2 = V (L, R, R),

g3 = V (L, L, R),

(15)

where L, R denote the left and right patches that the Fermi
momentum is contained. This connects our treatment to the
standard g-ology analysis, which usually assumes linear dis-
persion around the Fermi energy. In our analysis, the flows of
these coupling constants are affected by the curvature of the
band dispersion and by other marginal and irrelevant coupling
constants away from the Fermi energy. As we discuss in
the next section, these corrections are important to capture
the emergence of a bond-order phase and subtle competition
between pairing phases. We consider charge-density waves
(CDWs), spin-density waves (SDWs), spin-singlet supercon-
ductivity (SS), and spin-triplet superconductivity (TS). When
the system is at half filling, bond charge-/spin-density waves
(BCDWs/BSDWs) are also possible. The ordering tendencies
of these phases are measured by [49]

gCDW/BCDW = −2g1 + g2(∓g3),

gSDW/BSDW = g2(±g3),

gSS/TS = ∓g1 − g2,

(16)

where the g3 term is omitted for non-half-filling conditions.
We identify the leading instability by the most diverging
coupling constant in Eq. (16).

IV. RESULTS

Phase diagrams

We start from the phase diagrams for half filling, μc = 0,
in Fig. 4(a) at Uc = tc. When the interspecies interaction Uc f

is weak or the 2D filling is very high, the total interaction
is dominated by Uc, which leads to the SDW instability. As
Uc f increases, the mediated attractive interaction becomes
stronger. When the 2D fermions are half filled μ f = 0 or
close to it, the mediated interaction is dominated by the
q = π component, with |U ′(q = π )| > |U ′(q = 0)|, as shown

FIG. 5. Flows of the coupling constants g1,2,3(l ) for CDW (upper
left), SS (upper right), TS (lower left), and SDW (lower right) regions
at U 2

c f /t f = 0.8. The values of μ f /t f are 0.0, 2.1, 2.7, and 3.7,
respectively.

in Fig. 2, and CDW order becomes dominant. However,
when the 2D filling deviates from half filling significantly
μ f � 1.8t f , U ′(q = 0) becomes the largest component in the
mediated attractive interaction (see Fig. 2), which leads to
spin-singlet pairing (SS). At μ f ≈ 1.8t f , the mediated interac-
tion is independent of momentum q, and thus gives attractive
on-site interactions in real space. Hence, at U 2

c f /t f ≈ 0.55,
the original repulsive on-site Hubbard Uc and the mediated
contribution cancel, leading to a quadruple point where SDW,
CDW, SS, and TS meet (Fig. 4). At this point, the system is
noninteracting and behaves as a Luttinger liquid. A further
increase of the 2D filling leads to spin-triplet pairing (TS) and
then eventually the mediated interaction becomes too weak.
We consider the TS region to be reminiscent of the d-wave
pairing in a two-leg ladder with mediated interactions [32].

At half filling, it is known that the extended Hubbard
model exhibits BCDW at the boundary between CDW and
SDW at a weak-coupling regime, i.e., g1 = g3 � 0 at the bare
level [43,50–54]. In Fig. 4(b), we plot the phase diagram
near the CDW-SDW boundary to demonstrate the existence
of the BCDW. The BCDW appears when g1 � g3 � 0 at
the bare level as in the extended Hubbard model. While the
BCDW region is rather narrow, our model correctly captures
the known BCDW phase at the CDW-SDW boundary because
of the radial patch scheme we employed for our fRG calcula-
tions. This region can be enlarged by increasing the original
on-site interaction Uc, and the width of the BCDW is largest at
μ f = 0, and becomes smaller as increasing μ f . This indicates
that the BCDW can be enhanced by having larger values of
U ′(π ).

In order to further understand the origin of each region, we
plot the flows of the coupling constants in Fig. 5. In the CDW
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FIG. 6. Phase diagrams for (a) μc = 0.5tc and (b) μc = 1.5tc.

region, the large negative value of g1 dominates. For μ f � 0,
the subdominant coupling is negative g3 as in Fig. 5(a), while
as we approach the SS region, g2 becomes subdominant. The
growth of g2 switches the dominant instability from the CDW
to the SS. In the SS region [Fig. 5(b)], g2 goes to −∞, while
g1 and g3 remain very small. Due to the small negative g1,
the SS instability is more dominant than the TS. In the TS
region [Fig. 5(c)], g2 still diverges to −∞, while g3 also
grows, which signals the closeness to SDW. Here, due to the
small positive g1, the TS instability is more dominant than the
SS. These indicate that the difference between the SS and TS
instabilities is very subtle and determined by the marginally
irrelevant g1 coupling. The same behaviors are also seen in
the extended Hubbard model in Ref. [49]. Finally, in the SDW
region [Fig. 5(d)], both g2 and g3 diverge to +∞ while g1

is marginally irrelevant. Here, both the SDW and BCDW
instabilities are possible, while the small positive g1 makes
the SDW more stable.

Lastly, we show phase diagrams for μc �= 0 in Fig. 6. In
general, g2 becomes the most dominant term, and thus both
SS and TS regions are enhanced. Compared to the half-filling
case, at μc = 0.5tc, the CDW region is greatly reduced, due
to the absence of the umklapp term g3, while the SDW region
mostly remains. However, as we increase the filling to μc =
1.5tc, the SDW instability is replaced by the TS, and the
density waves only exist for relatively small μ f and Uc f .

V. CONCLUSIONS

In this paper, we have studied the effect of mediated inter-
actions on a Hubbard chain in contact with a two-dimensional
noninteracting Fermi gas. After integrating out the fast non-
interacting two-dimensional particles, we derive an effective
mediated interaction among the one-dimensional fermions,
whose momentum-dependent structure can be controlled by
the filling of the mediating particles. With the mediated
interaction and the original Hubbard interaction, we have
obtained ground state phase diagrams of the one-dimensional
fermions by the functional renormalization group. We find
that the system can exhibit charge-/spin-/bond-density waves
and spin-singlet/-triplet superconducting instabilities by con-
trolling the filling of the two-dimensional particles and the
interspecies interaction. The effects of trapping potentials,
temperatures, and interactions among the f particles are in-
teresting open problems.
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