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Winding numbers and generalized mobility edges in non-Hermitian systems

Qi-Bo Zeng1 and Yong Xu 1,2,*

1Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, People’s Republic of China
2Shanghai Qi Zhi Institute, Shanghai 200030, People’s Republic of China

(Received 24 February 2020; revised 14 June 2020; accepted 16 June 2020; published 10 July 2020)

The Aubry-André-Harper (AAH) model with a self-dual symmetry plays an important role in studying the
Anderson localization. Here we find a self-dual symmetry determining the quantum phase transition between
extended and localized states in a non-Hermitian AAH model and show that the eigenenergies of these states are
characterized by two types of winding numbers. By constructing and studying a non-Hermitian generalized AAH
model, we further generalize the notion of the mobility edge, which separates the localized and extended states
in the energy spectrum of disordered systems, to the non-Hermitian case and find that the generalized mobility
edge is of a topological nature even in the open boundary geometry in the sense that the energies of localized
and extended states exhibit distinct topological structures in the complex energy plane. Finally, we propose an
experimental scheme to realize these models with electric circuits.
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I. INTRODUCTION

Anderson localization [1] is a ubiquitous phenomenon
in disordered physical systems. Due to the destructive in-
terference of scattered waves, the states in the system can
become localized [2,3]. So far, the Anderson localization has
been experimentally observed in various platforms, such as
light [4–7], cold atoms [8–10], microwave [11–13], and pho-
tonic lattices [14]. In three-dimensional systems with uncor-
related (random) disorders, the localization phase transition
occurs with a mobility edge, which is defined as the energy
separating the extended and localized states in the energy
bands [15]. Though such phase transition is excluded by
scaling theory in lower-dimensional disordered systems [16],
it still happens in systems with correlated disorders. One
paradigmatic example is the one-dimensional (1D) Aubry-
André-Harper (AAH) model [17,18], which is a lattice model
with incommensurate on-site modulations and is of great
importance in studying the Anderson localization in qua-
sicrystals [19–23]. Because of the self-dual symmetry in the
original AAH model, no mobility edge is observed. Never-
theless, with appropriately designed on-site modulations or
long-range hopping, the mobility edge will emerge in these
quasiperiodic lattice models [24–27].

During the past few years, non-Hermitian topological sys-
tems have been extensively studied both theoretically and
experimentally [28–90]. The interplays between the topol-
ogy and non-Hermiticity result in a plethora of exotic phe-
nomena that have no Hermitian counterparts, e.g., the Weyl
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exceptional ring [43], the anomalous edge mode [37], the
point gap [58], and the non-Hermitian skin effect [49,54–57].
Recently, the topological phases in the non-Hermitian AAH
model have been explored [89]. The Anderson localization
phenomena in such non-Hermitian quasiperiodic as well as
disordered systems have also been investigated [91–96]. Ref-
erence [94] shows that the Anderson localization phase transi-
tion in a 1D non-Hermitian quasicrystal with on-site gain/loss
is topological and can be characterized by a winding number.
But whether the self-dual symmetry exists in non-Hermitian
systems remains elusive. Moreover, though the mobility edge
has been found in the disordered Hatano-Nelson model [58],
the topological feature does not exist in an open boundary ge-
ometry. One may wonder whether distinct topological struc-
tures can emerge for the energies of extended and localized
states so that a topological mobility edge appears in a system
with open boundaries. This seems impossible as it has been
shown that the energy spectrum cannot exhibit a nonzero
winding number in a system with open boundaries [84,85].
However, the winding number contributed by the complex
on-site potential has not been considered there.

Recently, electric circuits have been shown to be a pow-
erful platform to simulate various topological phases, which
have been extensively explored both theoretically and exper-
imentally [62,77,89,95,97–100]. The circuits can be imple-
mented flexibly and the topological features can be extracted
by measuring electrical signals, such as the voltages in the
system. In Ref. [77], the breakdown of bulk-boundary cor-
respondence and the non-Hermitian skin effect have already
been observed in a nonreciprocal topolectric circuit. It will
be interesting to use similar schemes to study the Anderson
localization and mobility edges in non-Hermitian systems.

In this paper, we study the self-dual symmetry, the winding
numbers, and the mobility edges in non-Hermitian AAH
models. (i) We show that there are two types of winding
numbers: Wh arising from asymmetric hopping and Wo arising
from the complex on-site potential. (ii) We find a self-dual
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symmetry in a non-Hermitian AAH model with asymmetric
hopping determining the quantum phase transition between
extended and localized states. The energies of both localized
and extended states form loop structures in the complex
energy plane that are characterized by the winding number
Wo and Wh, respectively, under periodic boundary conditions
(PBCs), and by Wo under open boundary conditions (OBCs).
(iii) We further construct a non-Hermitian generalized AAH
model with PT symmetry that hosts both localized and
extended states in the energy spectra. By generalizing the
mobility edge in a Hermitian system to a non-Hermitian
one, we find that the generalized mobility edges under both
PBCs and OBCs are topological in the sense that the energy
spectra of the localized and extended states exhibit nonzero
and zero winding numbers. With weak asymmetric hopping
breaking the PT symmetry, we find that the energy spectra
of both localized and extended states obtained under PBCs
form loop structures characterized by the winding number
Wo and Wh, respectively. Under OBCs, only the latter spec-
tra exhibit nonzero Wo. We also find loop structures in the
energy spectra obtained under OBCs characterized by Wo; a
single loop structure consists of the energy spectra of both
localized and extended states. For larger asymmetric hopping,
we demonstrate that the energy spectra of extended states can
also possess a winding number (nonzero Wo). (iv) Finally, we
propose a practical experimental scheme with electric circuits
to simulate these models and detect the predicted features.

The rest of the paper is organized as follows. In Sec. II,
we introduce the self-dual symmetry in non-Hermitian AAH
models. Then we explore the properties of mobility edges in
non-Hermitian systems in Sec. III. Finally, we present the
experimental proposal for realizing the non-Hermitian models
by using electrical circuits in Sec. IV. The last section (Sec. V)
is dedicated to a brief summary.

II. SELF-DUAL SYMMETRY

We start by considering a non-Hermitian AAH model
described by

Ĥ =
∑

j

[eiφh/LtLĉ†
j ĉ j+1 + e−iφh/LtRĉ†

j+1ĉ j + Vjĉ
†
j ĉ j], (1)

where ĉ j (ĉ†
j ) is the annihilation (creation) operator of a

spinless particle at site j, tL = t + γ and tR = t − γ , with
γ characterizing the asymmetric hopping amplitude, φh

corresponds to an applied magnetic flux through a finite
ring with length L, and Vj = V cos(2πα j + φo/L + ih) =
V [ei(2π jα+φo/L)e−h + e−i(2π jα+φo/L)eh]/2 with V , φo, and h
being real parameters and α determining the period of the
modulation that is taken as an irrational number in the incom-
mensurate case. Note that Ref. [94] considered the case for
γ = 0 and φh = 0. The Hamiltonian can also be written as
Ĥ = �̂†Hr�̂, where �̂† = (ĉ†

1 ĉ†
2 · · · ĉ†

L ).
We now write this Hamiltonian in the Fourier space as

Ĥ =
∑

k

[
V

2
(eiφo/Le−hâ†

k+1âk + e−iφo/Lehâ†
k âk+1) + Ukâ†

k âk

]
,

(2)

FIG. 1. (a) MIPR vs γ for distinct system sizes. The dashed red
line denotes the critical point of γ = 0.1974t . Energy spectra in the
complex energy plane with the color bar indicating the IPR values
of the eigenstates for (b) γ = 0.15t and (c),(d) γ = 0.23t . In (b),
the spectra obtained under PBCs are the same as those obtained
under OBCs. (c) is obtained under PBCs, while (d) is obtained under
OBCs. The insets plot the amplitudes of the corresponding wave
functions as labeled by the black squares. The black and red numbers
denote the winding numbers of Wo and Wh for the energy loops,
respectively. Clearly, in (b), the states are localized, while in (c) the
states are extended under PBCs, which exhibit non-Hermitian skin
effects under OBCs. Here, α = (

√
5 − 1)/2, φo = φh = 0, L = 233,

h = 0.2, and V = 1.96t .

where Uk = 2J cos(2πkα+φh/L + ir) = ei2πkα+φh/L(t+γ ) +
e−i(2πkα+φh/L)(t − γ ) with J =

√
t2 − γ 2 and r = ln

√
t−γ

t+γ
.

The Hamiltonian can be written in a compact form as Ĥ =
�̂†HF �̂, where �̂† = (â†

1 â†
2 · · · â†

L ). Evidently, h con-
tributes asymmetric hopping in the Fourier space.

Clearly, when φh = φo, t = V cosh(h)/2, and γ =
V sinh(h)/2, we have HF = H∗

r (∗ denotes the complex
conjugate operation), showing a self-dual symmetry. Note
that the generic case requires |V cosh(h)/(2t )| = 1 and
|V sinh(h)/2| = |γ |. This symmetry dictates the phase
transition between extended and localized states in terms of
V , h, and γ . For instance, when V = 1.96t and h = 0.2, the
symmetry gives us the critical point at γ = 0.1974t , which
has been numerically confirmed in Fig. 1(a) by the change
of the mean inverse participation ratio (MIPR) defined as
Im ≡ 1

L

∑
E I(E ). Here, I (E ) = ∑

j |ψ j (E )|4/[
∑

j |ψ j (E )|2]2

is the inverse participation ratio (IPR) for the right eigenvector
ψ (E ) of Hr corresponding to the eigenenergy E , with ψ j (E )
representing the jth entry of ψ (E ). In the following, we
will use the IPR to characterize the localization property
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of an eigenstate. Specifically, for a localized state, the IPR
approaches to around 1, whereas for an extended state, the IPR
is of the order of 1/L. We note that the self-dual symmetry
only determines parts of critical points, i.e., four points when
|V/t | < 2 and one point when |V/t | = 2 in the (h, γ /t )
plane. The critical lines in the plane can be approximately
determined by γ = V sinh(h)/2; see the Appendix.

We now define two types of winding numbers measured
with respect to a base energy EB as

Wν (H ) = lim
L→∞

1

2π i

∫ 2π

0
dφν

∂

∂φν

ln det[H (φν ) − EB], (3)

with ν = h, o. Wh(Hr ) refers to the widely used winding
number evaluated by applying a magnetic flux φh [58] and Wo

refers to the winding number evaluated by applying the phase
φo in the on-site potential [94] (i.e., applying a magnetic flux
in the Fourier space). They have been separately utilized to
characterize the loop of the energy spectra of extended [58]
and localized states [94], respectively. It is reasonable as in a
periodic boundary geometry, the localized (extended) states
are extended (localized) in the Fourier space and thus the
winding number is evaluated by applying a magnetic flux (a
phase in the on-site potential) in the Fourier space. However,
under OBCs, only Wo exists since the magnetic flux can only
be applied in a ring system. But it does not mean that only
the energy spectra of the localized states can exhibit a loop
structure. In fact, those of extended states can also show
similar features.

In the self-duality line for φh = φo = 0, if E is an eigenen-
ergy of Hr , it is also an eigenenergy of HF and thus E∗ is also
an eigenenergy of Hr because Hr = H∗

F , implying that H∗
r and

Hr share the same set of eigenvalues. This equality also gives
us Wo(Hr ) = Wh(H∗

F ). We thus obtain Wo(Hr ) = −Wh(HF ) =
−Wh(Hr ), indicating that these two winding numbers are
either both nonzero or both zero with respect to EB under
PBCs. Across the line, if the states are localized, the energy
spectra have Wo = −1 and Wh = 0 with the same spectra
for PBCs and OBCs, as shown in Fig. 1(b). Otherwise, if
the states are extended, the energy spectra obtained under
PBCs have Wh = 1 and Wo = 0 [see Fig. 1(c)], suggesting the
presence of the non-Hermitian skin effects under OBCs. But
that does not mean that the winding number cannot exist in
this scenario. In fact, we find that the energy spectra obtained
under OBCs can still form loops characterized by Wo = −1
despite the presence of the skin effects, as shown in Fig. 1(d).
We note that this feature exists not only in the incommensurate
case, but also in a commensurate case, which is a periodic
system (see Fig. 5 in the Appendix).

III. TOPOLOGICAL MOBILITY EDGE

To generate the mobility edge, we consider the Hamilto-
nian in (1) with the on-site potential replaced with

Vj → V ′
j = 2Vj

1 − aVj/V
, (4)

where a is a real parameter. When γ = h = 0, this model is
Hermitian and hosts mobility edges [26]. In the Hermitian
case, the mobility edge is defined as the energy that separates

the localized and extended states in the energy spectrum.
Yet, in a non-Hermitian case, given that the energies become
complex, we define a generalized mobility edge as boundaries
in the complex energy plane that separate the localized and
extended states.

Without γ , the model has the PT symmetry, i.e.,
PT Ĥ (PT )−1 = Ĥ with PT ĉ j (PT )−1 = ĉ− j and
PT i(PT )−1 = −i. Interestingly, we find that the energy
spectra obtained under PBCs and OBCs are identical and
parts of them are real (PT -symmetry preserved) and parts are
complex (PT -symmetry broken) forming a loop, as shown
in Fig. 2(a). The states with complex energies are localized
and thus the loop is characterized by Wo = −1, while those
with real energies are extended with Wo = Wh = 0. The gray
loop in Fig. 2(a) shows a generalized mobility edge with
localized states inside the loop and extended states outside
it; the mobility edge is clearly not unique. Given that the
topological properties of the energy spectra inside and outside
the edge are distinct, we call it the topological mobility edge.

With γ breaking the PT symmetry, the energies of the
extended states obtained under PBCs also become complex
and form loops, as shown in Figs. 2(b), 2(d), and 2(f). The
loops associated with the localized and extended states are
characterized by the winding numbers Wo = −1 and Wh = 1,
respectively. Similarly, we can choose a loop in the complex
energy plane as a generalized mobility edge. The generalized
mobility edge is also of a topological nature in the sense
that the energy spectra inside it have Wo = −1 and Wh = 0
and those outside it have Wh = 1 and Wo = 0, provided that
the base energy is inside the complex energy loop. In a ge-
ometry with open boundaries, the extended states associated
with nonzero Wh are localized at the boundaries due to the
non-Hermitian skin effect, consistent with the prediction in
Refs. [84,85], whereas the localized states are immune to the
skin effect. One can also find a topological mobility edge in
this boundary condition.

Although the extended states associated with nonzero Wh

under PBCs suffer from the skin effect, the energy spec-
tra of these states under OBCs can still exhibit topological
properties. For instance, when h = 0.2 and γ = 0.5t , we
observe that the middle loop in the energy spectra under PBCs
becomes a smaller loop under OBCs that are characterized
by Wo = −1 [see Figs. 2(d) and 2(e)], instead of a line with
zero Wo [84,85]. Interestingly, as we decrease γ to γ = 0.32t ,
we find that the middle loop in the energy spectra under
PBCs deforms into two loops with a partition in the center
[see Fig. 2(f)]. When the base energy resides inside one
(the other) loop, we have Wh = 1 and Wo = 0 (Wh = 0 and
Wo = −1). Thus, the states with energies on one (the other)
loop are extended (localized), implying that the common
partition is part of the generalized mobility edge. In this
periodic boundary case, the generalized mobility edge is still
topological. But in the open boundary case, these two loops
become one, with the energy spectra of the localized states
remaining unchanged, and other states on the loop undergo the
skin effect. This closed loop is also characterized by Wo = −1.
Evidently, the generalized mobility edge is not topological in
this case because Wo = −1 occurs both inside and outside the
closed mobility edge.
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FIG. 2. Energy spectra in the complex energy plane for systems with (a) h = 0.5 and γ = 0 under PBCs, (b),(c) h = 0.5 and γ = 0.2t
under PBCs and OBCs, respectively, (d),(e) h = 0.2 and γ = 0.5t under PBCs and OBCs, respectively, (f),(g) h = 0.2 and γ = 0.32t under
PBCs and OBCs, respectively, and (h) h = 0 and γ = 0.5t under PBCs (the inset shows the spectrum under OBCs). The color bar indicates
the IPR values of the eigenstates. The insets plot the amplitude of the wave functions corresponding to the eigenenergy denoted by the black
squares. The black and red numbers represent the winding numbers of Wo and Wh, respectively. In (a), the gray loop plots a generalized mobility
edge. Here we set (a)–(c) V = 0.5t and (d)–(h) V = 1.0t . Other parameters are α = (

√
5 − 1)/2, φh = φo = 0, a = 0.5, and L = 233.

In another limit with only asymmetric hopping, the energy
spectra of the extended states obtained under PBCs form
closed loops, whereas those of the localized states are real
[see Fig. 2(h)]. Since the localized states are immune to the
skin effects, their energy spectra obtained under OBCs remain
the same as the spectra for PBCs. But for the extended states,
their energy spectra become either real or a smaller loop due
to the skin effects. In this scenario, the generalized mobility
edge is topological in a system with periodic boundaries, but
not with open boundaries.

IV. EXPERIMENTAL REALIZATION

Here we propose an experimental scheme with electric
circuits to simulate the lattice model, as shown in Fig. 3.
The hopping between neighboring sites is simulated by ca-
pacitors and the negative impedance converter with current
inversion (INIC) [98,101], and the on-site modulations are
provided by grounding each node with appropriate electric
devices (see Fig. 3). After arranging the current and voltage
at each node into column vectors I and U , respectively, we
can write I = JU with J = −iωHr (ω is the frequency of
the current) being the Laplacian of the circuit, which can
simulate the Hamiltonian matrix Hr . The energy spectra can
be evaluated by measuring the two-point impedances [89].
Other platforms, such as the atomic optical lattices [26] and
photonic systems [94], are also feasible for the experimental
realizations.

V. SUMMARY

In this paper, we report a self-dual symmetry in a non-
Hermitian AAH model determining the quantum phase tran-
sition between localized and extended states. We show that
there are two types of winding numbers Wo and Wh dictating

the topological properties across the transition, i.e., the ener-
gies of localized and extended states under PBCs are char-
acterized by Wo = −1 and Wh = 1, respectively. We further
demonstrate the existence of topological mobility edges. Our
work deepens our understanding of the winding numbers and

FIG. 3. The electric circuit for realizing the model Hamiltonian
in Eq. (4). C and Cr denote the capacitance of the capacitor and INIC
for a capacitor, respectively; these two electric devices connect one
node to its neighboring one, simulating the hopping in the Hamilto-
nian. Here, two types of INIC are employed: one for a capacitor (see
the bottom left corner for its detailed structure) and the other for a
resistor, which is produced by replacing the capacitor in the former
INIC with a resistor. They are represented by the INIC symbol with a
capacitor or resistor symbol inside, respectively. The on-site potential
V ′

j at each site is simulated by grounding each node with three
suitable devices chosen according to the values of their impedance,
as shown in the bottom right corner. To simulate the Hamiltonian,
we set C = t , Cr = γ , C′ = 2t , C′

0 = t , Zj = −1/[iωRe(V ′
j )], and

Z ′
j = −1/[ωIm(V ′

j )].

033052-4



WINDING NUMBERS AND GENERALIZED MOBILITY … PHYSICAL REVIEW RESEARCH 2, 033052 (2020)

FIG. 4. The maximum and minimum values of the IPR in the (h, γ /t ) plane for distinct values of V : (a) V = t , (b) V = 1.96t , (c) V = 2t ,
and (d ) V = 2.5t . The IPR is calculated for the right eigenvectors of the Hamiltonian (1) in the main text in a geometry with periodic
boundaries. The black circles are determined by the self-dual symmetry and the red lines are determined by γ = V sinh(h)/2, one of the
equations from the self-dual symmetry. Here, α = (

√
5 − 1)/2, φo = φh = 0, and L = 233.

mobility edges and hence opens the door to further study the
generalized mobility edges in non-Hermitian systems.

Note added. Recently, we became aware of a related work
on mobility edges in non-Hermitian systems [102].
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APPENDIX

In the Appendix, we first show the maximum and minimum
values of the IPR for the eigenstates of the Hamiltonian (1) in

the main text with respect to h and γ /t for different values
of V in Fig. 4. The maximum and minimum values coincide
with each other, suggesting the absence of the mobility edge.
The self-dual symmetry determines four critical points when
|V/t | < 2, one when |V/t | = 2, and zero when |V/t | > 2;
these points are represented by black circles in the figures.
We can also see that one of the two equations from the self-
dual symmetry, γ = V sinh(h)/2, approximately determines
the boundary between the localized and extended states; the
approximation works well near the critical points evaluated
by the self-dual symmetry. Furthermore, the topological prop-
erties of the extended and localized states can be clearly seen
from the winding numbers Wo and Wh labeled in the figure.
In the localized region, Wo = −1, and in the extended region,
Wh = ±1, reflecting the topological feature of the quantum
phase transition.

FIG. 5. Energy spectra in the complex energy plane for a system with commensurate on-site modulations with (a),(b) a = 0 under PBCs
and OBCs, respectively, and (c),(d) a = 0.5 under PBCs and OBCs, respectively. The figures in the bottom layer plot the amplitude of the
wave functions corresponding to the energies denoted by the squares in the corresponding figure above with the same color as that of the wave
function. The Wo and Wh indicate the winding numbers if the base energy locates inside the loops formed by the eigenenergies of the system.
Here, V = 0.5t , α = 1/20, h = 0.9, γ = 0.2t , φh = φo = 0, and L = 200.
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Second, we study the generalized non-Hermitian AAH
model with commensurate on-site modulations. Specifically,
when α = 1/20, for both a = 0 and a = 0.5, the energy spec-
tra obtained under PBCs form loops in the complex energy
plane characterized by either Wh = 1 or Wo = −1, as shown
in Fig. 5. However, under OBCs, we see that the loops with

Wh = 1 disappear, while the others with Wo = −1 persist.
Interestingly, all the states including the states with or without
winding numbers are localized at the left boundary due to
the non-Hermitian skin effects. This shows that even in a
translation invariant system, the winding number can exist in
a system with open boundaries.
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