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Quantum criticality of loops with topologically constrained dynamics

Zhehao Dai 1 and Adam Nahum2,1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom

(Received 17 December 2019; revised 7 May 2020; accepted 12 May 2020; published 10 July 2020)

Quantum fluctuating loops in 2 + 1 dimensions give gapless many-body states that are beyond current field
theory techniques. Microscopically, these loops can be domain walls between up and down spins or chains of
flipped spins similar to those in the toric code. The key feature of their dynamics is that reconnection of a pair
of strands is forbidden. This happens at previously studied multicritical points between topologically nontrivial
phases. We show that this topologically constrained dynamics leads to universality classes with unusual scaling
properties. For example, scaling operators at these fixed points are classified by topology and not only by
symmetry. We introduce the concept of the topological operator classification, provide universal scaling forms for
correlation functions, and analytical and numerical results for critical exponents. We use an exact correspondence
between the imaginary-time dynamics of the 2 + 1D quantum models and a classical Markovian dynamics
for 2D classical loop models with a nonlocal Boltzmann weight (for which we also provide scaling results).
We comment on open questions and generalizations of the models discussed for both quantum criticality and
classical Markov processes.
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I. INTRODUCTION

Much of quantum criticality can be understood in terms of
long-wavelength fluctuations of quantum fields. Lagrangian
field theory is an organizing scheme for a wide range of
critical states [1,2], and often gives either exact results or
powerful approximation schemes for universal quantities. But
there are some critical states, realizable in relatively simple
lattice Hamiltonians, for which we so far lack any useful
continuum description.

One set of examples is a family of 2 + 1–dimensional
quantum-critical models for fluctuating loops introduced in
Refs. [3,4]. These models describe multicritical points, reach-
able by tuning several parameters, in local spin systems.
Microscopically the loops may arise as chains of flipped spin-
1/2s (like those in the toric code [5]) or alternately as domain
walls in an Ising-like order parameter, and the ground state is
simply a superposition of loop configurations on the 2D plane.
The feature of the quantum loop models of Refs. [3,4] that
makes them gapless is a “topological constraint” on the dy-
namics of loops. This constraint forbids events in which loops
change their connectivity. The constraint leads to the slow
dynamics characteristic of a quantum critical point [4,6,7]: see
the cartoon in Fig. 1.

There is no obvious way to encode this dynamical con-
straint, which is preserved under the renormalization group
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flow (as we clarify below), in a Lagrangian description. These
models therefore lie outside the class that we currently know
how to describe using field theory, and it is instructive to map
out their scaling structure and low-energy excitations. This is
what we do here.

The quantum loop models yield a two-dimensional space
of renormalization group (RG) fixed points parameterized by
a loop amplitude d . This is a complex number with |d| � √

2:
the wave-function amplitude �(C) for a loop configuration C
is proportional to d (no. loops in C). In general, scaling dimensions
change continuously as a function of d . When d = 1, the
ground-state wave function coincides with that of the toric
code, or the Ising paramagnet, depending on whether we
realize the loops as strings of flipped spins or as domain walls
(for now we neglect ground-state degeneracies). However,
the dynamics and low-energy excitations remain nontrivial
because of the constraint: even for d = 1 the model is gapless.

Surprisingly, we find that many universal properties follow
from the topology and geometry of the fluctuating loops.
For example, we argue that the topologically constrained dy-
namics implies a topological classification of local operators,
generalizing the classification of operators by symmetry that
we have at more familiar fixed points. We provide scaling
forms for correlation functions (resolving an apparent para-
dox at d = 1, where all equal-time correlators are trivial) as
well as analytical results for correlation functions and critical
exponents for arbitrary d . We check these using Monte Carlo
simulations.

The quantum loop models have a second special property,
distinct from the dynamical constraint, which is a type of
quantum-classical correspondence. Thanks to this correspon-
dence, we can obtain analytical results despite the lack of a
2 + 1D field theory.
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(a)

(b)

FIG. 1. (a) Dynamics of loops in continuum space (the figure
shows a subregion of the 2D space). Solid/dotted lines represent
possible loop configurations before/after evolution for short time.
(b) A disallowed move. Reconnections of all kinds are forbidden in
the time evolution.

Reference [4] showed that ground-state expectation values
of operators that are diagonal in the σ z basis map to expec-
tation values in a 2D classical lattice model for fluctuating
loops. The feature of a mapping to a classical model in the
same number of spatial dimensions [8–12] is shared with
other models, most famously the Rokhsar-Kivelson model
[9,13–15] for quantum dimers. Fendley has also constructed
quantum loop models that relate to classical models in a dif-
ferent way, imposing nonorthogonal inner products between
configurations in order to obtain non-Abelian topological
states [16–19].

There are two main differences between standard Rokhsar-
Kivelson-like models and the models we study here. One
is that the 2D classical model has a nonlocal Boltzmann
weight. However, the key difference is the constrained nature
of the dynamics, which leads to a correspondence with a
topologically constrained Markovian dynamics for classical
loops.

We construct a dictionary between quantum and classical
observables, and find that the correlation functions of nondi-
agonal operators are nontrivial as a result of the nonlocality
of the classical model. We map correlation functions of lo-
cal quantum operators to nonlocal, “geometrical” correlation
functions in the classical model. The latter are well understood
[20–22], so we obtain numerous exact critical exponents in the
quantum models.

We also generalize the quantum-classical correspondence
to dynamical correlation functions in the loop model, using
the ideas of Refs. [8,9,11] on Rokhsar-Kivelson-like models
(in the process we also clarify the relation between “frus-
tration free” and “Rokhsar Kivelson” Hamiltonians). This
dynamical correspondence allows us to investigate dynamical
correlation functions.

The quantum loop models are not Lorentz-invariant, and
their dynamical exponent z is not 1. References [4,6] gave
a variational argument showing that the models are gap-
less, with z � 2. Gaplessness was confirmed by studying
time-dependent correlation functions numerically in Ref. [7].

However, there has not yet (as far as we are aware) been
a direct numerical measurement of z, which was suspected
to be equal to two. We rule this out by strengthening the
previous lower bound to z � 4 − d f , where d f < 2 is the
fractal dimension of the loops in the classical ensemble. This
bound depends on the loop weight d through d f .

However, we point out that the dynamical exponent z
is constant along any line of RG fixed points on general
grounds (under mild assumptions), i.e., “superuniversal.” In
conjunction with the previous bound, this result gives z �
2.66̇. We have not succeeded in calculating the exact value
of z analytically. However, our numerical estimates are con-
sistent with z = 3 for all of the models we simulate, in
accord with the superuniversality of this exponent for all
the models in this two-dimensional space of universality
classes.

The loop models are examples of “frustration-free” Hamil-
tonians (see Sec. V for a definition). There are numerous
critical frustration-free models in the literature (many of them,
like the Rokhsar-Kivelson model, studied before the name
“frustration-free” was common). We provide some general
results for the scaling structure of these frustration-free critical
points, defining what we call “hidden” scaling operators and
giving relations between scaling dimensions.

We have already mentioned the point in the quantum
loop model with loop amplitude d = 1, which has some spe-
cial properties. Another interesting special point is d = √

2
[3,4]. Here a perturbation exists (the “Jones-Wenzl projector”)
that leads to a new universality class, but with the same
ground state as the original model. We show that when-
ever a frustration-free model possesses such a “ground-state-
preserving” relevant perturbation, the dynamical exponent at
the new fixed point can be bounded in terms of exponents
of the original model: this gives z � 2.5 for the model with
the Jones-Wenzl projector. We also characterize its operator
spectrum.

A natural question is the stability of the loop models.
Reference [7] argued that they flow to the gapped Z2 state
(toric code) when the simplest reconnection term is added to
the Hamiltonian with a positive coupling, and gave numerical
evidence for this at d = √

2. It seems likely this holds for
all complex d on the critical surface, in which case a simple
duality implies that adding the reconnection term with a neg-
ative coupling drives the models to the doubled semion phase
[3,23,24]. (Similarly, we expect that adding the Jones-Wenzl
projector leads to the new fixed point mentioned above not
only for d = √

2 but also for a range of d below this value.)
Other phases can be accessed by other relevant perturbations,
so the full phase diagram would be complex. We give a list of
relevant and marginal scaling operators, which we conjecture
is complete, in Sec. VIII.

Models with topologically constrained dynamics appear to
be critical for reasons very different to the ones that we are
used to. Therefore they may have useful lessons to teach us.
For example, they suggest that quantum criticality embraces
more than just long-wavelength fluctuations of continuous
quantum fields valued in some target space. We give some
other constructions of such models (which may be interesting
to examine further) and we briefly discuss obstacles to finding
field theory descriptions of them.
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Structure of the paper

We first describe some of the loop models’ general fea-
tures, their lattice Hamiltonians, and their connections with
classical loop models (Sec. II). In Sec. III, we discuss scaling
forms of correlation functions in the loop model, resolving
an apparent paradox at d = 1. In Sec. IV, we introduce the
concept of the topological classification of local operators in
the loop model. In Sec. V, we discuss scaling properties of
general gapless frustration-free Hamiltonians, introducing the
idea of “hidden operators,” which will be required later. In
Sec. VI, we address the low-energy excitations and degen-
erate ground states of the model. We present analytical and
numerical results on the dynamical exponent. In Sec. VII, we
give a general argument for the constancy of the dynamical
exponent along lines of RG fixed points, which explains a
numerical observation and helps improve our analytical bound
on the dynamical exponent of the loop model. In Sec. VIII, we
present a systematic way of calculating correlation functions,
which helps us to determine the spectrum of relevant and
marginal operators and to verify the topological classification
presented in Sec. IV. In Sec. IX, we discuss some variations of
the critical loop models. In Sec. X, we discuss open questions
worth studying in the future.

II. OVERVIEW

A. General features

References [3,4] introduced a family of gapless models
whose low-energy Hilbert space is spanned by configurations
of loops in the plane (Fig. 1). In the lattice Hamiltonian of
Ref. [4], these loops are realized as chains of flipped spins,
much like the Z2 flux lines in the toric code, but by a standard
duality we could also think of them as domain walls in a 2D
Ising model. This would change the ground-state degeneracy
which is a feature of the models (see Sec. VI D), for example,
but would not change the key features of the critical scaling.

The ground states of these models are superpositions of
loop configurations: schematically,

|�〉 ∝
∑

C

d |C||C〉, (1)

where C labels a loop configuration (a set of loops in the
plane), |C〉 is the corresponding basis state, |C| is the number
of distinct loops in C, and the numerical constant d ∈ C is
a parameter in the model. When |d|2 < 2 the ground state
is scale-invariant in a sense we describe below, and contains
large loops with an appreciable amplitude. Before reviewing
the models’ microscopic Hamiltonians, we describe their key
features in a continuum language; see the next section for
explicit lattice formulas.

It is useful to think of these critical states in terms of their
dynamics in the loop basis, i.e., in terms of the Feynman
histories that contribute to the path integral in (for simplicity)
imaginary time: see Fig. 2. The key feature distinguishing
these dynamics from the gapped dynamics of flux lines in Z2

gauge theory, or of domain walls in the paramagnetic phase of
the Ising model, is that “reconnection” events are not allowed.

Figure 1 illustrates this at the cartoon level. Note firstly
that loops do not intersect in these models, so that there is

FIG. 2. Feynman histories of loops.

no ambiguity in declaring whether two points are connected
by a loop or not. The quantum dynamics allows two types of
events. Firstly, loops can fluctuate locally without intersecting
or changing their topology. Secondly, loops of microscopic
size can be “born” (appear from the vacuum) and “die”.
However, processes like the one in Fig. 1(b), which changes
the connectivity of strands, are forbidden. The Hamiltonian is
unable to break and reconnect loops.

We will refer to this key feature as the dynamical “topolog-
ical constraint”. In the Hamiltonian of Refs. [4,6] it is imposed
exactly in the ultraviolet: the off-diagonal Hamiltonian matrix
elements for reconnections are zero. We will argue in Secs. IV
and VIII that in other models, the dynamical topological
constraint can emerge in the infrared even without being
imposed in the ultraviolet, so long as a sufficient number of
relevant couplings are tuned to zero.

Whenever loops of size much greater than the lattice spac-
ing appear in the ground state [as in Eq. (1) with |d|2 � 2],
the dynamical constraint implies quantum critical dynamics:
i.e., a characteristic timescale that diverges with system size,
τ ∼ Lz, where z is the dynamical exponent of the quantum
critical state, and corresponding gapless excitations [6].

For a heuristic picture of these slow dynamics, we may
imagine following the lifespan of a particular loop throughout
a Feynman history of the system (we do this numerically
in Sec. VI). It makes sense to talk about a particular loop
persisting through time because loops do not reconnect. (By
contrast, a typical Feynman history of the toric code involves
loops continually reconnecting, so there is no unique way to
identify a loop at a given time with a particular loop at an
earlier time). Our loop is born at some time in the history,
grows to some maximal linear size of order R, and dies at a
later time. If R is large, the loop’s lifespan is necessarily much
longer than microscopic timescales, because the loop can only
grow by local fluctuations. This lifetime scales as

τ ∼ Rz, (2)

where z is the dynamical exponent. This exponent also con-
trols the energy scale for the lowest bulk excitations on
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scale R,1

�E ∼ R−z. (3)

We address the value of z in Sec. VI, both numerically
and analytically, by establishing a mapping to the motion of
classical loop under a Markov process.

The dynamical constraint is therefore an unusual mecha-
nism for quantum criticality, which has an intuitive explana-
tion in terms of the path integral but which, we emphasize, has
no obvious connection to the “usual” mechanism for quantum
criticality, namely, long-wavelength fluctuations of quantum
fields.

In this paper, we will not answer the question of whether
a useful field theory can be found for these states.2 However,
we will show that they have some very unusual properties that
make them quite unlike the critical points that we know how
to describe using field theory.

In particular, in Secs. IV and VIII, we introduce the idea of
a topological classification of scaling operators at dynamically
constrained fixed points. Again this can be understood in
terms of the path integral. The Feynman histories contributing
to the path integral have no reconnection events. However, this
can be changed by an insertion of a local operator O(x, t ) that
performs a reconnection at a particular space-time point. The
possible reconnection operators have a rich structure, because
there are an infinite number of topologically distinct recon-
nection events that can take place (see Fig. 6 for examples).
Some of this topological information about the operator is
preserved under the renormalization group (RG), giving us a
topological operator classification. The crucial point is that
the Hamiltonian itself does not reconnect loops. Therefore,
loosely speaking, coarse-graining a local operator cannot
transform it into an operator that performs more complex
reconnections. We describe this in Sec. IV.

B. Review of lattice Hamiltonians

Let us now move from the continuum to concrete lattice
models for spins on the links of the honeycomb lattice. This
section reviews the lattice constructions of Refs. [3,4,7]. We
can think of these models as modifications of the toric code
so as to forbid reconnection of loops. This modification also
allows the nontrivial loop amplitude d to be realized. Like
the toric code, these models involve three-spin interactions
around a vertex of the honeycomb lattice and six-spin inter-
actions around a hexagon.

We first recall the toric code [5], with spins σl located on
the links l of the honeycomb lattice. This has the Hamiltonian

Htoric code = Hvertex + Hflip, (4)

with (v is a vertex and p is a hexagonal plaquette; l ∈ v

if the link l includes the vertex v, and l ∈ p if l is in the

1In a system of linear size L, there can be anomalously low-
lying states with energy 1/Lw with w > z, depending on boundary
conditions; we show this in Sec. VI D.

2In previous work, it was suggested that these models may be
described by certain non-Abelian gauge theories with dynamical
exponent z = 2 [4]. However, we prove here that z > 2.

(a) (b)

(c) (d)

FIG. 3. Effects of
∏

i∈∂ p σ x
i on loop configurations (this figure

follows Ref. [7]). The underlying lattice, shown dashed, has a spin-
1/2 degree of freedom on each edge. Down spins on the edges (occu-
pied edges) are shown as solid lines. We consider only closed-loop
configurations, but in the illustration, we only show parts of loops
near the plaquette where

∏
i∈∂ p σ x

i acts. (a)
∏

i∈∂ p σ x
i on plaquette p

creates a small loop of down spins when the six spins around plaque-
tte p are all up (unoccupied). (b)

∏
i∈∂ p σ x

i moves a loop across the
plaquette. (c)

∏
i∈∂ p σ x

i reconnects two loops entering the plaquette.
(d)

∏
i∈∂ p σ x

i reconnects three loops entering the plaquette. In the
exactly solvable Hamiltonian [Eqs. (7) and (11)], the Hamiltonian
is modified to keep only processes (a) and (b) [3,4,7].

plaquette p):

Hvertex = −U
∑

v

∏
l∈v

σ z
l , Hflip = −K

∑
p

∏
l∈p

σ x
l . (5)

“Strings” are made up of links where σ z = −1. The first term
is an energy penalty for ends of strings; any vertex v with odd
number of neighboring edges occupied by down spins costs
energy 2U . In the ground state, there are only closed strings,
i.e., loops.

The second term is the kinetic part of the toric code Hamil-
tonian, which flips all the spins around a plaquette. Some of
the possible “moves” implemented by this term are shown in
Fig. 3. The toric code Hamiltonian is solvable because all the
terms commute, and the ground states are equal amplitude
superpositions of loop configurations.

The kinetic term Hflip can be written as a sum over local
moves: for each move there is a projector [4]. A gapless model
is obtained simply by dropping the projectors corresponding
to the disallowed moves [Figs. 3(c) and 3(d)] [4].

Let |a〉p be a state of the six spins on the plaquette, and
|ā〉p the flipped configuration. Let P (a)

p be the projector onto
the state |a〉p − |ā〉p. Then, dropping a constant, the second
term in Eq. (4) for a given plaquette is

Hflip
p = K

∑
a

P (a)
p . (6)

An equal-amplitude superposition of loop configurations is
orthogonal to all of these projectors because of the minus
sign in the definition of the state |a〉p − |ā〉p. Therefore such a
superposition is a ground state.

The gapless models retain from the sum in Eq. (6) only the
moves that respect the dynamical constraint. (A little thought
shows that it is possible to tell whether a move is allowed by
looking only at the six spins on the hexagon: it is not necessary
to examine other spins [4].) This gives a restricted sum, which
we denote with a prime, over “flippable” configurations of the
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hexagon,

Hflip′
p = K

∑
a

′
P (a)

p . (7)

The complete Hamiltonian is

Hgapless = Hvertex + Hflip′
. (8)

Ground states of the toric code are still ground states of this
model. On the sphere,3 both models have the same unique
ground state (we neglect ground-state degeneracy for other
boundary conditions until Sec. VI). However, the dynamics
generated by Eq. (7) are nontrivial because different plaquette
terms no longer commute.

Finally, the amplitude for loop creation and annihilation
can be adjusted by modifying the projector which implements
the loop birth/death move. Let us write the state with a loop on
the hexagon (i.e., all spins down) as |◦〉, and the state where
the hexagon is empty (all spins up) as | 〉. Then instead of
projecting onto | 〉 − |◦〉 in Eq. (7), we project onto

d̄ | 〉 − |◦〉. (9)

Note that this is orthogonal to | 〉 + d|◦〉, in which the state
with an extra loop has the desired extra factor of d . One can
check that the ground states of Hgapless are then of the form
given above,

|�〉 = 1

Z1/2

∑
C

d |C||C〉, (10)

where C must run over a “complete” set of loop configura-
tions: if C is in this set, and C′ can be reached from C by
allowed moves, so is C′. On a manifold of trivial topology
(sphere, or disk with appropriate boundary conditions) the
ground state is unique, as all loop configurations can be
reached from all others by allowed moves. Z above is a
normalization constant, which we discuss below.

To be more explicit, let Ap ≡ ∏
l∈p σ−

l annihilate a small
loop around plaquette p, and Bp ≡ σ+

1 σ−
2 σ−

3 σ−
4 σ−

5 σ−
6 +

σ+
1 σ+

2 σ−
3 σ−

4 σ−
5 σ−

6 + · · · and its Hermitian conjugate B†
p

move a loop adjacent to plaquette p across the plaquette:4

Hflip′
p = K1

∑
p

1

2
(B†

pBp − Bp − B†
p + BpB†

p)

+ K2

∑
p

1

1 + |d|2 (|d|2A†
pAp − d̄Ap − dA†

p + ApA†
p).

(11)

Quadratic terms in Ap and Bp are included to make projectors
[4]. Note that the coupling K of the individual projectors
in Eq. (7) can be separately varied without changing the
ground state. In our simulations (Appendix D), we take

3To put these models on a system of spherical topology, we must
allow nonhexagonal plaquettes.

4We label the spins around plaquette p anticlockwise. The terms
which move a loop across plaquette p and which contain σ+

1 are
included in Bp, and those with σ−

1 in B†
p (this is one way to split

up the sum over terms, there are other equivalent rewritings).

K1/K2 = |d|2/(1 + |d|2), where K1 is the coupling for the
projectors that move loops, and K2 is the coupling for the
projector that creates/annihilates them.

It is important to note that the Hamiltonian specified by
Eq. (7) is fine-tuned, and that is why it is possible to write
ground states explicitly. While it is not a sum of commuting
projectors, it is frustration free, meaning that it is a sum
of projectors that can all be simultaneously minimized. Per-
turbations will generically spoil this property (even if they
retain the dynamical constraint exactly). However, only a
few such perturbations are expected to be RG-relevant, as
we argue in Sec. VIII, so other lattice models, that are not
frustration free, can flow to the same RG flxed point. (An open
question, which we will not discuss here, is whether there are
other universality classes that obey the dynamical topological
constraint but which cannot be realized in frustration-free
models.)

C. Classical mapping

The quantum loop model is scale-invariant in the IR for the
critical range |d|2 � 2. This is most easily seen by a plasma
analogy in which the modulus square of the quantum wave
function yields a classical statistical ensemble for fluctuating
loops [4]. The probability in this ensemble of a loop configura-
tion C is P(C) = |d|2|C|/Z , and the classical partition function
Z [the square of the normalization constant in Eq. (10)] is

Z =
∑

C

|d| 2|C|. (12)

This loop ensemble is a well-studied topic in statistical me-
chanics, sometimes known as the “dense O(n) loop model”
[25] (here n = |d|2). Numerous exact scaling results exist
in the literature, which we will review as needed. In this
ensemble, large loops are fractal objects: the length � of a
loop, defined as the number of links on it, scales with its linear
size R (defined, e.g., as the largest distance between two points
on the loop) as � ∼ Rd f , where the fractal dimension d f is
a decreasing function of the weight |d|2 [26]. For example,
d f = 3/2 for d = √

2, d f = 7/4 for d = 1, and d f → 2 as d
tends to zero (for a review, see Ref. [22]).

Equal-time correlation functions of operators that are di-
agonal in the loop basis {|C〉} map straightforwardly to local
correlators in the classical loop model. In Secs. IV and VIII,
we shall see that more general correlators allow for richer
structures.

First, we show that correlation functions of local but nondi-
agonal quantum operators map to interesting nonlocal corre-
lation functions in the classical loop model (Sec. VIII). These
nonlocal correlators (known as “watermelon correlators” in
the literature on the classical loop model [22]) measure the
probabilities that distant points are connected in various ways
by large loops (Fig. 4).

Second, we show that temporal correlation functions map
to correlation functions in a classical Markov process for fluc-
tuating loops (Sec. VI and Appendix C). This Markov process
is itself an interesting extension of the classical loop models
that could be studied further. Here we give analytical and
numerical results for correlation functions and the dynamical
exponent.
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FIG. 4. Illustration of a six-strand watermelon correlator. The
watermelon correlator is the probability that two microscopic discs
are connected by 2k strands (k = 3 in the figure). In the scaling
limit, this probability decays as C2k (r) ∼ |r|−2x2k where x2k is given
in Eq. (17).

Our analysis also leads to some general features of
“frustration-free” critical points, which we discuss in Sec. V.

III. SCALING FORMS

Let us begin by recalling the conventional quantum-critical
scaling forms for the equal and non-equal-time two-point
functions of a local scaling operator O, respectively,

〈O(r, 0)O(0, 0)〉 = AO
r2xO

(13)

(we consider an infinite system, and assume that 〈O〉 = 0) and

〈O(r, t )O(0, 0)〉 = 1

r2xO
FO

(
t

|r|z
)

. (14)

We would expect similar scaling forms in both real and
imaginary time, with different scaling functions F , but for
simplicity, we consider imaginary time throughout this pa-
per. We have suppressed nonuniversal dimensionful constants
built from the lattice spacing and the microscopic energy
scale (and for simplicity, we focus on spin-zero operators for
now, so that the dependence on r is only through |r|). Two
exponents appear here: z, the dynamical exponent discussed in
the previous section, and the scaling dimension xO. To have a
finite nonzero limit as |r| → 0, we need F (u) ∼ u−2xO/z, and
then

〈O(0, t )O(0, 0)〉 = BO
t2xO/z

. (15)

Finally, if the operator O is added to the Hamiltonian, then the
fact that

∫
d2r dt O(r, t ) scales like [length2+z−xO ] implies

that the RG eigenvalue of this perturbation is

yO = 2 + z − xO. (16)

At first sight, there is a paradox in applying these forms
to the quantum loop models. Consider the loop model at the
special value d = 1, where the ground state coincides with
that of the toric code (or the Ising paramagnet, depending
on the choice of Hilbert space). All equal-time two point
functions are strictly zero in this model (this vanishing was
emphasized in Ref. [7]). However, at the same time, various
operators, most notably the two-loop reconnection operator,
are RG relevant in this model (the relevance of two-loop
reconnection, which takes us to the toric code phase, has been

checked numerically [7]; we will give exact exponent values
below). These operators should therefore have positive RG
eigenvalues yO and scaling dimensions xO < 2 + z. Why do
we not see the corresponding power-law decay in the equal-
time correlation function (13)? Does this signal a breakdown
of renormalization group reasoning?

The resolution of this “paradox” is in fact simple, and there
is no need to abandon the scaling forms above. It is just that,
in the model with d = 1, all of the scaling functions FO(u)
vanish as u → 0. In Sec. VIII we show that, as a function of
d , the amplitudes AO(d ) vanish at d = 1, while the scaling
dimensions xO(d ) are finite and continuous there. While these
scaling dimensions cannot be extracted from the equal-time
two-point function, they can be probed using the temporal
correlator (15) or other more complex correlators.

While d = 1 is the most extreme case, where all equal-time
correlation functions are trivial, it turns out that for any d there
is a subset of scaling operators whose equal-time correlation
functions vanish. We show in Sec. V below that special
“hidden” operators whose equal-time correlators vanish are
a generic feature of frustration-free RG fixed points.

The vanishing of amplitudes AO is possible because of
the lack of symmetry under rotations in Euclidean space-time
that mix space and time (let alone under general 2 + 1D
conformal transformations). In CFT, it is common to use the
normalization convention AO = 1, but that is not possible
here. Another familiar feature of conformal field theory is the
orthogonality of two-point functions: covariance under special
conformal transformations implies that the two-point function
of O and O′ vanishes if xO �= xO′ [27]. Here we cannot
assume that in general. However, for equal-time correlation
functions, we can use the conformal invariance of the classical
ensemble described in Sec. II C to obtain the same result.

The next section (Sec. IV) describes properties of the
operator spectrum that arise from the dynamical topological
constraint. Then Sec. V discusses features that arise from the
frustration-free property and which therefore apply to any
critical frustration-free Hamiltonian. A key question for the
stability of the loop model critical points is the number of
relevant (or marginal) scaling operators; we discuss this in
Sec. VIII A.

IV. TOPOLOGICAL OPERATOR CLASSIFICATION

It is convenient to think of the topological classification
of operators in terms of Feynman histories, as mentioned in
Sec. II A. The dynamical constraint means that these histories
contain no reconnection events except those that are put
there by operator insertions. What does this mean for the
classification of scaling operators?

To answer this, it is useful to have in mind a renormaliza-
tion group (coarse-graining) transformation which acts on the
space-time Feynman histories. Roughly speaking, this trans-
formation eliminates information on length scales shorter than
b and on timescales shorter than bz for some dimensionless
rescaling factor b (we set microscopic dimensionful constants
to 1). We can think of it as smoothing out the world surfaces
of the loops (Fig. 2) on these scales. Small world surfaces can
also disappear below the new UV cutoff, i.e., be eliminated.
However, our coarse-graining transformation must faithfully
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(a) (b)

FIG. 5. Topological types. (Left) The ends of the strands are
labeled by 1, 1̄, 2, 2̄, 3, 3̄ anticlockwise. This three-strand configu-
ration may be labeled as (13̄)(21̄)(32̄), or equivalently as the permu-
tation (123) → (312). (Top right) This is a two-loop reconnection
operator: the lower-right strand is not reconnected, and can be pushed
out of the disk. (Bottom right) A five-loop reconnection operator. The
spectator strand in the middle cannot be pushed out.

preserve the connectivity of the loops of sizes greater than b,
because this must remain consistent with their past and future
dynamics.5

Let us now consider the action of operators. Microscopi-
cally, local operators can be classified by the way in which
they reconnect strands.

Let the operator act within a spatial disk D. Inside the
disk D, there can be small loops completely contained in
D, and other loops passing through D, with segments inside
which connect to the boundary of D. We may first classify
the possible states within the disk by the number of points
where loops cross the boundary of the disk—which we denote
2k since it is always even—and by the way these points are
connected by segments inside. We will call these points on
the boundary endpoints (of course all loops are closed when
we consider the full configuration). In order to classify states
on D, we neglect closed loops contained entirely within D. We
label the endpoints of internal segments by 1, 1̄, 2, 2̄, . . . k, k̄,
starting at an arbitrary point and proceeding anticlockwise;
then the connection corresponds to a pairing of the points
1, 2, . . . , k with the strands 1̄, 2̄, . . . , k̄.6 See Fig. 5(a) for an
example.

Let us label connections (pairings) by σ , σ ′. We will use
the shorthand O = |σ 〉〈σ ′| to denote an operator whose only
nonzero matrix elements are between “in” states of type σ ′
and “out” states of type σ ; see Figs. 5(b) and 6 for examples.

5For example, it is important to distinguish between a configuration
in which two large loops of size  b closely approach each other
near a point r, and a configuration in which a single large loop closely
approaches itself near point r. In the latter scenario, the large loop
must have been created in the far past as a single small loop and
grown to the current configuration, while in the first scenario, the
two loops were created and expanded separately before meeting at
the point r.

6A little thought shows that under the current labeling rule, strands
1, 2, . . . , k must connect to 1̄, 2̄, . . . , k̄ instead of themselves, in or-
der to avoid strands crossing. The noncrossing rule means that there
are Ck = (2k)!/(k!(k + 1)!) possible choices of pairing (a Catalan
number). A pairing corresponds to a “noncrossing permutation” in
the permutation group Sk .

2-loop
reconnection

3-loop
reconnection

4-loop
reconnection

(b)

(a)

FIG. 6. (a) By capping off two strands outside the disk, the three-
loop reconnection R3α becomes R2 (but the reverse cannot happen).
Thus R2 is an offspring type of R3α , and can be generated from R3α

under RG. (b) Simple topological types and their partial ordering.
We list all possible two-loop and three-loop reconnection types and
three of the four-loop reconnection types.

Such an operator inserts a reconnection event of a particular
type in space-time.

For a topological classification, we may assume that the
pair (σ, σ ′) does not contain any ‘removable’ strands: we
define these as strands that are both paired the same way in
σ and σ ′, i.e., are not reconnected by the operator; and can be
pushed out of the disk without being blocked by other strands
that are reconnected [Fig. 5(b)]. For example, operators of the
form |σ 〉〈σ | are of the trivial topological type, independent
of σ . We must also identify pairs (σ, σ ′) and (τ, τ ′) that are
related simply by a “rotation” of the labels 1, 1̄, 2, 2̄, . . . k, k̄,
i.e., by changing the starting point for the labeling (note also
that rotating an operator does not change its topological type).
We refer to an operator that nontrivially reconnects 2k strands
as a “k-loop reconnection operator.”

What can happen to a reconnection operator |σ 〉〈σ ′| under
coarse-graining? At first sight we might think that the topo-
logical type is simply preserved. However, a key point is that
some of the strands inside the disk that are involved in the re-
connection can lie on microscopic loops whose world surfaces
disappear under coarse-graining. Similarly, different strands
may be connected by short sections of the same loop, so that
after coarse-graining they become a single strand. This means
that an operator of the form |σ 〉〈σ ′| in general transforms into
a sum of operators, including not only the same topological
type but also simpler, “offspring” topological types. These
simpler types are obtained by capping off strands in the way
shown in Fig. 6.

There is therefore a partial order on this basis of quantum
operators. Since coarse-graining cannot generate nontrivial re-
connection events that were not there microscopically, a scale
transformation can transform an operator only into operators
of the same or lower type. The lowest type is the topologically
trivial type which does not reconnect any loop.
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As a result we do not expect an operator of a fixed type
|σ 〉〈σ ′| to be a scaling operator in general: a scaling operator
transforms into itself (times b−xO ) under an RG transforma-
tion, whereas |σ 〉〈σ ′| will also generate lower reconnections.
Instead, the RG transformation has a block-upper-triangular
form when restricted to |σ 〉〈σ ′| and its offspring. We must
diagonalize this matrix in order to construct scaling operators.
We assume this can be done and will do it explicitly in several
cases.7

At the end of the day, we can still label every scaling opera-
tor by its leading topological type (σ, σ ′), but we should think
of such an operator as a linear combination of microscopic
operators not only of type (σ, σ ′) but also of the lower types.

In Sec. VIII and Appendix E, we verify the physical
arguments presented above by directly calculating equal-time
correlators. The loop model has the advantage that equal-
time correlators can be mapped to (nonlocal) 2D classical
correlation functions. In Sec. VIII, we use this mapping to
classify equal-time correlators in the quantum models. We
will see that in order to construct a k-loop reconnection
scaling operator, we have to subtract operators of simpler
(offspring) topological types that connect fewer than k loops.

We find that the equal-time two-point functions of a large
class of quantum reconnection operators can be mapped
exactly to watermelon correlators in the classical loop en-
semble. The basic classical watermelon correlators measure
the probability that two distant points are connected by a
certain number 2k of strands: see the cartoon in Fig. 4. This
correlation function has scaling dimension (for a review, see
Ref. [22])

x2k = g2k2 − (1 − g)2

2g
, (17)

with

g = arccos

(
−|d|2

2

)
/π,

1

2
< g < 1. (18)

The quantum model has k-loop reconnection operators with
dimension x2k for every k > 1. (The lowest of the above
dimensions, x2, determines the fractal dimension of the loops
in the classical ensemble, via d f = 2 − x2 [22]. However, as
far as we are aware, there is no local quantum operator in the
present models with dimension x2.8)

For large k, there are many distinct quantum operators with
the same scaling dimension x2k , which effect topologically
distinct reconnections |σ 〉〈σ ′| involving the same number of
strands. In addition to the topological label, we will also
discuss more conventional symmetry indices of reconnec-
tion operators, for example the spin under spatial rotations
(Sec. VIII).

7In principle, the scale transformation might contain nontrivial
Jordan blocks which would imply logarithms in correlation functions
[28–31]. We will not address this here in general. The correlation
functions we compute explicitly do not contain logarithms.

8A modified quantum model, allowing multiple colors of loops,
also has a quantum operator with dimension x2, which simply
measures the local color.

What is the relation between the topological operator clas-
sification above and conventional classification of operators
by symmetry? The two ideas share the logic that constraints in
a Hamiltonian that are preserved under RG, either symmetry
constraints or topological constraints (both can be exact or
emergent) dictate the scaling structure in the IR. In this sense,
the dynamical topological constraint we discuss here may be
viewed as a generalization of symmetry, and the topological
operator classification as the analog of classification by sym-
metry representations. It is also possible that in some models,
these two points of view overlap.

V. SCALING OPERATORS FOR FRUSTRATION-FREE
HAMILTONIANS

In this section, we discuss general properties of critical
frustration-free models. The statements in this section apply
to arbitrary frustration-free Hamiltonians (the term is defined
below) unless otherwise specified. These statements will be
useful for understanding scaling operators in the loop models,
in particular in Sec. VIII where we list relevant and marginal
scaling operators in the loop models.

A frustration-free Hamiltonian is at first glance just an
infinitely fine-tuned choice among all possible Hamiltonians
in a universality class. However, a closer examination shows
that the existence of one frustration-free Hamiltonian imposes
strong constraints on the scaling structure of the universality
class. Therefore we argue that it makes sense to talk about
frustration-free fixed points.

Local frustration-free Hamiltonians have the schematic
form

H =
∑

i

Ji

∑
r

Pi,r, (19)

where the index i runs over different types of Hamiltonian
term, and Pi,r is a projection operator.9 Let us write

Pi,r = |i〉Dr〈i|Dr ⊗ 1Dr
, (20)

where |i〉Dr is a state defined in some small patch Dr around
r, and Pi,r acts as the identity, 1Dr

, outside this patch. The
definition of frustration freeness is that all the terms can be
simultaneously satisfied, i.e., there is at least one ground state
|�〉 that is annihilated by all the projectors,

Pi,r|�〉 = 0. (21)

Rokhsar-Kivelson–type Hamiltonians are a subclass of
frustration-free Hamiltonians for which there is also a corre-
spondence to a local classical Markov process; this requires
an additional condition on the projectors that we provide in
Appendix C.

The structure in Eqs. (19) and (21) implies that critical
frustration-free models will generally have scaling operators
whose correlators vanish in the ground state(s). For simplicity
consider equal-time correlators, and to avoid clutter let us drop
the subscripts Dr. The frustration-free condition implies that
the reduced density matrix (of a ground state) for a patch Dr,

9We have assumed translational symmetry here, but similar consid-
erations apply without it.

033051-8



QUANTUM CRITICALITY OF LOOPS WITH … PHYSICAL REVIEW RESEARCH 2, 033051 (2020)

which is ρ = TrDr
|�〉〈�|, is orthogonal to the “forbidden”

states |i〉 in the patch for all i:

ρ|i〉 = 0, 〈i|ρ = 0. (22)

Therefore the equal-time correlation function

〈�|(. . .)Or|�〉 (23)

(where “. . .” represents operators outside the patch Dr, hence
commuting with Or) vanishes if Or is of the form |i〉〈φ| or
|φ〉〈i|, for any state |φ〉 on the patch Dr.10 We refer to linear
combinations of these operators as “hidden” operators. More
generally, we define a hidden operator as an operator of this
form in which |i〉 is orthogonal to the reduced density matrix
(for the appropriate local patch) as in Eq. (22), regardless of
whether the projector onto |i〉 appears in the Hamiltonian.

A subset of hidden operators correspond to infinitesimal
deformations of the Hamiltonian which transform it into a dif-
ferent frustration-free Hamiltonian. A deformation in which
the state |i〉 appearing in one of the Hamiltonian’s projectors
is replaced with |i〉 + εi|φ〉i yields a perturbation of the form
|i〉〈φ|i + |φ〉i〈i|. (Whether the total perturbation preserves the
frustration free property is a global property, not a property of
the local operator.)

Another subset of hidden operators, which we might call
“doubly hidden,” is made up of those of the form | f 〉〈 f ′|
that act entirely within the subspace that is forbidden in the
ground state (i.e., ρ| f 〉 = ρ| f ′〉 = 0 for the appropriate local
patch). This includes the perturbations |i〉〈i| that are induced
by varying the couplings Ji in Eq. (19). In Sec. IX A, we will
discuss an example of a nontrivial doubly hidden operator in
the loop model which appears only at d = ±√

2 (and will
describe a general feature of RG flows induced by doubly
hidden operators, when they are RG-relevant).

Not all frustration-free Hamiltonians admit a classical cor-
respondence: we clarify the conditions under which a classical
correspondence exists in Appendix C. However, in cases
where there is a classical mapping, some of the hidden oper-
ators can be related to perturbations of the classical problem.
[Recall that |�(C)|2 is the Boltzmann weight in the classical
ensemble.]

Take a local observable Ocl = Ocl,r at position r in the
classical ensemble, with scaling dimension xcl. In general,
there are at least three separate quantum operators whose
scaling dimensions are related to xcl. First, there is a diagonal
quantum operator O1 = O1,r whose matrix elements are given
by Ocl, and whose equal-time correlators are equal to those of
Ocl in the classical ensemble. Evidently,

x1 = xcl. (24)

Next, imagine perturbing either the phase or the amplitude
of the ground-state wave function with Ocl:

|�̃〉 = eiλO1 |�〉, or |�̃〉 = eλO1 |�〉, (25)

where λ is a small real number. What perturbations of the
Hamiltonian induce these perturbations of the ground state?

10For operators of the former (latter) type, non-equal-time corre-
lation functions also vanish if O is the latest (resp. earliest) time
operator in the correlator.

The first one is nothing but a local unitary transformation of
the ground state, corresponding to the infinitesimal change

H → H + λO2, where O2 = i[O1,H] = −Ȯ1. (26)

The operator O2 has scaling dimension

x2 = z + xcl. (27)

For a generic system, the second perturbation in Eq. (25)
does not correspond to any local perturbation of the Hamilto-
nian. However, for the present class of models, with a classi-
cal correspondence, it does. The energy EC in the classical
partition function (given for a configuration C by e−EC =
|�(C)|2) is perturbed by −2λOcl. The RG eigenvalue of this
perturbation in the classical problem is y = d − xcl, where d is
the spatial dimension. We expect that there is a corresponding
local operator O3 (preserving frustration-freeness) with which
we can perturb the quantum model so as to yield a corre-
spondence with the perturbed classical model. This quantum
operator must have the same RG eigenvalue y as the classical
perturbation. This means that it also has the scaling dimension

x3 = z + xcl. (28)

What is the algebraic expression for O3? First consider a
spatial patch around r with the local Hamiltonian

Hr =
∑

i

JiPi,r. (29)

We choose the patch large enough so that Ocl depends only
on the configuration within the patch (i.e., so that O1 is
supported on the patch), and also large enough so that all the
terms in H that do not commute with O1 are included. It is
convenient to take the ‘forbidden’ states |i〉 that are penalized
by the projectors Pi,r to be states on the full patch rather than
on subregions of it: this can be done by a simple rewriting
(preserving the form above but increasing the number of
terms; see Appendix A).

The ground state is orthogonal to all the forbidden states
|i〉. Therefore, in order to implement the desired perturba-
tion to it [hence to the projector in Eq. (19)], we make
the invertible transformation |i〉 → e−λOr |i〉: this preserves
the frustration-freeness of the Hamiltonian and induces the
change

Hr → Hr − λO3 with O3 = {O1,Hr}. (30)

Note that O3 = O3,r is a local operator, since O1 and Hr are
both supported in the local patch.

In fact, the relation between the scaling dimensions of O1

and O3 above is an example of a more general relationship
for frustration-free Hamiltionians, including those without
a classical correspondence, which constrains scaling dimen-
sions of certain operators. In general, multiplying two local
operators with dimensions x and x′ does not simply give an
operator with dimension x + x′. However, in a frustration-free
model, multiplying a local operator with the local Hamilto-
nian density (summed over an appropriate local patch) simply
increases the scaling dimension by z, which is the dimension
of the Hamiltonian, as in Eq. (28). We show this by directly
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computing the two-point function:

〈(OrHr )(t )(Or′Hr′ )†(0)〉 = 〈�|OrHre−HtHr′O†
r′ |�〉

= 〈�|OrHe−HtHO†
r′ |�〉

= d2

dt2
〈Or(t )O†

r′ (0)〉. (31)

We used frustration-freeness in going from the first line to the
second: the difference between Hr and H consists of terms
that commute with Or and individually annihilate the ground
state. Comparing with Eq. (15) gives the result for the scaling
dimension.

Operators O2 and O3 are examples of hidden operators.
One of these, O2, is however a redundant perturbation in the
RG sense [32], as the first part of Eq. (25) shows that it can
be absorbed into a quasilocal unitary basis change. In the loop
models, we cannot obtain the scaling dimensions of hidden
operators by directly calculating their equal-time two-point
functions, since these vanish; however, we can obtain the
scaling of at least some hidden operators by the logic above.

If the classical model has an exactly marginal local per-
turbation Ocl with dimension xcl = d , this will give rise to a
quantum operator O1 with dimension x1 = d and two exactly
marginal quantum operators of dimension x2 = x3 = z + d , as
above.

It is worth noting that in the quantum loop model there are
marginal operators for any d that, unlike the above, do not
have a counterpart local operator of lower dimension. These
are the operators that change the real and imaginary parts
of the loop amplitude d . These have the scaling dimension
x = z + d , like the operators O2 and O3 in the above situ-
ation. However, in this case the analogues of the operators∑

r Ocl,r and
∑

r O1,r (in the classical and quantum models,
respectively) are nonlocal operators that count the number of
loops. Note that changing the loop amplitude is a nonlocal
perturbation in the classical model, but can be achieved by a
local perturbation of the quantum Hamiltonian.11

VI. EXCITATIONS AND DYNAMICS

The existence of gapless excitations is equivalent to the
presence of slow dynamics in either real or imaginary time.
In the present model, thinking about time evolution of large
loops with the no-reconnection constraint provides useful in-
sights into the excited states. With the topological constraint,
what could otherwise be done by a single reconnection of
large loops now requires gradually shrinking loops, annihi-
lating loops, creating new loops, and growing them to the new
position. When we must rely on such extended paths through
state space to connect configurations, low-lying excitations
can be made by introducing smooth phase twists into the wave
function [6], as we discuss below.

We note that the dynamical exponent, and in fact the entire
spectrum, is necessarily independent of the argument of the
complex loop amplitude d and can depend at most on its

11For this reason, the loop weight |d|2 in the classical model does
not flow under RG. There is no such protection in the quantum
model.

modulus |d|. This follows from the fact that the phase of d can
be rotated by θ by conjugating the Hamiltonian with a unitary
transformation U θ . This transformation is diagonal in the loop
basis and acts by U θ |C〉 = eiθ |C||C〉, where again |C| is the
number of loops in configuration C. This transformation is
nonlocal, but preserves the locality of the Hamiltonian. Since
it is unitary, it preserves the spectrum and therefore the value
of z, so this cannot depend on arg d .

In this section, we first introduce a correspondence be-
tween the frustration-free quantum Hamiltonian and a classi-
cal Markov process for loops in two spatial dimensions. This
correspondence allows us think about of the motion of loops in
a classical language, and to compute the dynamical exponents
and various temporal correlation functions numerically with a
classical Monte Carlo simulation.

Next, we prove a new analytical bound on the dynamical
exponent, strengthening the previous bound z � 2 [6]. We
show that z � 4 − d f , where

d f = 1 + π

2 arccos(−|d|2/2)
(32)

is the fractal dimension of loops discussed in Sec. II C. Our
result rules out the value z = 2 that was previously believed
to be exact [4,6].

We then report numerical results which show that the actual
value of z is close to 3, and apparently independent of the
weight |d| (Sec. VI C). In the following section (Sec. VII) we
will explain this “superuniversality” of z as a generic feature
of RG fixed lines/surfaces.

Taking the fact that z must be d-independent into account
allows the bound z � 4 − d f (d ) to be strengthened, by using
the smallest value of d f that is attained anywhere on the
critical surface. At first glance, this is d f = 3/2 which is
attained at n = 2, giving z � 2.5 for all d . Yet, in fact, as
we explain in Sec. IX B, the critical surface folds over at
|d|2 = 2 onto another “sheet” for the same range 0 < |d|2 <

2, with smaller fractal dimension for a given d . This gives the
analytical bound z � 2.66̇.

At the end of the present section, we describe anomalously
low-lying states that appear for the loop model on topologi-
cally nontrivial manifolds. (Sec. VI D).

A. Mapping to a Markov process

A classical Markov process is described by a master equa-
tion

d pC (t )

dt
=

∑
C′

WCC′ pC′ (t ), (33)

where C and C′ label classical configurations and pC (t ) is the
evolving probability distribution. The off-diagonal elements
WCC′ are transition rates from C′ to C, and in order to conserve
probability the diagonal elements are WCC = −∑

C′ �=C WC′C .
The transition matrix is in general non-Hermitian, unlike

the Hamiltonian appearing in a Schrodinger equation. How-
ever, a large class of frustration-free quantum models [9],
including the loop model, are related to a classical system
by a diagonal similarity transformation built from the wave
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function:

SCC′ = �∗(C)δC,C′ = d̄ |C|δC,C′√
Z

. (34)

Multiplying by S maps the ground-state wave function
�(C) = d |C|/

√
Z to the equilibrium probability distribution

of the classical loop model, p(C) = |�(C)|2 = |d|2|C|/Z . The
nontrivial observation is that the frustration-free Hamiltonian
is mapped to (minus) the transition matrix of a local Markov
process for the loops:

H −→ −W ≡ SHS−1. (35)

This Markov process allows the same transitions as the quan-
tum Hamiltonian (motion of a loop and creation/annihilation
of a small loop) and obeys the same no-reconnection con-
straint. It is worth noting that while the equilibrium state of
the Markov process contains the nonlocal factor |d|2|C|, its
dynamics is entirely local.

For a simple example of the mapping, take the two config-
urations for a single hexagon shown in Fig. 3(a): one empty
(| 〉)and one occupied with a small loop (|◦〉). Restricted to
these two states, the quantum Hamiltonian and the classical
transition matrix have the forms

H ∝
(|d|2 −d̄

−d 1

)
, W ∝

(−|d|2 1
|d|2 −1

)
. (36)

The classical transition matrix W has positive real transi-
tion rates, and the steady state (with zero eigenvalue) is
| 〉 + |d|2|◦〉, as expected. Each column of W adds up to zero,
ensuring conservation of probability in the classical dynamics.

For the present loop model, the similarity transformation
gives a local Markov process. Refs. [8,9,11] point out that
such a mapping always exists for a Hamiltonian decom-
posable in terms of 2 × 2 projectors. However, a classical
correspondence is not guaranteed for a generic frustration-
free Hamiltonian. Ref. [33] discussed possible obstacles to
constructing such a mapping. For example, for the topological
models constructed in Ref. [23], those exhibiting Abelian
topological order map to local Markov processes, but the non-
Abelian models do not. We explicitly write down sufficient
conditions under which a quantum frustration-free Hamilto-
nian maps to a local Markov process, and discuss general
aspects of the map, in Appendix C.

When a classical correspondence exists, it greatly sim-
plifies the computation of temporal correlators. References
[8,9,11] show that imaginary time quantum two-point func-
tions of diagonal operators map to two-point correlation
functions in the classical Markov process,

〈O1(t )O2(0)〉 = 〈O1(t )O2(0)〉cl. (37)

Explicitly,

〈O1(t )O2(0)〉cl =
∑
C,C′

O1(C′)pC′,C (t )O2(C)pC, (38)

where pC′,C (t ) is the classical probability to go from state C
to C′ in time t . In Appendix C, we generalize this correspon-
dence to off-diagonal operators.

These relationships mean that quantum correlation func-
tions can be obtained from a Monte Carlo simulation of the

dynamics of the classical 2D system. By contrast, conven-
tional quantum Monte Carlo would act on the Feynman his-
tories in 3D space-time (endowed with an additional fictitious
“dynamics”).

Simulations are described in Appendix D. The mapping
relates the quantum Hamiltonian in Eqs. (7) and (11) to a
Markov process in continuous time; for numerical conve-
nience we instead use discrete time, with L2 random hexagons
updated in each time step. This difference is unimportant
when L and t are large. Our choice of rates for the Markov
process corresponds to the choice of couplings K1/K2 =
|d|2/(1 + |d|2) described in Sec. II B. We expect universal
properties to be independent of this choice.

B. Improved analytical bound on z

In order to motivate the bound, let us first make a crude
estimate of the timescale for annihilating a loop of linear
size R  1 and of total length � ∼ Rd f (see Sec. II C for a
discussion of the fractal dimension d f ). We use the classical
Markov process described in the previous section.

In a given O(1) time interval, the area A ∼ R2 of a large
loop changes by the addition of O(�) random positive or
negative increments, at various locations around the loop.
In reality, the increments at different times and in different
locations are correlated, but for simplicity, let us first imagine
that they are completely independent. Then the change �A in
the area grows diffusively with time: |�A| ∼ (t · �)1/2. Setting
�A ∼ R2 gives the timescale t ∼ R4/� ∼ R4−d f to change the
area by an O(1) fraction (where we have used the fractal
scaling of � with R). Identifying this with the characteristic

dynamical timescale t ∼ Rz on scale R gives z
?= 4 − d f .

In reality, this value is not correct, because of the corre-
lations mentioned above, which slow the dynamics further.
However, one can show analytically that the above value is
a lower bound:

z � 4 − d f . (39)

In Appendix B, we construct a series of variational wave func-
tions orthogonal to the ground states, labeled by an integer
n �= 0, and show that their energy E satisfies En � cn2Ld f −4

[c is an O(1) constant]. We use the idea of Ref. [6], which is to
create an excited state of the loop model by twisting the phase
of the wave function �(C) as a function of a slow “mode.”
Our observation here is that using the area of a large loop for
the slow mode gives a stronger bound than using the length,
as was done previously. We construct a series of variational
states, labeled by an integer n, by continuously changing the
phase of the wave function according to the area of the largest
loop:

|n〉 = 1√
Z

∑
C

d |C|e2πni p(AC )|C〉. (40)

Here, AC is the area of the largest loop in configuration C, and
p(AC ) is the cumulative probability distribution of AC in the
classical ensemble. Making the phase of the wave function
proportional to this probability ensures the variational states
are orthogonal to the ground state and to each other (see
Appendix B).
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FIG. 7. Area, length, and lifetime distribution of loops. (a) shows
the cumulative area distribution of the largest nonwinding loop in the
classical ensemble on an L × L torus (d = 1). p(A) is the probability
that the largest loop has area smaller than A. For system sizes
L = 100, 300, and 500, p(A) collapses to the same curve. (b) shows
the joint distribution of lifetime and maximum area of loops during
the Markov process corresponding to the quantum dynamics. The
intensity in (b) at each point is proportional to the logarithm of
the number of loops with the corresponding lifetime and maximum
area. The high-intensity region follows the line: lifetime ∼area1.5,
consistent with the scaling t ∼ R3.

In the physical proof sketched above, we implicitly as-
sumed that the size distribution of the largest loop, p(AC ), con-
verges to a smooth function of AC/L2 in the thermodynamic
limit. It is well known that the classical loop ensemble has
loops of radius comparable with the system size for |d|2 � 2
(this is a consequence of scale-invariance). In Fig. 7(a), we
verify it for d = 1, and numerically compute the probability
distribution of the area of the largest nonwinding loop. On
the torus with size L = 100, 300, and 500,12 we found p(AC )
converges to a smooth function of AC/L2. The residual differ-
ences are mainly statistical.

C. Numerical estimates of z

We extract the dynamical exponent numerically in two
ways, finding that the lower bound above is not saturated.
We use the mapping to a classical Markov process described
in Sec. VI A and Appendix C. We trace the evolution of
large loops in this dynamics, and we also compute dynamical
correlation functions.

First, Fig. 7(b) shows the distribution of lifetimes of loops
in the classical Markov process, as a function of loop size:
specifically, as a function of the maximum area attained by
the loop during its lifetime (we follow the loops that are
present in an initial equilibrated state). Scale invariance of the
dynamics implies that (lifetime) ∼ (area)z/2. We find that the
data agrees well with this scaling relation if we take z = 3.13

Next we use time-dependent correlation functions to give
a more accurate measurement of the dynamical exponent.
Specifically, we consider here the probability, which we de-
note p2, that two space-time points lie on the same world

12We take periodic boundary conditions in two directions: the
horizontal bond direction and the direction at 120◦ to it.

13For this result, we take a torus of size L = 500, time T = 105 (see
Appendix D for the definition of the time unit). The results shown are
averaged over six such runs.

(a)

(b)

x

FIG. 8. (a) p2(x), the probability that two points separated by
distance x are connected by one loop (on a torus with 1000 ×
1000 plaquettes). Different colors label different d and/or different
warm-up times t (Appendix D). Theoretically, p2(x) ∼ x−2x2 . The
theoretical and measured x2 are shown in the inset chart. For d2 =
1.0, 1.4, and 1.8, after 10 warm up steps, the measured exponents
fit the theory very well. For d2 = 2.0, there is a significant deviation
because of a known logarithmic correction to the power-law decay
at this critical |d|2. (b) p2(t ), the probability that a fixed point is
occupied by the same loop at times 0 and t , for various d , on a torus
with 400 × 400 plaquettes (note that t � Lz for these values, so finite
size effects are expected to be small).

surface of a loop. This probability does not map to a local cor-
relation function in the quantum model, but scale-invariance
implies that it still obeys the scaling form in Eq. (14), so it can
be used to extract z. In Sec. VIII, we perform similar analyses
of conventional local correlators in the quantum model.

First we check the expected equal-time scaling (which does
not involve the dynamical exponent z). When the points are
at equal-time, p2(x) is the probability in the classical 2D
ensemble that two points separated by x (along the hori-
zontal lattice direction) lie on the same loop. This scales as
p2(x) ∼ x−2x2 , where x2 = 2 − d f depends on |d| [see the
discussion around Eq. (17)]. Our numerics for various values
of d in Fig. 8(a), where the fitted exponent values are shown,
are in good agreement with the expected values of x2, except
at |d|2 = 2 where there is a larger error. We attribute this to
logarithmic finite-size effects which are present at the special
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(a)

(b)

FIG. 9. (a) estimates of z from the data in Fig. 8(a). We divide the
time t into five ranges: 5.5 � ln t < 6.0, 6.0 � ln t < 6.5,...,7.5 �
ln t < 8.0, and perform separate linear fits to the log-log plot, to get
dynamical exponent estimates on each scale. Results are consistent
with z = 3.00(6) for all |d|2 < 2. We expect that the larger deviation
from 3 at |d|2 = 2 is due to logarithmic finite-time corrections there
(see text). In (b), we plot the correlator p2(t ) for smaller systems,
with linear size L = 20, 40, and 60. The scaling hypothesis requires
p2(t, L) = c′L−2�1 F (t/Lz ). Correlators for different L collapse very
well assuming z = 3 for both |d|2 = 1 and |d|2 = 1.8.

value |d|2 = 2 because of a marginally irrelevant scaling
variable (see Sec. VIII A).

Figure 8(b) shows the probability that a given spatial point
lies on the same world surface at time 0 and time t , which we
denote p2(t ). By the scaling hypothesis, we expect p2(t ) ∼
t−2x2/z. Results in Fig. 8(b) are consistent with power-law
decay in time. To test the scaling hypothesis and to put an
error bar on z, we divide the time t into five ranges: 5.5 �
ln t < 6.0, 6.0 � ln t < 6.5,...,7.5 � ln t < 8.0, and perform
separate linear fits to the log-log plot. The result in Fig. 9(a)
is consistent with z = 3 for all values of d (with an error
bar � ±0.06), except for the case |d|2 = 2, where we expect
logarithmic finite-time effects (Sec. VIII A). There is some in-
dication of a systematic drift in z as the timescale is increased,
but nevertheless it seems z is close to three.

Finally, in Fig. 9(b), we check the scaling ansatz for the
full range of t/Lz, using smaller systems with L � 60 so that
times of order Lz can be accessed numerically. We expect the
following scaling form (the correlation function is at equal
position; the second argument denotes the system size)

p2(t, L) = L−2x2 F (t/Lz ), (41)

where F is an unknown scaling function. Therefore we plot
L2x2 p2 against t/Lz for L = 20, 40, and 60. Correlators for
the same d and different L are seen to collapse when we take
z = 3, consistent with this value of the dynamical exponent.
Different scaling curves are obtained for different d . See
Appendix D for details of numerical methods.

D. Ground-state degeneracy

Does the energy of the first excited state scale as E ∼ L−z,
with z = 3? This is the naive expectation from scale in-
variance, and it is true on the sphere and on the disk with
appropriate boundary conditions. However, on topologically
nontrivial manifolds the loop model Hamiltonian [Eq. (7)]
has a nontrivial ground-state degeneracy. For a more general
Hamiltonian in the same universality class, this ground-state
degeneracy is lifted by dangerously irrelevant operators, giv-
ing a gap that scales with an exponent larger than z.

On the torus, there are O(L2) different topological sectors,
labeled by winding numbers of loops in the x and y directions
(see Appendix F for details). Without reconnection, winding
numbers are conserved, and there is at least one ground state
in each sector.

In fact, the frustration-free Hamiltonian on the torus has
a more severe (though still subextensive) ground-state de-
generacy: there are ∼ exp (const × L) “frozen” ground states
which are fully packed by large loops all winding in the
same direction (every site is visited by a winding loop). These
frozen configurations do not have any allowed moves, and are
ground states of the solvable Hamiltonian.

However, the degeneracy of these states with the ground
states of interest is an artifact of fine-tuning. A generic Hamil-
tonian in the same universality class will include irrelevant
perturbations in the ultra-violet that are absent in the ideal
Hamiltonian displayed in Sec. II B. The irrelevant four-loop
reconnection operator discussed in the following section is
one candidate for such an irrelevant operator. These perturba-
tions can push the frozen states up to an extensive energy, i.e.,
an O(1) energy density. This energy density is O(1) (rather
than a negative power of L) because the frozen states already
differ from the nontrivial ground state at the lattice scale, and
because the coefficient of the irrelevant operators in the UV is
generically O(1).

The states with O(1) winding (which are locally close to
the ground state, since the winding number is � L) also have
their degeneracy lifted by “dangerously” irrelevant14 opera-
tors. However, instead of being pushed to extensive energies,
they acquire an anomalously small gap (smaller than L−z). In
general, states with O(1) winding numbers recombine into the

14They are dangerously irrelevant in the sense that despite being
irrelevant they give the leading contribution to this gap.
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new ground state and the anomalously low-lying states: these
have a gap of order L−w, where w > z is determined by the
RG eigenvalue yirr < 0 of the irrelevant operator and by its
matrix elements in the space of low-lying states (the simplest
possibility being w = z + |yirr|).

Interestingly, we have these extra low-lying states only on
topologically nontrivial manifolds, and they are related to the
total winding number. The quantum dimer model also has
low-lying states (that can be split by dangerously irrelevant
operators) associated with a winding number with a slightly
different definition [9,15]. These states are reminiscent of the
Anderson tower of states in the ordered phase of a quan-
tum antiferromagnet, where states with spin S have energy
∼S2/volume, well below the gap to the Goldstone mode.
However, the reason for low-lying states in the present model
is purely topological.

At d = ±√
2, we can add a relevant three-loop recon-

nection operator which preserves the ground state on the
sphere (and hence the equal-time scaling functions) but com-
pletely changes the dynamics of loops: see Sec. IX A and
Appendix F. The low-lying states on the torus are also
lifted, with only nine of them remaining, corresponding to
states in the doubled SU(2)2 topological field theory [3,4]
(Appendix F).

VII. SUPERUNIVERSALITY OF DYNAMICAL
EXPONENTS

A striking feature of our numerical results in Sec. VI C
is that, while the scaling dimensions x depend on |d|, the
dynamical exponent z seems to be independent of d . Here we
show that this is in fact the generic expectation for any line of
RG fixed points.

Assume we have a Hamiltonian Hu that depends on a
parameter u, and that in the IR this theory flows to an RG
fixed line, with u controlling the position on the fixed line
where the flow ends. Let z(u) be the dynamical exponent at
the corresponding position on the fixed line. At large L, the
energy gap on (say) the sphere15 scales as

�(u, L) = A(u)

Lz(u)
+ . . . (42)

where A(u) is a nonuniversal constant. If we differentiate with
respect to L, assuming that A(u) and z(u) and the subleading
terms are well-behaved as a function of u,

d�(u, L)

du
� A′(u) − A(u)z′(u) ln L

Lz(u)
. (43)

Alternatively, we may compute the same quantity from the
derivative of the Hamiltonian:16

d�(u, L)

du
= 〈ex|dHu

du
|ex〉 − 〈GS|dHu

du
|GS〉 (44)

15For the present class of models, the energy gap scales with L−z

on the sphere, but scales with a larger exponent on the torus because
of almost-degenerate states that are split by dangerously irrelevant
operators (Sec. VI D).

16By the Feynman-Hellmann theorem, the derivative of the ground
state or the excited state with respect to u does not contribute.

where |ex〉 is the first excited state. The right-hand side
involves expectation values of a local perturbation summed
over space. From a standard coarse-graining argument, we
would expect the right-hand side to scale as Ld−x, where the
factor of Ld comes from the spatial sum, and x is the scaling
dimension of the perturbation (which may be expressed in
terms of scaling operators of the continuum theory). Since this
perturbation is marginal by assumption, x = d + z, this gives

d�(u, L)

du
∼ L−z(u). (45)

Note the absence of a logarithmic term in L.
Therefore, assuming conventional scaling for the expecta-

tion value of dHu/du, comparing with Eq. (43) implies that
z′(u) = 0. This is the fact stated above.

Could the conventional scaling expectation for dHu/du
break down? We can certainly obtain logarithms in expec-
tation values if the theory has a marginally irrelevant per-
turbation in addition to the exactly marginal one. However,
generically we do not expect such a perturbation, and even
if one is present for a given microscopic Hamiltonian, in
most cases we can simply tune the Hamiltonian so that the
coefficient of this perturbation vanishes (and the logarithms go
away). We can then repeat the argument to obtain the desired
property for the RG fixed line.17 In the very different context
of nonunitary conformal field theories, logarithms appear via
a different mechanism, but we do not expect that to be relevant
here.18

VIII. CORRELATION FUNCTIONS AND SCALING
OPERATORS IN THE LOOP MODEL

In this section, we discuss the operator content of the
loop model, provide analytical scaling dimensions for various
quantum operators and check them numerically.

We develop a systematic treatment that maps every equal-
time quantum correlator to a sum of classical probabilities,
from which we can read off the scaling dimensions of many
operators. This formalism allows us to understand (at least
in principle) every quantum operator with nonzero equal-time
correlator, revealing the topological structure in the operator
spectrum argued on general RG grounds in Sec. IV.

17There may be exceptional cases where the marginally irrelevant
perturbation is dangerous and cannot be set to zero.

18In some classical statistical mechanics models described by
nonunitary conformal field theories, the action of the renormalization
group transformation on the set of operators with a given scaling
dimension is not diagonalizable, and this leads to logarithms in cor-
relation functions [31]. We do not know whether something similar
is possible in unitary but nonconformal quantum theories, but in any
case, we argue that it could not change the above result (assuming the
RG flow terminates on a fixed line without dangerously irrelevant
couplings). The simplest case would be a pair of operators O, O′

which under coarse-graining by a factor of b transform as O →
b−x (O + O′), O′ → b−xO′. In this case, the one-point function 〈O〉
contains a logarithm. However, if dHu/du transformed like O does
here, then dHu/du would not be an exactly marginal perturbation
in the usual sense, simply because under RG it would generate the
additional perturbation O′ to the Hamiltonian.
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This understanding is not quite the end of the story since
(as noted in Secs. III, V) some nontrivial scaling operators
have vanishing equal-time correlators. In the special case
d = 1, all operators have this property, but we can obtain
their scaling dimensions simply by taking the limit d → 1
in formulas for generic d . For d �= 1, a subset of operators
are hidden operators whose equal-time correlation functions
vanish. However, we can determine the scaling dimensions of
at least some of these by the logic in Sec. V, i.e., by relating
them to perturbations of the associated classical Boltzmann
weight.

One natural question (for example in relation to the phase
diagram of the models near the critical surface) is how many
relevant or marginal perturbations the quantum loop models
have. We will exhibit a set of low-lying (relevant or marginal)
scalar operators that is plausibly complete. We cannot prove
that there are no other low lying scalar operators, because
we cannot rule out the possibility of additional hidden opera-
tors that neither show up in equal-time correlation functions
nor correspond to deformations of the classical Boltzmann
weight. However, numerical results discussed below are con-
sistent with the hidden operators discussed above being the
most relevant ones.

A. Low-lying local operators

Before giving a formal classification of operators, let us
summarize some of the most important ones.

Since we have a preferred basis for the Hilbert space,
the loop occupation basis, we can distinguish diagonal and
nondiagonal operators in this basis. They will have different
interpretations in terms of fluctuating loops.19 Let us first
discuss diagonal operators.

When we consider equal-time correlators, diagonal oper-
ators built from σ z map to local operators in the classical
loop ensemble, which can be expanded in terms of scaling
operators in the conformal field theory for the loop model.
This allows us to determine the scaling dimensions of the
quantum operators.

At first glance, the simplest microscopic operator is the
spin σ z on a link of the lattice. Surprisingly, the leading
continuum operator contributing to this lattice operator is not
a scalar operator, but instead an operator of spin 2 under
spatial rotations. When inserted into equal-time correlation
functions, this diagonal quantum operator maps to the stress
tensor Tμν of the two-dimensional classical theory. The point
is that σ z on a particular edge is invariant under reflection
about this edge, but is not invariant under spatial rotations;
it has the same symmetry as Txx, where the x axis is aligned
with the bond direction. The 2D stress-energy tensor has
scaling dimension 2 and is the most relevant operator with the
required symmetry, and hence the leading contribution to the
correlator of σ z. Note that, since the spin-2 scaling operator
in the quantum theory is not symmetric under rotations, it

19We can also neglect operators that create open strings: these have
exponentially decaying correlators, as the Hamiltonian imposes a gap
for strings with dangling ends.

FIG. 10. The connected two-point function of σ z on an edge (un-
symmetrized), on a torus with 400 × 400 plaquettes. Theoretically
we expect the leading scaling dimension 2. The numerical result fits
the expected power-law decay very well at smaller t . For the larger
t , the numerical error for 〈σ z〉 becomes significant and 〈σ z(t )σ z(0)〉c

inherits this error. At d = 1, we know 〈σ z〉 vanishes exactly, so this
problem does not exist.

does not appear in a perturbed Hamiltonian if the perturbation
respects the symmetry.

Figure 10 shows numerical data for the correlator of σ z

at distinct times. From the above result for the scaling di-
mension, and the scaling forms in Sec. III, we expect this
to decay as t−4/z with z � 3, for all values of d . The data is
consistent with this expectation. In Ref. [7] the loop models
were simulated using a different approach, and numerical
scaling ∼t−1 was reported for the σ z two-point function at
d = 1; this exponent is not too far from the 4/3 we find.

To obtain a scalar operator (i.e., to isolate the subleading
scalar contribution to σ z), we can symmetrize the lattice
operator under rotations, for example by taking the sum of σ z

for the three spins surrounding a given vertex. The resulting
operator simply measures whether or not a given site is visited
by a loop. We denote it by σ z

symm.20 In the 2D theory, there are
two low-lying scalar operators, with dimensions:

xsymm = 4, x′
symm = 4 − 2g

g
. (46)

The first of these is T̄ T , the product of the holomorphic
and antiholomorphic components of the 2D stress tensor; see
Eq. (18) for the definition of g as a function of |d|. Corre-
spondingly we expect two scaling operators in the quantum
theory, Osymm and O′

symm, both trivial under all symmetries,
with these dimensions. Both will appear when we expand a
lattice operator like σ z

symm in terms of continuum operators,
and the one with the smaller dimension will dominate in cor-
relation functions. For |d|2 < 1, this is xsymm, but for |d|2 > 1
it is x′

symm. For |d|2 � 0.4 both operators are relevant in the RG

20Note that there is no symmetry that changes the sign of σ z, so it
is not significant that the operator is odd in σ z. Any generic lattice
operator that is invariant under rotations and diagonal in the σ z basis
will yield the same continuum operator as σ z

symm.
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sense if used to perturb the Hamiltonian, i.e., y = 2 + z − x is
positive [Eq. (16)] for both.

By the argument in Sec. V, there are also less-relevant
quantum operators with dimensions xsymm + z and x′

symm + z
obtained using the anticommutator with the Hamiltonian den-
sity; these are irrelevant, except at |d|2 = 2 when the latter be-
comes marginal (though not exactly marginal), reflecting the
existence of a marginal perturbation in the classical ensemble
at |d|2 = 2. (This is the source of the logarithmic finite-size
corrections mentioned in Sec. VI C.)

The definition of a local operator also depends on whether
we interpret the loops as chains of flipped spins or as Ising
domain walls. In the latter case, the Ising spin, which we
will denote τ z, gives an additional low-lying local operator
(which is odd under the Ising symmetry that exists in that
representation). This maps to a simple kind of twist operator
in the loop model: the correlator 〈τ z(r)τ z(0)〉 measures the
parity of the number of loops crossing a line between r and 0.
This operator has scaling dimension

xτ = 3 − 2g

2g
. (47)

We turn now to nondiagonal operators. We have al-
ready discussed (Sec. V) two exactly marginal operators,
with x = 2 + z � 5, which, when added to the Hamiltonian,
change the magnitude and phase of d by modifying the
loop creation/annihilation term in the Hamiltonian. These
operators have nonzero matrix elements between states with
and without a small loop. They do not reconnect large strands,
however, so they are topologically trivial according to the
classification in Sec. IV.

For a numerical calculation of the temporal correlator for
one of these operators, see Fig. 11(a). This is the operator
which we perturb the Hamiltonian by when we change |d|.21

Results are consistent with the expected power-law decay in
time. By the argument in Sec. V, this operator is a hidden
operator with vanishing equal-time correlator.

The most relevant topologically nontrivial operator (recon-
nection operator) is the two-loop reconnection operator with
spin zero, which we call W2,0,22 whose scaling dimension is

x4,0 = 4g2 − (1 − g)2

2g
(48)

as we show in the next section. This operator is strongly
RG-relevant if added to the Hamiltonian. This operator is
the leading contribution to the operator

∏
σ x which flips all

the spins around a plaquette. The temporal correlator of the
two-loop reconnection operator (whose lattice definition is
given in the next section) is shown in Fig. 12. At d = √

2,
our result implies a spatial two-point function that decays as
r−4, which differs from the value close to three quoted from
numerical simulations in Ref. [7]: this may be a result of finite
size effects in that study.

21For real d , we can define the operator as Loop ∝ (2d −1
−1 0

) in the

basis of an empty plaquette state and a small loop state.
22See the definition and detailed discussions in Sec. VIII D. Recon-

nection operators with nonzero spin are also discussed in Sec. VIII D.

(a)

(b)

FIG. 11. Correlators of hidden operators measured at |d|2 = 1.8.
(a) Correlator of the loop creation/annihilation operator, the hidden
operator that preserves the frustration-free condition and induces
the change of |d| in the ground state. The black line indicates a
power-law decay t−2(z+2)/z, where we have set z = 3 [ditto in (b)].
(b) Correlator of the lattice hidden operator S15 defined in the text,
which has no useful classical correspondence. Numerical results are
consistent with a single exactly marginal continuum scaling operator
dominating both of the lattice operators shown in this figure.

The three-loop reconnection operators (with spin zero)
have the larger scaling dimension

x6,0 = 9g2 − (1 − g)2

2g
. (49)

Three-loop reconnection operators act within a disk with six
incoming strands (recall Fig. 5). The number of topologically
distinct reconnection events increases with the number of
strands. As a result, while there is only a single spin-zero two-
loop reconnection operator,23 there are three distinct three-
loop reconnection operators with spin zero. Of these, two
are even, and one is odd, under time reversal and parity
(reflection in a spatial axis). Therefore, if we retain symmetry
under spatial rotations and reflections, there are two distinct
three-loop reconnection operators that can be used to perturb

23Barring possible hidden operators.
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FIG. 12. Temporal correlation function of the two-loop recon-
nection watermelon operator W2,0 on a torus with 400 × 400 plaque-
ttes, for d = 1.4, 1.8, and 2.0. For d = 1, where the correlator is
zero, we instead plot its derivative with respect to d . These results are
consistent with the analytical result for the scaling dimension of the
two-loop reconnection operator and the previous result z = 3.00(6)
from Fig. 9(a) (noting that for |d|2 = 2 we expect a logarithmic
correction).

the Hamiltonian. They are RG relevant, since the scaling
dimension x6,0 above is smaller than 2 + z.

At the special point d = √
2, both of these three-loop re-

connection operators become hidden operators (whose equal-
time two-point functions vanish). A linear combination of
them, called the “Jones Wenzl projector” [3,4], can be added
to the Hamiltonian without changing the ground state. Nev-
ertheless it is a relevant perturbation that leads to a new
universality class for the quantum dynamics. We discuss this
new universality class in Sec. IX A.

In the original family of universality classes, higher recon-
nection operators, starting with the four-loop reconnections,
are RG-irrelevant (with the exception of the regime |d|2 � 0.8
when four-loop reconnection is relevant). The scaling dimen-
sion of a spin-zero k-loop reconnection operator is

x2k,0 = g2k2 − (1 − g)2

2g
. (50)

In Table I, we list all the perturbations that we have found
which preserve all the spatial symmetries of the lattice model
(though not necessarily the dynamical topological constraint),
and which are relevant or marginal for 0.8 � |d|2 < 2. We
ignore redundant operators which (if used to perturb the
Hamiltonian) can be absorbed in a rescaling of space and time
coordinates.

As we will discuss in Sec. IX B, there is another d-
dependent family of fixed points for the quantum loop models
that is related to the so-called “dilute” phase of the classical
loop ensemble; there the scaling dimensions of the reconnec-
tion operators are larger.

In the following sections, we present a classification of
local operators up to hidden operators. We find no other (sym-
metric, nonredundant) operators that are relevant or marginal.

TABLE I. Relevant or marginal operators that preserve all sym-
metries, excluding redundant operators. (For |d|2 � 0.8, four-loop
reconnection also becomes relevant; at |d|2 = 2, there is an addi-
tional marginally irrelevant operator.)

Description Scaling dimension

Osymm diagonal 4
O′

symm diagonal 4−2g
g

W2,0 two-loop reconnection 4g2−(1−g)2

2g

W3α,0 three-loop reconnection 9g2−(1−g)2

2g

W3β,0 three-loop reconnection 9g2−(1−g)2

2g

Loop hidden operator for changing |d|2 2 + z
Loop′ hidden operator for changing arg d 2 + z

To test whether there could be any other relevant hidden
operators, we must resort to numerics. Here we perform a par-
tial test at |d|2 = 1.8, considering only diagonal operators. We
calculate the temporal correlator of a lattice operator which we
denote S15. This is a diagonal operator defined on the six links
of a hexagon: it is equal to +1 if a total of 5 of the 6 links are
occupied, to −1 if 1 of the links is occupied, and 0 otherwise.
This operator is a sum of hidden operators (according to the
definition in Sec. V) and its equal-time correlator vanishes.
When it is expanded in continuum operators only hidden
scaling operators will appear, and its temporal correlator will
be dominated by the leading hidden operator that appears
(assuming this has a nonvanishing temporal correlator).

Figure 11 shows that the scaling dimension of this operator
is consistent with the marginal value x = 2 + z. This is con-
sistent with the leading hidden operators being the marginal
ones Loop and Loop′ discussed above.

B. Operator equivalence relation

In this section, we introduce an equivalence relation among
local operators. This equivalence relation allows us to write
operators in an intuitive standard form that simplifies the
computation of correlation functions.

First we introduce an equivalence relation among states de-
fined on a local patch A, e.g. the dashed circle in Fig. 13(a). We
define two states to be equivalent if and only if their difference
is a hidden state, i.e., if their difference is a state which is
orthogonal to the ground-state reduced density matrix ρA for
patch A. This equivalence has a geometrical interpretation as
will be clear below.

For example, the two states in Fig. 13(a) are equivalent to
each other, which we write as

|C′
A〉 ∼ |CA〉. (51)

The two configurations are related by a deformation of the
strands in the interior of A without changing their connections.
For any configuration outside disk A, CĀ, the number of loops
in the full configuration, which we denote CACĀ, is always the
same as that in C′

ACĀ. Therefore these two configurations have
the same amplitude in the ground state,

〈GS|C′
ACĀ〉 − 〈GS|CACĀ〉 = 0 (52)
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(a)

(c)

(b)

FIG. 13. [(a) and (b)] Equivalence relation for states. Two states
are defined to be equivalent if their difference is a forbidden state.
(c) Equivalence relation between operators. Two operators are de-
fined to be equivalent if their difference is a hidden operator.

(for any CĀ), and so

ρA(|C′
A〉 − |CA〉) = 0, (53)

which is the meaning of Eq. (51).
More generally, if C′

A has n extra small loops compared to
CA, as in the example in Fig. 13(b), then using the ground-state
wave function we have

ρA(|C′
A〉 − d̄n|CA〉) = 0, (54)

hence

|C′
A〉 ∼ d̄n|CA〉. (55)

Let αA denote an equivalence class of configurations inside
A. The equivalence class is specified by the positions of strand
endpoints on the boundary of the disk A, and the topological
information about their connections by strands within A. It
is useful to pick a reference configuration, without any small
loops, for each equivalence class: we call the corresponding
state |αA〉. Any configuration CA in the equivalence class can
be reduced to the reference configuration by removing the
small loops and deforming the strands.

Next, we define two local operators on disk A to be
equivalent (O ∼ O′) if their difference is a hidden operator
as defined in Sec. V. Since hidden operators have vanishing
equal-time correlators with all operators outside A (Sec. V),
equivalent operators have exactly the same equal-time corre-
lators with every operator outside disk A.

Given an arbitrary operator OA on disk A, written in terms
of states in A as

OA =
∑

C′
A,CA

OCA,C′
A
|C′

A〉〈CA|, (56)

we can always reduce it to an equivalent operator acting on
the smaller space spanned by the reference states |αA〉 [this is
illustrated in Fig. 13(c)]

OA ∼
∑
αA,α′

A

Õα′
A,αA |α′

A〉〈αA|, (57)

FIG. 14. Local operators and their two-point functions. We label
the connections of end points and the position of end points, by αA,
αB (red lines, inside disk A/B), and γ (blue lines, outside discs A
and B). In this configuration, the number of loops passing through
the two discs, which we call [αAγαB], is 2. The number of loops
completely outside the two discs, which we call [Cγ ], is also 2.

by subtracting hidden operators of the form

(|C′
A〉 − d̄n|α′

A〉)〈CA|, |C′
A〉(〈CA| − dm〈αA|),

where m and n are the numbers of small loops in configura-
tions CA and C′

A.
Thus, as far as equal-time correlators are concerned, we

only need to study the operators on the right hand side of
Eq. (57).

C. Map between equal-time quantum correlators
and classical probabilities

Using the operator equivalence relation introduced in the
last section, we now prove an important property of equal-
time correlators of quantum operators: every equal-time quan-
tum correlator is equal to a sum of classical “geometric”
correlators. We focus on two-point functions, but the for-
malism applies to arbitrary n-point functions, in particular
to one-point functions on the disk (with specified boundary
conditions) which we discuss in Sec. VIII F.

We calculate the two-point function of two arbitrary op-
erators OA and OB supported on disjoint regions A and B.
Making use of Eq. (57), we can take these operators to have
nonzero matrix elements only between reference states |αA〉
(and similarly for B) of the type described above.

Just as we label the positions of endpoints on the boundary
of disk A and their topological connectivity inside A by αA,
and similarly for αB in disk B, let us label the connectivity of
these points outside both discs by γ : see Fig. 14.24 We also
use Cγ to denote a configuration outside the two discs that
is in equivalence class γ (so that the sum

∑
Cγ

is implicitly
restricted to configurations with connectivity γ ).

Note that the number of loops that pass through A and/or
B does not depend on the specific configuration Cγ , but only
on its equivalence class γ ; we denote this number by [αAγαB].
We denote the number of loops completely outside both A and
B by |Cγ |. The total number of loops is then

|C| = [αAγαB] + |Cγ |. (58)

24γ contains the information about the positions of the endpoints
on the boundaries of A and B, plus the purely topological information
about how these endpoints are connected in the exterior.
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With this notation, we can organize the two-point function,

〈OAOB〉 = 1

Z

∑
C,C′

d̄C′
dC〈C′|OAOB|C〉, (59)

as follows (we use the fact that the operators only act on the
reference states within the discs):

〈OAOB〉 =
∑

γ

⎡
⎢⎢⎢⎢⎣

⎛
⎝ 1

Z

∑
Cγ

|d|2|Cγ |

⎞
⎠

×
∑

αA,αB,

α′
A,α′

B

d̄ [α′
Aγα′

B]d [αAγαB]〈α′
Aα′

B|OAOB|αAαB〉

⎤
⎥⎥⎥⎥⎦. (60)

We now make definitions for the two factors appearing in the
square bracket above:

〈OAOB〉 =
∑

γ

p̃γ (r) · 〈OAOB〉γ , (61)

with (r is the separation of the two discs)

p̃γ (r) ≡ 1

Z

∑
Cγ

|d|2|Cγ | (62)

and

〈OAOB〉γ ≡
∑

αA,αB,

α′
A,α′

B

d̄ [α′
Aγα′

B]d [αAγαB]〈α′
Aα′

B|OAOB|αAαB〉. (63)

This rewriting separates out two conceptually different types
of contribution to the correlator.

First, the quantity p̃γ (r) is a “geometrical correlator” in
the classical ensemble which is independent of the operators.
More precisely, it is given (up to a positive and r-independent
proportionality constant which will not concern us in the
following25) by the classical probability pγ (r) that the bound-
aries of A and B are connected as γ indicates.

Second, 〈OAOB〉γ is the ‘topological’ part of the correlation
function, conditioned on the connectivity outside being γ .
This term depends on the matrix elements of the operators.
The quantity [αAγαB] is well-defined only when the positions
of end points match: for convenience, we have formally
extended the definition to arbitrary αA, αB, and γ by defining
d [αAγαB] = 0 when the positions do not match.

This seemingly tautological rewriting of correlation func-
tions is the foundation for the rest of this section. It reduces an
arbitrary quantum correlator to a sum of classical probabilities
which know nothing about quantum operators. On the other
hand, 〈OAOB〉γ is purely topological, without any dependence
on r or the shape of loops: it depends only on the number of
loops passing through the discs, before and after the action

25The probability of γ in the classical ensemble is pγ (r) =∑
Cγ

∑
CA,CB

|d|2|Cγ |+2[CAγCB], which is p̃γ (r) × ∑
CA,CB

|d|2[CAγCB].
The proportionality constant depends on γ but not on r.

(a) (b)

FIG. 15. Possible connections inside and outside discs with four
end points. In (a), we show the only two possible connections inside
the disk with four end points, α1 and α2. These two connections
give a four-dimensional space of local operators with 4 end points,
spanned by |αi〉〈α j |, i, j = 1, 2. In (b), we show four possible
connections outside the two discs. There are 24 possible connections
in total, but each of them is equivalent to one of the first three
connections in (b) up to cyclic permutation of end points on disk
A (left) and on disk B (right). For example, the fourth connectivity in
(b) is related to the third by CPA (illustrated with red arrows), a cyclic
permutation of end points on disk A. CPA also acts on the connections
inside disk A, exchanging α1 and α2.

of OA and OB. The important features are that local operators
OA and OB together can detect the nonlocal connectivity γ

of the underlying loops, and that the topologically distinct
reconnection moves performed by operator OA can be “de-
tected” by another operator OB far away. However, it remains
to construct operators for which the sum in Eq. (61) simplifies,
for example to a single γ . We do this next.

D. Watermelon operators and topological types

In this section, we study a class of quantum operators
which we call quantum watermelon operators, whose two-
point functions are classical geometrical probabilities known
as watermelon correlation functions. We find a 1-to-1 corre-
spondence between the leading watermelon correlators and
the topological types of reconnection operators introduced in
Sec. IV.

In the notation of the last section, the classical watermelon
correlators are the probabilities of the “fully extended” con-
nections γ , for which discs A and B have an equal number of
end points, say 2k, and every end point on the boundary of A
is connected to an endpoint on B. The two configurations in
the bottom row of Fig. 15(b) are examples of fully extended
configurations for k = 2, whereas those in the top row are not
fully extended.

In general, for 2k fixed end points on both disk A and disk
B, there are 2k fully extended connections (since loops cannot
cross), related by the transformation generated by the cyclic
permutations of end points on disk A [which we denote by
CPA, as shown in the bottom of Fig. 15(b)]. By a Fourier
transformation, we can write the generalized watermelon cor-
relators with spin l = −k + 1, . . . , k as

pk,l (r) ≡
2k−1∑
n=0

eiπ ln/k p̃CPn
A (γext )(r), (64)

where p̃(r) is defined in Eq. (62), and γext can be any of the 2k
fully extended connections, since repeated actions of CPA on
γext generates all 2k connections. In the 2D CFT of the loop
ensemble, the leading contributions to pk,l (r) at large r are
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correlators of defect operators with spin l (mod 2k).26 In the
scaling limit, they decay as

pk,l (z) ∝ 1

zx2k,l −l/2 z̄x2k,l +l/2
, l �= k, (65)

where z = x + iy is the complex coordinate of the point r and

x2k,l = gk2

2
+ l2

2gk2
− (1 − g)2

2g
. (66)

The case l = k is special because the spin-k and spin-(−k)
correlators have the same scaling dimension. In that case,

pk,k (z) ∝ Re
1

zx2k,k−k/2 z̄x2k,k+k/2
. (67)

With this understanding, we now want to look for a quan-
tum operator Wk,l in disk A whose correlator is just the spin-l
watermelon correlator. We restrict to operators in the space of
states with precisely 2k endpoints on the boundary of the disk,
and we take the positions of these endpoints to be fixed.

We define an operator Wk,l on disk A to be a quantum 2k-leg
watermelon operator if and only if

〈Wk,l · OB〉γ = 0 for all OB, and all γ with

a self-contact on disk A. (68)

Further we impose

CPA(Wk,l ) = eiπ l/kWk,l . (69)

CPA acts on operators by rotating the labels αA. For example,
in Fig. 15(a), CPA(α1) = α2.

The first condition, Eq. (68), ensures that only fully ex-
tended connections show up in correlators involving Wk,l [see
Eq. (61)]; the second, Eq. (69), ensures that Wk,l carries the
desired spin (mod 2k). (Each operator satisfying the first
condition can be decomposed into watermelon operators in
different spin channels.) Since 〈OAOB〉γ is just a polynomial
of d and d̄ with total rank at most 2k, the search for water-
melon operators becomes a combinatorial task.

We prove the general results on watermelon operators,
i.e., their number and the relation with topological types, in
Appendix E. Here we illustrate the idea with a few examples.

First consider k = 2 (Fig. 15). With fixed end points, there
are only two different connections inside disk A, α1 and α2.
We can form four linearly independent quantum operators,
and they belong to two topological types: those that recon-
nect two loops (R2) and those that cannot reconnect loops
(D). We organize them by the phase acquired under CPA

(either 0 or π ):

D0 = |)(〉〈 )(| + | � 〉〈 � |, (70)

Dπ = |)(〉〈)(| − | � 〉〈 � |, (71)

R2,0 = |)(〉〈 � | + | � 〉〈)(|, (72)

R2,π = |)(〉〈 � | − | � 〉〈 )(|. (73)

26For readers familiar with the Coulomb gas language, the spin-l
operator has magnetic charge ±k (emitting/absorbing 2k strands),
and electric charge charge l/k (meaning it gains a phase e±iπ l/k when
there is an extra loop surrounding it).

FIG. 16. Two-point function of W2,2. Results fit well to the black
line, which has the slope calculated from the theoretical scaling
dimension x4,2 and our numerical result z = 3.

By the general argument in Sec. IV, D is an offspring type
of R2, and we expect to form a watermelon operator by
subtracting a portion of D from R2.

Outside the two discs, there are many different ways to
connect the eight end points. Fortunately, they all fall into
three equivalent classes under CPA or CPB [represented by
γself, γp-ext, and γext in Fig. 15(b)]. For operators which ac-
quire a definite phase under CPA and CPB, it is enough to
compute 〈OAOB〉γ for one γ in each equivalence class. For
example, for the operators from the above list that are invariant
under CPA/CPB, i.e., those with l = 0, we have according to
Eq. (63):

〈D0D0〉γself = (|d|2 + |d|4)2, (74)

〈R2,0R2,0〉γself = |d|4(d + d̄ )2, (75)

〈D0R2,0〉γself = (|d|4 + |d|6)(d + d̄ ), (76)

and 〈OAOB〉γp-ext = |d|−2〈OAOB〉γself for all OA, OB ∈
{D0, R2,0}. We can then solve a linear equation to find
the desired operator W2,0 that satisfies Eq. (68) (and similarly
for W2,2). By direct calculation, we find

W2,0 = R2,0 − d + d̄

|d|2 + 1
D0, (77)

W2,2 = R2,π + d − d̄

|d|2 − 1
Dπ . (78)

Their correlators are

〈W2,0(r)W2,0(0)〉 = 2
|d|6 − |d|2(d2 + d̄2 − 1)

|d|2 + 1
p2,0(r),

〈W2,2(r)W2,2(0)〉 = 2
|d|6 − |d|2(d2 + d̄2 − 1)

|d|2 − 1
p2,2(r),

〈W2,0(r)W2,2(0)〉 = 0. (79)
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FIG. 17. Two-loop and three-loop reconnection operators, orga-
nized by their topological type and spin. Indices α1, α2 and β1, β2, β3

label different three-strand configurations with fixed end points
(m = 0, 1; n = 0, 1, 2; ω ≡ e2π i/3).

The scaling dimensions and spins of W2,0 and W2,2 follow
from Eqs. (65)–(67). While W2,0 corresponds to a single
leading scaling operator with dimension x4,0, which we call
W̃2,0, W2,2 must contain two degenerate scaling operators with
scaling dimension x4,2 [according to Eq. (67)], having spins
±2, which we call W̃2,+2 and W̃2,−2. (The general results in
the following section show that we can always get a water-
melon operator W̃k,−k by multiplying W̃k,+k with a diagonal
operator nearby.) W̃2,0 is the leading scaling operator with
topological type R2, i.e., the leading two-loop reconnection
operator. W̃2,±2 is the leading scaling operator with spin ±2
and topological type R2.

For numerical results on their time-dependent correlation
functions, see Figs. 12 and 16. Of course, we can multiply
W̃2,0, W̃2,+2, and W̃2,−2 by diagonal operators to get operators
of the same topological type, which have different spins and
larger scaling dimensions.

Solving for the watermelon operators for k = 2 is not
too hard, but for larger k, the number of linear constraints
a watermelon operator must obey is apparently larger than
the dimension of the corresponding operator space. A priori,
there may not be any watermelon operator for a given k
and l . However, the constraints given by each γ and OB are
not linearly independent. In Appendix E, we prove that the
number of watermelon operators for a given k equals the
number of k-loop reconnection operators as defined in Sec. IV
(acting on a disk with 2k fixed endpoints and nontrivially
reconnecting them).27 In particular, the number of leading
spin-0 quantum watermelon operators is just the number of
distinct topological types for k-loop reconnection operators!

For example, there are three different topological types for
three-loop reconnection operators: R3α , R3β , and R†

3β . These
are shown in the third line of Fig. 6. We can organize them
by their spin l (mod 6), giving eight operators. Three of them
are rotation-symmetric, as shown in Fig. 17.28 The general

27Recall that a k-loop reconnection may involve irremovable spec-
tators among the k strands: these are strands that do not get recon-
nected but which cannot be pushed out of the disk because they are
blocked by strands being reconnected. See Fig. 5(b) for an example.

28Even though there are three rotation-symmetric Hermitian
three-loop reconnection operators, namely, R3α,0, R3β,0 + R†

3β,0, and

1 1

12 23

5 1 0 5 11 5 1 0 5 11

1 2 3 4

1

2

3

4

0-4 -3 -2 -1

FIG. 18. k−l lattice for quantum watermelon operators. Each red
dot represents an allowed scaling dimension x2k,l [Eq. (66)] for local
quantum operators, with a number indicating the topological operator
degeneracy at this spin and scaling dimension. Degenerate operators
effect topologically different reconnection moves. Each dashed dot
represents a classically allowed watermelon correlator that is not
realized by any quantum local operator. This figure counts only
the leading quantum watermelon operators, other scaling operators
of the same topological type but with higher scaling dimensions
(Sec. VIII E) are not included. For the leading operators, the index
l gives the spin under spatial rotations (operators with the same l
may transform differently under parity/time reversal, as discussed in
the text).

counting implies that we can make a watermelon operator of
the corresponding spin from each of the eight operators by
subtracting operators of their offspring types. The two-point
functions involving these eight operators can be diagonalized.
The same procedure works for all k. This analysis confirms
the general physical argument for topological types in Sec. IV.
We summarize the results for k � 4 in Fig. 18. For a proof of
the general result see Appendix E.

E. Classification of local operators

In this section, we use the understanding of watermelon
operators and the 2D CFT description of the loop ensemble to
give a classification of quantum local operators up to hidden
operators.

Equation (57) and the results of the previous section imply
that any lattice operator can be written, up to hidden operators,
as a sum of terms, each of which is a product of a diagonal
operator and, next to it in space, a k-loop reconnection opera-
tor.29 Using the result of the previous section and Appendix E,

i(R3β,0 − R†
3β,0), the last one is odd under both reflection and time

reversal.
29To see this, use Eq. (57) to reduce the operator to matrix elements

involving reference states. It is sufficient to consider one matrix
element at a time:

OA = |α〉〈α′| (80)

The reference configurations α and α′ have the same endpoints at
the boundary of the disk. Some of the endpoints are connected to
‘removable strands’ as defined in Sec. IV (which are not reconnected
and which could be pushed out of the disk without being blocked
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we can then write the k-loop reconnection operator as the
sum of a k-loop watermelon operator satisfying Eq. (68) and
an operator that reconnects less than k loops. Repeating this
process, we can reduce every operator, up to hidden operators,
to a sum of products of watermelon operators and diagonal
operators.

Therefore we have a basis for (nonhidden) operators which
is of the form Wk,q,l × Diag, where Wk,q,l is a watermelon
operator satisfying Eqs. (68) and (69), and q labels its topolog-
ical type. Recall that there are multiple topological types for a
given k. By definition, the type is unchanged by multiplying
the diagonal operator nearby.

The leading scaling operator in the product Wk,q,l × Diag
is the same as that contributing to the lattice watermelon op-
erator Wk,q,l itself. (In general, we call the continuum scaling
operator W̃k,q,l .) This result is verified by directly calculating
the two-point functions of Wk,q,l × Diag in disk A and another
operator in disk B. By Eq. (61) and the definition of the
watermelon operator, it is not hard to see that the nonzero
contributions to this correlator come from only the classical
probabilities of configurations where the strands in the oper-
ator Wk,q,l connect to irremovable strands of the operator in
disk B, which requires disk A and B to be connected by at
least 2k strings. The leading behavior of these probabilities is
just the watermelon correlator in Eqs. (65) and (67) with the
same l .

The leading scaling operator W̃k,q,l has spin l (mod 2k),
known from the explicit form of the two-point function. We
note however that subleading operators in the product Wk,q,l ×
Diag with a given l may have spin differing from l . This is
true even for the watermelon operator Wk,q,l itself, because
l describes the phase acquired by the reconnection operator
when the patterns of connectivity are cyclically permuted,
and this permutation is not in general equivalent to a spatial
rotation of the operator.

In order to determine the scaling operator content of a
general lattice operator, now consider the classical mapping
for equal-time correlators involving an operator of the form
Wk,q,l × Diag. It is convenient to imagine attaching arrows to
some of the strands as in the Coulomb gas approach to the
loop models [22].

In the classical ensemble, we may define operators on
the lattice which emit 2k outgoing strands from a disk, with
fixed endpoints. Let Dk,l be such a lattice operator, and
D−k,l the corresponding operator which absorbs 2k incom-
ing strands. The generalized watermelon correlator pk,l (r)
described above is the two-point function of Dk,l and D−k,l ,
with outgoing and incoming arrows correspondingly. This
assignment captures the defining property of quantum water-
melon operator, that the correlator is zero whenever there is a
self-contact among its own strands (in the classical language,
a conflict of orientations).

by the strands that are reconnected). The operator above is the
product of a diagonal operator acting on these strands together with
a reconnection operator acting on the other strands.

The quantum two-point function for lattice operators Wk,q,l

and Wk,q′,l is given by

〈Wk,q,l (r)Wk,q′,l (0)〉 = f (q, q′)〈Dk,l (r)D−k,l (0)〉 (81)

where f (q, q′) is a function of the topological types. For
more general quantum operators in our basis, which can be
written as Wk,q,l × Diag, the classical mapping gives the two
point function of the product of a defect operator and a local
classical operator (a function of the local loop configuration).

After applying the OPE, the latter is a combination of
the leading defect scaling operator for a given k, l , and
subleading defect operators which have the same label k and
l .30 Thus, we can expand the operator Wk,q,l × Diag as a sum
of the leading operator W̃k,q,l and subleading operators, each
of which has a two-point function corresponding to that of
a subleading classical defect operator. We can label these
subleading quantum scaling operators in the product Wk,q,l ×
Diag by the corresponding subleading defect operators, and
the topological type q (which is preserved by multiplying with
the diagonal operator). Thus we have the expansion

Wk,q,l × Diag = c0W̃k,q,l +
∑

s

csW̃k,q,l,s, (82)

where s labels different subleading operators. The three la-
bels k, l, s uniquely specify a defect scaling operator in the
Coulomb gas; quantum scaling operators with the same k, l, s
but different topological types map to the same defect opera-
tor.

Since operators of the form Wk,q,l × Diag form a basis
of nonhidden operators, we can now express each quantum
operator O (up to hidden operators) as a sum of diagonal
scaling operators, which we call D̃s, and the operators W̃k,q,l,s,

O ∼
∑

s

osD̃s +
∑
k,q,s′

k∑
l=−k+1

ok,q,l,s′W̃k,q,l,s′ , (83)

where os and ok,q,l,s′ are complex coefficients.
In conclusion, up to hidden operators, each quantum scal-

ing operator is labeled by its topological type and the corre-
sponding classical local/defect scaling operator.

Last, we note that despite the close relation between the
quantum operator spectrum and the classical defect opera-
tor spectrum in the Coulomb gas, and the correspondence
used above between the quantum OPE involving only one
reconnection operator and the classical Coulomb gas OPE,
the quantum OPE involving two reconnection operators is
dramatically different from the OPE of classical defects. For
example, in the Coulomb gas language, the label k on the
defect operator is the number of strands emitted/absorbed,
so is addictive in the OPE. However, in the quantum OPE,
multiplying two two-loop reconnection operators can give
the five-loop reconnection operator with a spectator strand
(2 + 2 → 5), shown in Fig. 5 (bottom right). We can also

30In the Coulomb gas language, we can define k as number of
outgoing arrows minus the number of incoming arrows, and define
l as the product of the electric charge and magnetic charge mod 2k.
Both are preserved by multiplying local operators.
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FIG. 19. Frustration in mapping watermelon operators to clas-
sical defect operators. When there are two watermelon operators,
we always assign outgoing arrows for one operator, and incoming
arrows for the other, but the trick fails when there are three or more
reconnection operators.

see this difference clearly in the calculation of three-point
functions involving three reconnection operators (Fig. 19).

F. Topological types of local operators, revisited

In the previous sections, we introduced quantum wa-
termelon operators whose two-point functions are equal to
classical watermelon correlators, and which are in 1:1 cor-
respondence with the topological types for local quantum
operators (Appendix E). In this section, we give a very simple
alternative picture for the scaling dimensions of operators of a
given topological type, by considering one-point functions on
the disk.

Consider ground states on a disk with radius R. We choose
the boundary condition such that there are 2k fixed, equally
spaced points on the boundary each emitting one strand
(paired inside the disk into k strands), and such that loops
cannot touch the boundary elsewhere. Since the Hamiltonian
cannot reconnect loops, the connection of the k strands,
which we call α, is a conserved quantity. Configurations with
connectivity α, which we label by Cα , span an invariant space
of the Hamiltonian, and there is a unique normalized ground
state

|α〉 ∝
∑
Cα

d |Cα ||Cα〉 (84)

in this subspace.
We now insert an operator O with k-loop reconnection type

(α, α′) acting on a much smaller disk, of order one size, at
the center of the large disk. (See Sec. IV for the definition of
topological types, and Fig. 20 for an example.) This operator
has a nonzero off-diagonal matrix element 〈α|O|α′〉 between
different ground states. This matrix element is small since it
comes from matrix elements OCα,C′

α′ involving configurations
Cα , C′

α′ where all k strands connecting to the boundary pass
through the small disk O acts on. This event has probability
p ∼ 1/Rx2k . Thus

〈α|O|α′〉 ∼ 1/Rx2k . (85)

After coarse-graining, operator O also effects reconnections
of lower types. Equivalently, it can connect other pairs of
ground states, by acting on a subset of the k strands connecting
to the boundary, together with small loops. This effect gives
other matrix elements of O between ground states that decay

FIG. 20. One-point function on the disk with the boundary con-
dition specified in text. In the small circle, we show an operator with
the five-loop reconnection type (α, α′). The blue lines represent the
connection in α, and the red lines show the change of connection.

as a smaller power. Subtracting operators of these lower
topological types from O, we may obtain a scaling operator
for k-loop reconnection, which we see from Eq. (85) should
have scaling dimension x2k .

IX. RELATED CRITICAL MODELS

A. Loop model with Jones-Wenzl projector

As discussed in Sec. VIII A, the loop model we focus on
has many relevant perturbations: the two-loop and three-loop
reconnection operators, and the topologically trivial operators
known from the classical model. Starting from a generic spin
system, which does not have the dynamical constraint, we
would need to tune all of the relevant perturbations to zero
to achieve this multicritical point. However, at d = ±√

2,
we can add a specific three-loop reconnection operator back
while keeping the model critical. This is the Jones-Wenzl
projector [3,4,16,18,34]. This operator performs RG-relevant
reconnection moves, leading to a new RG fixed point, but it
preserves the form of the ground-state wave function.

Since the ground state is preserved, our results for the
power-law form of equal-time correlators still hold. This
implies that the new fixed point remains gapless, and that
the scaling dimensions of nonhidden operators remain the
same. However, a priori we know little about the dynamics
at the new fixed point. Intuitively we might expect znew < 3:
the three-loop reconnection gives new ways to connect loop
configurations so may speed the dynamics up. We will give a
lower bound on z below.

The special property of d = ±√
2 can be traced back to the

new hidden state |JW2〉±, a state on a patch that contains con-
figurations with different connections but which is orthogonal
to the local reduced density matrix: see Fig. 21.

Now at d = √
2 we can add the term |JW2〉+〈JW2|+ to the

Hamiltonian [4,6]. At least on the sphere,

ρ|JW2〉+ = 0, (86)
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FIG. 21. The Jones-Wenzl state for d = ±√
2.

where ρ is the ground-state reduced density matrix on the
patch. Thus the ground state remains a ground state of the
new Hamiltonian, and the new Hamiltonian is still frustration-
free. However, we know that at the critical point without
reconnection, |JW2〉+〈JW2|+ has scaling dimension x6 = 9/2
at d = √

2 and RG eigenvalue y6 � 1/2: i.e., it is relevant. So
we expect a new fixed point with different dynamics.

Despite the fact that equal-time correlators still map to
classical correlators, the new Hamiltonian gives an example
of a frustration-free Hamiltonian without a Markovian corre-
spondence for its dynamics. (See Appendix C.)

Since |JW2〉+ is a forbidden state at d = √
2, operators of

the form

|JW2〉+〈C| + |C′〉〈JW2|+ (87)

are all hidden operators. For example, in addition to the Jones-
Wenzl projector itself, the other three-loop reconnection wa-
termelon operator symmetric under parity is also a hidden
operator at d = √

2. (See Appendix E for details.)
A priori, we cannot say much about the new critical

point by studying the unstable critical point that flows to it.
However, in this case, we can constrain the new dynamical
exponent using the old scaling exponents. The argument is in
fact more general, and applies to any relevant perturbation of
a frustration-free, gapless model that leaves the ground state
unchanged. The idea is that, since the ground state is the same
in both cases, we can use the ‘old’ first excited state to give a
bound on the energy of the new one.

Consider the expectation value of a local Jones-Wenzl
projector in the first excited state, which we call |ex〉, of the
original Hamiltonian (without reconnection) on the sphere.
This matrix element must be small, since the first excited state
is locally similar to the ground state, in which the expectation
value vanishes identically. Furthermore, by standard coarse-
graining, we expect this matrix element to scale as L−x6 .
Thus

〈ex|δH |ex〉 ∝ L2−x6 , (88)

where δH is the sum of Jones-Wenzl projectors at different
positions. Since |ex〉 is orthogonal to the new ground state,
which is just the old ground state, its energy must be greater
than or equal to the energy of the first excited state of the
new Hamiltonian. This argument gives a bound on the new
dynamical exponent:

znew � min{z, x6 − 2} = x6 − 2 (89)

where we used the relevance of the perturbing operator. There-
fore, in the present case,

znew � 5
2 . (90)

The new critical point is likely to have fewer relevant
perturbations than the original one, i.e., to be more stable.
In particular the JW projector itself is no longer a relevant
perturbation.

On the torus, the low-lying excited states with differ-
ent winding numbers are lifted by the Jones-Wenzl pro-
jector, leaving only nine exactly zero-energy states for the
frustration-free Hamiltonian [3,4]. For the reason discussed in
Sec. VI D, for a generic Hamiltonian in the universality class
(not necessarily frustration-free), these nine states will still
have energies well below the continuous excitation spectrum.
In this sense, we can still call them degenerate ground states.

In fact, the extent of this degeneracy depends on the
identification of the local physical degrees of freedom. If we
interpret the loops as Ising domain walls for τ z spins living
on the hexagons, instead of chains of σ z down-spins living
on the edges, the ground-state degeneracy is reduced to 3. See
Appendix F for a self-contained discussion of the ground-state
degeneracy.

We have discussed the new critical point at d = √
2.

Similarly, we can add |JW2〉−〈JW2|− to the Hamiltonian
at d = −√

2 to get another critical point. The two critical
theories are related by the nonlocal unitary transformation
U with matrix elements UC,C′ = (−1)|C|δC,C′ ; therefore they
have the same excitation spectrum. Moreover, even though
the transformation U is nonlocal, it maps local operators to
local operators. Thus the operator spectrum and the OPE
coefficients of the two theories are also exactly the same.
However, as discussed in Ref. [3], when the theories are
placed on the torus, the degenerate ground states have differ-
ent topological properties. The topological difference should
be clarified further in the future, but it seems to show the two
critical theories cannot be adiabatically connected.

B. Dilute critical points

The classical loop ensemble may be generalized to an
ensemble with a weight x per unit length of loop:

Z =
∑

C

|d|2|C|xlength. (91)

For a given 0 < |d|2 < 2, there is a critical value xc [22]
(Appendix G). For x > xc the loop model is in the ‘dense’
phase. This critical phase includes the value x = 1 that we
have so far restricted to, and the critical exponents take the
values we have discussed throughout this phase. The precise
value of x in this phase does not matter—changing x corre-
sponds to an irrelevant perturbation of the dense fixed point.
If on the other hand x is smaller than xc then the loop model
is not scale invariant (there are only short loops). However,
if x is tuned exactly to xc there is a new universality class
with different exponents. This is known as the “dilute” critical
point. By a simple modification of the flip operator in our
quantum Hamiltonian, we can generalize the quantum loop
model to the dilute case too.

As we discuss in Appendix G, the dilute critical points
are in fact continuously connected to the dense ones via the
extremal point |d|2 = 2. This observation together with the
superuniversality of z established in Sec. VII allows us to
strengthen the analytical bound on the dynamical exponent
(Sec. VI B) to z � 2.66̇ as mentioned in Sec. I.
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C. Towards other topologically constrained models

We have introduced the idea of a dynamical topological
constraint that is preserved under the renormalization group.
This idea is more general than the class of quantum loop
models studied in this paper, and it would be interesting to
study further examples. Here we mention some miscellaneous
models which would be partially tractable thanks to a classical
correspondence. It would of course also be interesting to look
for topologically constrained universality classes that do not
have a classical correspondence. (There are also applications
of the results of this paper to one-dimensional quantum sys-
tems, which we will discuss separately [35].)

First we could “decorate” the loops with additional degrees
of freedom. The most trivial change of this type is to give
the loops a “color” degree of freedom, taking q > 1 values,
that is uniform along the length of the loop. We can define
the dynamics such that, in the Markov language, the color
degrees of freedom are simply carried along for the ride by the
loops, being assigned randomly at each birth event and having
no feedback on the dynamics of the loops’ geometry. With
this choice, correlations that do not involve the color variable
are unchanged from the q = 1 case, so this is in a sense
a completely trivial modification. Therefore it is surprising
that this modification introduces a new local operator with
a scaling dimension that was not present before (at least
not among nonhidden operators). This operator measures the
local color of a link. It has scaling dimension x2,0, since
the probability of two links having the same color is simply
related to the probability of their being on the same loop.31

The loops we have discussed are unable to pass through
each other. This could be relaxed, while retaining the no-
reconnection constraint, in models of intersecting loops
[37–40]. We can also consider loops in three dimensions
(where scale-invariant classical ensembles can be achieved by
tuning a parameter [41]), and models of membranes in three
dimensions at appropriate critical points. In all these cases,
the basic logic of Sec. IV allows a topological classification
of operators.

X. OUTLOOK

Our aim has been to characterize the scaling structure of
strongly interacting multicritical points for fluctuating loops
that arise in lattice spin systems. This led to concepts that
may be useful in other settings. These include the idea of
the topological operator classification, and the method for
constructing the operator spectrum for models with a topo-
logical constraint, as well as general properties of frustration-
free models. Our explicit results for correlation functions
and exponents show that the loop models obey scaling
forms dictated by scale-invariance, but with an unusual spec-
trum of scaling operators, and an unusually large dynamical
exponent z.

31A similar modification is to decorate the loops with arrows on
the links, consistently oriented along the length of the loop. This
gives other new operators [36]. It also allows a height field to be
defined, but this is not obviously useful in constructing a continuum
description.

Having understood a lot about these gapless models, we
come back to the question that we started with: are there useful
field theories for them? A continuum Lagrangian assigns am-
plitudes to space-time configurations of fluctuating fields. In
the loop basis, a space-time configuration of the present model
is made up of closed world surfaces in 2 + 1D. Unconstrained
surfaces can be mapped to field theory by regarding them as
domain walls or level surfaces for an appropriate field, or as
world surfaces of flux lines in a gauge theory. However, the
loop models do not allow reconnection (in space-time, a re-
connection event is a saddle point tangent to the spatial plane)
and we have pointed out in Sec. IV that this constraint is also a
property of the RG fixed point. Further, the constraint cannot
simply be imposed “softly,” since two-loop reconnection is
RG-relevant, and will become important in the IR if given a
nonzero amplitude in the UV. We are not aware of a means
of incorporating this constraint in a field theory. Could the
constraint mean that the loop model realizes RG fixed points
have no useful continuum Lagrangian?

We cannot answer this question.32 However, we note that
any such Lagrangian would have to reproduce an operator
spectrum with topological quantum numbers (Sec. IV) that
seem very different to the symmetry quantum numbers that
we usually have in Lagrangian field theory.33

Fortunately there are also more concrete questions to pur-
sue.

First, questions specific to the loop models. Is z exactly
equal to 3, and if so, why is it an integer? What is the
full spectrum of hidden operators? What is the nature of the
operator product expansion? The structure of the low-lying
excited states is also almost completely open. Can we write
down a more complete set of variational states, giving for
example an understanding of the low-lying density of states?

The Markov process used here to study the dynamics of
the quantum loop models is also interesting independently
of the quantum mapping, as an alternative way of thinking
about the 2D classical loop models, whose spatial correlation
functions have been characterized in great detail. A great deal
is also known about algebraic structures underlying classical
2D loop models (see, e.g., Ref. [46]): it would be interesting
to understand how these relate to the dynamical models.

In the quantum context, the loop models with Jones-Wenzl
projectors at d = √

2 and d = −√
2 suggest that pairs of

gapless states can have the same excitation spectrum, operator
spectrum, and OPE, yet have subtle topological differences,

32A nonrelativistic gauge theory was originally proposed for the
loop models [4], but at that time it was believed that the dynamical
exponent was z = 2, which is now ruled out.

33It is interesting to contrast with the “hedgehog-free” O(3) model
[42–44], which is an O(3) nonlinear sigma model in 2 + 1D with a
constraint forbidding pointlike topological defects (related to Dirac
monopoles in U(1) gauge theory [45]). That constraint reduces to
the conservation of an integer skyrmion number associated with
each spatial plane, and is equivalent to a global symmetry, namely,
conservation of a U(1) charge. The topological constraint in the loop
model is of a different kind, in that it is not equivalent to conservation
of an invariant associated with a spatial configuration.
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a possibility which was recently discussed in the context of
1 + 1D CFT [47].

Second, it would be interesting to study other models with
a topological operator classification (some examples are given
in Sec. IX C). What is the simplest such model for loops
in 2D? What is the most stable in the RG sense? Are there
examples that can be shown to be critical but which are not
frustration-free? Are there interesting gapless states adjacent
to deconfined phases of gauge theories in 3 + 1D, where
the flux lines have topologically constrained dynamics? (In
a separate paper we will discuss a one-dimensional analog of
a topologically constrained model [35].)

Finally, there are RG questions to understand better. We
have described some general features of frustration-free mod-
els which it will be interesting to examine in simple examples,
for example the quantum Lifshitz theory that describes the
Rokhsar-Kivelson dimer model: we hope to return to this
elsewhere.

We have argued, nonrigorously, that the dynamical expo-
nent z is superuniversal for lines of RG fixed points under
mild assumptions. However, there are examples of models
(some of them including quenched disorder [48]) with critical
lines along which z varies. It would be useful to understand
why these models do not obey the assumptions in Sec. VII,
and to be able to state these assumptions more precisely. In
particular, Ref. [12] found an example of a quantum Rohksar-
Kivelson-like model with a critical line along which z was not
constant, taking the value z = 2 at one point on the critical line
and z � 2.17 at another point. One speculative possibility is
that in this example the RG flows are more complicated, such
that moving along the critical line in the UV model does not
correspond to moving continuously along a single RG fixed
line in the IR.
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APPENDIX A: MORE ON THE QUANTUM-CLASSICAL
OPERATOR CORRESPONDENCE

In Sec. V, we claimed that we can implement the change
of the ground state

|�〉 → eλOr |�〉, (A1)

by a local change of the frustration-free Hamiltonian

H → H − λO3r, (A2)

for any operator Or with a finite support, say Br. The idea is
to merge the original patches Dr′ that overlap with Br into a
larger patch D(2)

r

D(2)
r ⊃ Dr′ , ∀r′ s.t. Br′ ∩ Dr �= ∅ (A3)

Then we can rewrite each local projector in Dr′ [Eq. (20)] as
(here σ runs over all states in D(2)

r \ Dr′)

Pi,r′ = |i〉Dr′ 〈i|Dr′ ⊗ 1D(2)
r −Dr′

⊗ 1
D(2)

r
(A4)

=
∑

σ

|iσ 〉〈iσ | ⊗ 1
D(2)

r
(A5)

≡
∑

σ

Piσ,r (A6)

and perform the invertible transformation

Piσ,r → e−λOrPiσ,re−λOr . (A7)

Each new Piσ,r is still proportional to a projector, and at the
same time annihilates the new ground state:

Piσ,reλO|�〉 = 0, (A8)

where |�〉 is a ground state of the original Hamiltonian. Thus
the frustration-free condition is preserved.

APPENDIX B: ANALYTICAL BOUND
ON DYNAMICAL EXPONENT

In this Appendix, we prove the analytical bound on the
dynamical exponent stated in Sec.VI B, z � 4 − d f , for the
loop model without reconnection. Our approach extends a
previous calculation showing z � 2 [4,6].

Recall that the low-energy excitations we found correspond
to the motion of large loops, and the variational ansatz for
them is

|n〉 ≡ 1√
Z

∑
C

d |C|e2π inp(AC )|C〉, (B1)

where n is an integer labeling a series of tentative excited
states (n = 0 gives the ground state), AC is the area of the
largest loop in configuration C and p(AC ) is the cumulative
probability distribution of AC . We choose the total space to be
a sphere, where the ground state is unique.34

We assume that when L is large enough, p(AC ) becomes a
smooth scaling function of AC/L2 determined by the IR fixed
point. More precisely, we assume

p(A + 1) − p(A) � c/L2,

c ∼ O(1),∀ 0 � A � L2. (B2)

The variational states constructed in Eq. (B1) are orthonor-
mal in the limit L → ∞:

〈n′|n〉 = 1

Z

∑
C

|d|2|C|e2π i(n−n′ )p(AC )

=
∫ 1

0
e2π i(n−n′ )p(A)d p(A)

= δn,n′ . (B3)

From the first line to the second line, we changed the summa-
tion to an integral and used the definition of p(A): d p(A) is the

34We define the area of a loop to be the area of the smaller part of
the sphere bounded by the loop.
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probability of configurations whose largest loop has area in
the range dA. As a consequence of Eq. (B3), variational states
with n > 0 are orthogonal to the ground state; their energy
expectation is greater than or equal to the first excited state
energy.

On the other hand, the energy expectations of the varia-
tional states are

En = 〈n|H |n〉 − 〈0|H |0〉 (B4)

= 1

Z

∑
C,C′,p

d |C|d̄ |C′|[e2π in(p(AC )−p(A′
C )) − 1]〈C′|Hp|C〉,

where p runs over all plaquettes on the lattice, Hp is
the local term acting on plaquette p. We only need
to keep the real part of the summation. Since Hp

is local, AC and AC′ differ by no more than 1; ac-
cording to our assumption, p(AC ) − p(A′

C )� c/L2, hence
Re[1 − e2π in(p(AC ) − p(A′

C )]� c′n2/L4. The matrix element that
moves a loop across plaquette p is either 0 or 1. For a given
configuration C, only those Hp next to the largest loop can
change its area; therefore, the summation over C′ and p gives
at most a factor lC , the length of the largest loop in C. Putting
this together, we have

En � c′n2

L4
〈lC〉 = O(Ld f −4) (B5)

�⇒ z � 4 − d f , (B6)

where d f = 1 + π
2arccos(−|d|2/2) is the fractal dimension of

loops.
There is a gap between Eqs. (B5) and (B6): in order

to bound the dynamical exponent, we must confirm that
the variational states belong to the continuous excitation
spectrum, not a branch of states below this spectrum (like
the subspectrum tower on the torus). To fill the gap, note
that we can perform the construction independently in any
subsystem—instead of tuning the phase of the largest loop,
we can divide the system into several subsystems and tune the
phase separately for the largest loops in these subsystems; the
number of excited states we can construct is exponential in
the volume of the system, given a fixed energy density. This
observation concludes our proof.

Intuitively [6], we have approximately reduced the dynam-
ics of loops to the dynamics of a fictitious particle hopping on
the abstract axis AC ; the effective hopping strength is Ld f , the
effective system size is L2, and hence the excitation energy is
Ld f −4.

From this point of view, reconnection corresponds to non-
local hopping on the AC axis; it completely changes the
dynamics of loops and reduces the dynamical exponent z
(probably to zero, see Appendix D [7]).

APPENDIX C: QUANTUM-MARKOVIAN
CORRESPONDENCE

In this Appendix, we review a previously found corre-
spondence between a large class of frustration-free Hamil-
tonians and classical Markovian dynamics [8,9,11,33] in the
most general setting we found, in the hope of stimulating
separate applications. We also clarify the distinction between

a frustration-free Hamiltonian and a Hamiltonian with a
classical correspondence, and we point out a simplification
for computing correlators of off-diagonal operators in mod-
els with a classical correspondence. This Appendix is self-
contained: readers interested only in this correspondence may
skip the main text.

The quantum-Markovian correspondence applies to the
gapless loop model without reconnection as well as the toric
code/double semion model. It helps us simulate the gapless
loop model on a large lattice of 500 × 500 plaquettes.

A classical Markov process satisfying detailed balance is
described by a master equation

d pα

dτ
=

∑
β �=α

[Wαβ pβ (τ ) − Wβα pα (τ )], (C1)

where α, β label classical states, pα (τ ) is a probability dis-
tribution evolving with time τ , and Wαβ is the transition
amplitude from state β to state α. This equation is often
written as

d p

dτ
= W p (C2)

by defining Wαα ≡ −∑
β �=α Wβα . This matrix W has three

properties: (1) Positivity, Wαβ � 0 for all α �= β; (2) Clas-
sical probability conservation, (1, 1, · · · , 1)W = 0; and (3)
Detailed balance, Wαβ p0

β = Wβα p0
α (no sums on α or β),

where p0
α is the probability of state α in equilibrium. We shall

denote the equilibrium distribution (p0
1, · · · , p0

N ) by 〈0̃| and
(1, 1, · · · , 1) by 〈1̃|.

On the other hand, a local frustration-free quantum Hamil-
tonian is given as a sum over local terms by H = ∑

x Px

satisfying two properties: (1) Hermiticity, Hαβ = H∗
βα and

(2) Frustration-freeness, meaning that each Px is projector
and these projectors have a common ground state. These
projectors need not commute with each other.

In order to make the quantum-classical correspondence,
we fix a basis on the quantum side. Each basis vector |α〉
corresponds to a classical configuration α. Refs. [8,9,11]
point out that for Hamiltonians decomposable into blocks of
2 × 2 projectors, a classical correspondence always exists,
and detailed balance in the corresponding classical dynamics
is guaranteed. (A 2 × 2 projector is a projector involving only
2 classical configurations on a local patch. For example, the
Hamiltonian in Eq. (36) is decomposable into 2 × 2 projectors
whereas the Jones-Wenzl projector is not.) Reference [33]
points out frustrations in constructing the classical mapping
for non-Abelian topological models. We find that the 2 × 2
block structure is not essential: the classical mapping exists as
long as each local projector obeys a ground-state uniqueness
property. Regarded as an operator on an appropriate local
patch, the projector is a matrix in the classical basis with a
nonzero block for the configurations the projector acts on,
and zero elements elsewhere: this nonzero block must have
a unique ground state (see the precise definition below). A
generic 2 × 2 projector has one ground state and one excited
state, and the condition is satisfied. For generic projectors in
the form of Eq. (20), we may need to group multiple projectors
into one in order to satisfy the condition. This observation
motivates the following definition.
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Definition 1. A projector Px acting on a local patch x is
called a local classical projector if and only if there exists a
set Ax of classical configurations on x, and a normalized state
|ψx〉 ≡ ∑

α∈Ax
ψx,α|α〉 on the patch, such that

Px =
⎛
⎝ ∑

α∈Ax

|α〉〈α|
⎞
⎠ − |ψx〉〈ψx| (C3)

≡ PAx − |ψx〉〈ψx|. (C4)

In other words, Px has a unique ground state within the
Hilbert space spanned by the configurations it acts nontrivially
on. There is a large class of Hamiltonians with the local
classical projector structure, for example, those string-net
Hamiltonians realizing Abelian topological order [23] and
the dimer model at the Rokhsar-Kivelson point [13]. From
Eqs. (7) and (11), the ideal Hamiltonian for the loop model
without reconnection is also a sum of local classical projec-
tors.35 We are now ready to state the main theorem of this
Appendix.

Theorem 1. Let H be a frustration-free Hamiltonian that
is a sum of local classical projectors. Let |GS〉 be a ground
state of H , and let A be the set of many-body configurations
in the classical basis where the ground-state wave-function
amplitude 〈α|GS〉 is nonzero. Then

(1) span(A) is an invariant subspace of H : Hspan(A) ⊆
span(A).

(2) H |span(A) maps onto the transition matrix of a local
classical Markov process, satisfying detailed balance, under
a similarity transformation.

(3) The quantum ground state maps onto the classical
equilibrium distribution.

Remark. When H has multiple ground states, theorem 1
applies to each of them.

Proof. We prove the first property by contradiction. As-
sume span(A) is not an invariant subspace of H ; then, there
exists a local classical projector Px having a nonzero matrix
element between a configuration αxγrest ∈ A and a configura-
tion βxγrest /∈ A, where α and β label configurations on the
local patch x, and γrest labels configurations on the rest of the
system excluding x. Since Px has a nonzero matrix element
between these two states, α and β must be in Ax (defined in
definition 1). By definition, Px has a unique ground state |ψx〉
built from configurations in Ax. The many-body ground state
is also a ground state of Px, which means that the ground-state
amplitudes involving states in Ax must be proportional to ψx:

ψβxγrest

ψαxγrest

= ψx,β

ψx,α
. (C5)

However, ψx,β �= 0, ψx,α �= 0 by the definition in Eq. (C3),
contradicting the assumption that βxγrest /∈ A, i.e., that
ψβxγrest = 0.

The second and the third properties are closely re-
lated. In order to map the quantum ground state |0〉 =

35The frustration-free Hamiltonian may also include projectors that
just forbid a single local classical configuration, for example one
that forbids dangling string ends in the loop model. In this case, we
simply remove these classical configurations from the Hilbert space.

(ψ1, ψ2, · · · )T to the classical equilibrium distribution |0̃〉 =
(|ψ1|2, |ψ2|2, · · · )T , we use a diagonal matrix

S =

⎛
⎜⎝

ψ∗
1

ψ∗
2

. . .

⎞
⎟⎠, |0̃〉 = S|0〉. (C6)

From now on, we work in the subspace span(A)—we assume
each ψα is nonzero.

Remarkably, under the corresponding similarity transfor-
mation, the quantum Hamiltonian maps onto (minus) a local
transition matrix H̃ :

H̃ = −SH |span(A)S
−1. (C7)

In order to check the three defining properties of the transi-
tion matrix—positivity, probability conservation and detailed
balance—for H̃ , we write Eq. (C3) explicitly in the classical
basis. For α, β ∈ Ax and αxγrest, βxγrest ∈ A, define Pα,β ≡
〈α|Px|β〉, then Eq. (C3) reads Pα,β = δαβ − ψx,αψ∗

x,β ; then,

(P̃x )αxγrest,βxγrest ≡ (−SPx ⊗ IrestS
−1)αxγrest,βxγrest

= −ψ∗
αxγrest

(δαβ − ψx,αψ∗
x,β )/ψ∗

βxγrest

= −ψ∗
x,α (δαβ − ψx,αψ∗

x,β )/ψ∗
x,β

= |ψx,α|2 − δαβ

≡ P̃α,β . (C8)

Indeed, the off-diagonal matrix elements of P̃ are nonnegative
and

P̃α,β

∣∣ψβxγrest

∣∣2 = |ψx,α|2∣∣ψβxγrest

∣∣2

= |ψx,β |2∣∣ψαxγrest

∣∣2

= P̃β,α

∣∣ψαxγrest

∣∣2
, (C9)

for all αxγrest, βxγrest ∈ A, α �= β, which is detailed balance,
and ∑

α

P̃α,β =
∑

α

|ψx,α|2 − δαβ

= |〈ψx|ψx〉|2 − 1 = 0 (C10)

for all β, which is probability conservation. Moreover, the
matrix elements of P̃ depend only on the local configuration
α, not on the full global configuration αγrest; therefore, the
transition matrix is local. As a consequence, H̃ = ∑

x P̃x is a
legitimate local transition matrix. �

Remark. What lies at the center of this correspondence is a
sense of locality in the many-body ground state: for any local
patch x and any pair of configurations α and β on x connected
by a local projector, the ratio of ground-state amplitudes
ψαxγrest/ψβxγrest , if ψβxγrest �= 0, depends only on the local data
α and β, not on the configuration outside x. However, this
locality of the ratio does not imply the locality of the wave
function itself—the ground-state wave function is not neces-
sarily a product of local functions. This is best seen in the loop
model with nontrivial weight ψ (C) = d |C|, as the total number
of loops is not a sum of locally measurable quantities. Even
for the gapped system with d = −1 (with reconnection in the
Hamiltonian), the wave function is nonlocal in this sense.
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This surprising quantum-classical correspondence allows
us to simulate the quantum dynamics at a low cost. Intuitively,
the classical Markov process can be viewed as a Monte Carlo
sampling of the square of quantum wave function. When the
ground-state wave function is known exactly, the existence
of a Monte Carlo process to sample it is not surprising.
However, what is nontrivial is that the time dimension in the
Monte Carlo process exactly corresponds to imaginary time
in the quantum system, allowing the direct measurement of
imaginary time correlators in the classical simulation. This is
best seen in the following corollary (previously discussed in
Refs. [8,9,11]).

Corollary 1.1. For diagonal operators O1, O2, · · · , On on
span(A)36, the imaginary-time quantum correlator equals the
real-time classical correlator:

〈0|One−H�τn−1 · · · e−H�τ2 O2e−H�τ1 O1|0〉
= 〈1̃|OneH̃�τn−1 · · · eH̃�τ2 O2eH̃�τ1 O1|0̃〉 (C11)

=
∑
{αi}

n∏
1

Oi(αi )
n−1∏

1

p(αi+1, τi+1|αi, τi )p0(α1), (C12)

where τi = ∑
j<i �τi, Oi(α) is the value of the classical ob-

servable in state α, and p(αi+1, τi+1|αi, τi ) ≡ 〈αi+1|eH̃�τi |αi〉
is the conditional probability that the system is in state αi+1 at
time τi+1 given that it is in state αi at time τi.

Proof. This corollary follows from inserting S−1S between
neighboring operators and between the first (last) operator and
the initial (final) state on the LHS of Eq. (C11), performing
the similarity transformation, and noting that 〈0|S−1 = 〈1̃|,
SOiS−1 = Oi since Oi is diagonal, H̃ = −SH |span(A)S−1, and
S|0〉 = |0̃〉. �

As a special case of the dynamical correspondence, we
have the following static correspondence.

Corollary 1.2. If the frustration-free Hamiltonian is gap-
less, the scaling dimension of (nonhidden) local diagonal
operators equals the scaling dimension of the same op-
erator in the statistical mechanics system with probability
distribution |0̃〉.

At first glance, one might think that corollaries 1.1 and
1.2 are special for diagonal operators—after all, off-diagonal
operators mean nothing in the classical equilibrium ensemble.
However, off-diagonal quantum operators also have classi-
cal counterparts in the quantum-Markovian correspondence.
Remarkably, if we restrict to two point functions, the off-
diagonal operators may be replaced with diagonal operators
on the classical side, though local operators may turn into
nonlocal ones. (This correspondence is different from the
correspondence between reconnection operators and defect
operators in the Coulomb gas formalism we discussed in
Sec. VIII, which works only for equal-time correlation func-
tions and is special to the loop models.)

Corollary 1.3. Every local Hermitian operator Oq on
span(A) corresponds to a diagonal classical operator Oc, such

36By diagonal operators, we mean diagonal operators in the clas-
sical basis. This basis plays a special role in the quantum-classical
correspondence, and we stick to it in this paper.

that the two-point function of operators O1,q and O2,q equals
the two-point function of the diagonal classical operators O∗

1,c
and O2,c:

〈0|O1,qe−HτO2,q|0〉 = 〈1̃|O∗
1,ceH̃τ O2,c|0̃〉

=
∑
α,α′

O∗
1,c[α′]O2,c[α]p(α′, τ |α, 0)p0(α).

(C13)

Proof. Every local Hermitian operator on a local patch x
can be expanded as⎡

⎣∑
α

rα|α〉〈α| +
∑
αβ

cαβ |α〉〈β| + c∗
αβ |β〉〈α|

⎤
⎦

x

⊗ Irest,

(C14)

(rα ∈ R, cαβ ∈ C) where α, β run over all configurations
on x. Corollary 1.3 reduces to Corollary 1.1 for local di-
agonal operators, so we may focus on the off-diagonal el-
ements. For any given α, β, we may write operators on
span(|α〉, |β〉) as 2 × 2 matrices. Consider the local operator
Oq = (cαβ |α〉〈β| + c∗

αβ |β〉〈α|)x ⊗ Irest; it maps onto

Õq = SOqS−1 (C15)

=
∑

γ

(
0 cαβψ∗

αγ /ψ∗
βγ

c∗
αβψ∗

βγ /ψ∗
αγ 0

)
⊗ |γ 〉〈γ |,

where γ runs over all configurations outside x. Note that α

and β may not be connected by any local projector; the ratio
ψ∗

βγ /ψ∗
αγ , hence Õq, can be nonlocal.

Now define

Oc ≡
∑

γ

(
cαβψβγ /ψαγ 0

0 c∗
αβψαγ /ψβγ

)
⊗ |γ 〉〈γ |.

We have

(Õq − Oc)|0̃〉 =
∑

γ

(−cαβψβγ /ψαγ cαβψ∗
αγ /ψ∗

βγ

c∗
αβψ∗

βγ /ψ∗
αγ −c∗

αβψαγ /ψβγ

)

×
(|ψαγ |2

|ψβγ |2
)

⊗ |γ 〉 = 0, (C16)

〈1̃|(Õq − O∗
c ) =

∑
γ

(1, 1)

(−c∗
αβψ∗

βγ /ψ∗
αγ cαβψ∗

αγ /ψ∗
βγ

c∗
αβψ∗

βγ /ψ∗
αγ −cαβψ∗

αγ /ψ∗
βγ

)

⊗〈γ | = 0. (C17)

Thus

〈0|O1,qe−Hτ O2,q|0〉= 〈1̃|Õ1,qeH̃τ Õ2,q|0̃〉 = 〈1̃|O∗
1,ceH̃τ O2,c|0̃〉.

(C18)

By linearity of the mapping from Oq to Oc, the equation
above holds for arbitrary local Hermitian operators. The key
feature of the present class of Hamiltonians which makes
the above mapping useful is that the ratios ψβγ /ψαγ are
known analytically, so the operator Oc can be explicitly
constructed. �

Corollaries 1.1–1.3 play a key role in our numerical simu-
lation. We use them to measure the dynamical exponent and
to confirm our analytical results on the scaling dimensions
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of quantum operators. The mapping in corollary 1.3 may not
always be useful analytically, as the corresponding classical
operator can be highly nonlocal, but it is very convenient for
Monte Carlo simulations, since we can replace off-diagonal
operators with diagonal ones when we compute temporal
two-point functions.

We have only discussed operators acting on span(A). One
may wonder what happens to operators that map span(A)
into span(A)⊥. In the loop model we study, span(A) is
the subspace spanned by all closed-loop configurations, and
operators that disrespect span(A) create endpoints of strings.
These operators all have exponentially decaying correlation
functions, because states with endpoints have energy strictly
above 2.

APPENDIX D: NUMERICAL METHODS

In this Appendix, we introduce the numerical method we
use in simulating the loop model without reconnection. We
use the quantum-Markovian correspondence discussed in the
previous Appendix to calculate (1) dynamical two-point func-
tions for diagonal and off-diagonal operators, (2) lifetime-
area-length distribution of loops during the time evolution.
The first type of measurement helps us understand the scaling
structure of the quantum loop model; the second provides an
intuitive understanding of the low-energy dynamics, and an
independent confirmation of the dynamical exponent.

The unusual feature of this simulation is that off-diagonal
operators map to nonlocal classical observables whose values
depend on whether two points are on the same loop. To calcu-
late their correlators, we need to label every loop in a classical
configuration, and keep updating not only the spins but also
the loop labels during the Monte Carlo process. These labels
also help us to measure the lifetime-area-length distribution of
loops. We shall talk about how we implement the Monte Carlo
update, label loops, and generate initial configurations. The
numerical results are shown in figures in previous sections and
discussions therein.

The quantum-Markovian correspondence reduces the nu-
merical complexity of simulating the quantum dynamics from
exponential in the system size to power-law in the system size.
The reason is that we do not need to keep the exponentially
large number of wave-function amplitudes. Instead, we only
keep one classical state during the update and we engineer the
Markov process such that the probability each state appears
is proportional to the square of the time-dependent wave-
function amplitude.

A particular realization of the classical Markov process
is a series of spin-changing events. O(N) such local events
happen in the system in an O(1) time interval, where N is the
number of plaquettes. In our discrete-time simulation, we fix
the number of update attempts in each unit time interval to
be exactly N . This change is unimportant for large systems,
since relative fluctuations in the number of updates per unit
time are anyway small. Below, we describe the update process
for |d|2 > 1; the process for |d|2 < 1 is very similar.

For each update attempt, we choose a random plaquette on
the honeycomb lattice, and update the spin configuration on
the links surrounding this plaquette according to the following
rules. (1) If there is one loop passing through the plaquette,

we flip all spins around the plaquette (move the loop across
the plaquette). (2) If there is no loop passing through the
plaquette, we flip all spins around the plaquette (create a
small loop). (3) If there is a small loop on the plaquette, we
flip all spins around the plaquette (annihilate the small loop)
with probability 1/|d|2. (4) If there are multiple loops passing
through the plaquette, we keep the current spin configuration
(no reconnection). With this normalization of the rates, the
Markov process is related by the Markovian correspondence
to the quantum Hamiltonian in Eqs. (7) and (11), with the
modified ratio of couplings K1/K2 = |d|2/(1 + |d|2) men-
tioned in that section (we do not expect this choice to affect
the universal properties).

In addition, we label the loops in the initial configuration,
and update the labels during the dynamics, in the following
way. For the initial configuration, we label the loops from the
top left to the bottom right by iteration. In the nth step, to
label the nth loop, we find the first unlabeled down spin in the
configuration, give it the label n, assign an arbitrary direction
to the loop, and follow the loop in this direction in order to
attach the label n to all the down spins along the loop. At the
end of the process, each edge occupied by a down spin has an
additional integer label n, specifying which loop it belongs to,
and a direction, which will be used in calculating the area.
During the update, whenever we create a loop we give its
edges a new integer label different from all existing loops and
an arbitrary direction; when we annihilate a loop we delete the
labels around the plaquette. When we move a loop, we label
the new edges by the same integer on the existing loop, assign
the direction consistent with the direction of the loop, and
delete labels on the edges no longer on the loop. This update
process is local and takes only O(1) computational time. [If
we have reconnection, we have to relabel all spins along the
loop. Even through the reconnection is local, the relabeling
takes O(l ) time, where l is the length of the loop.]

When calculating the lifetime-area-length distribution, we
first compute the lengths and areas of loops in the initial
condition, and then update the lengths and areas during the
Monte Carlo process. We calculate the area by the discrete
version of the integral

∫
ydx along the loop: the result can

be either positive or negative, with the sign determined by
the orientation assigned to the loop. With this definition,
computing the change of area in an update to the loop is a
local process which takes O(1) computational time. When a
loop is annihilated, we take the current time as its lifetime;
we only consider loops present in the initial state. At the end,
we make the scatter plot with the lifetime of each loop and
the maximum area (or average area, initial area, maximum
length, etc.) of the loop during the Monte Carlo process [see
Fig. 7(b)].

When calculating the correlation functions of reconnection
operators, for example W2,0 in Eq. (77), we first map the
operator to a nonlocal classical operator Õ via the general
rule in corollary 1.3 above, record the value of this classical
operator at each space-time point we are interested in, and
then calculate the correlator in the usual way. Up to a nor-
malization constant, the reconnection operator W2,0 (defined
for simplicity on a single hexagonal plaquette) is mapped to
the diagonal operator on a plaquette taking the values: |d|2 if
there are two strands visiting the plaquette, which belong to
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FIG. 22. Equilibration of the spatially averaged σ z during the
warm-up (d = √

2). Warm-up time 1 means L2 random plaquette
update attempts (these can include loop reconnections, as described
in the text). Results here are for system size L = 500.

the same loop; −1 if the two strands belong to different loops;
and 0 if there are less than or more than two strands visiting
the plaquette. We check whether they belong to the same loop
by comparing their labels, which takes only O(1) time.

At d = 1, the two-point function of W2,0 vanishes for any
space-time separation, and its classical counterpart Õ vanishes
identically. However, Õ/(d − 1) is well-defined in the limit
d → 1. We calculate the two-point function of this operator
to see whether the critical exponent of W2,0 behaves as we
predicted for d close to 1.

Last, we describe the way we generate the initial loop
configurations for arbitrary |d|2. The simplest case is |d|2 = 1.
We first generate a random τ z on each plaquette (spin up or
spin down with equal probability) and then calculate σ z as the
product of the two neighboring τ z. This process produces the
uniform probability distribution of all closed-loop configura-
tions. We may use either open boundary conditions, periodic
boundary conditions or anti-periodic boundary conditions for
τ z. For |d|2 �= 1, we start with the uniform distribution and
run a Monte Carlo process to get the desired probability
distribution: p(C) ∝ |d|2|C|. One choice is to use the same
Monte Carlo process corresponding to the quantum Hamilto-
nian. However, its dynamical exponent is z = 3.00(6), so the
warm up time37 is about O(L3). Instead, we use a nonlocal
warm up process, which includes reconnection of loops, to
greatly reduce the warm up time. The subtlety is that the
nontrivial loop weight |d|2 makes the acceptance probability
for a reconnection event nonlocal, since it depends on whether
the update increases or reduces the number of loops. Again,
we determine this by comparing the labels of the strands
involved in the reconnection. After each reconnection event,
we must relabel loops. But relabeling takes at most O(Ld f )
computational time (and much less on average), which is
much smaller than L3. Numerical results in Fig. 22 for d = √

2
show that after including this nonlocal reconnection process,

37That is, the time τ of the physical Markov process; the computa-
tional time has an extra factor of L2 since one unit of physical time
requires N updates.

the “physical” warm up time on the torus with 500 × 500
plaquettes is smaller than 1 (which corresponds to of order
500 × 500 updates).

As an aside, it is interesting to ask about the scaling of
this warm-up time with L, i.e., the dynamical exponent of the
nonlocal dynamics that includes reconnection. At |d|2 = 1 this
is clearly zreconnection = 0, because for that value of the loop
weight the update becomes equivalent to flipping uncorrelated
τ z spins, which relax after an order 1 time (again, 1 unit of
time corresponds to O(L2) updates). We have not performed a
scaling study, but the small warm-up times for other d suggest
that zreconnection may be equal to zero for all d which means
the dynamics is invariant under rescaling only the spatial
coordinates. Surprisingly, the nonlocal quantum Hamiltonian
that maps to this kind of nonlocal dynamics has been studied
numerically in Ref. [7]: a gap was reported, which implies a
relaxation time of order 1 in the Markov process, consistent
with the above. This indicates that the dynamical exponent
of the nonlocal Markov process shares the property of being
independent of d that we have argued for in the local case.

APPENDIX E: MATHEMATICAL STRUCTURE OF
EQUAL-TIME CORRELATORS AND

TOPOLOGICAL TYPES

In this Appendix, we explore the rich mathematical struc-
ture behind two-point functions of local operators, and prove
the general result on the number of watermelon operators.

Recall that Eqs. (61)–(63) reduce every equal-time two-
point function to a sum of classical probabilities. The key to
a general understanding of two-point functions, and hence the
spectrum of (nonhidden) operators, is the topological part of
the correlator 〈OAOB〉γ defined in Eq. (63). It is a function of
the topological data of the two operators and of the connec-
tivity γ of end points by strands in the region exterior to the
discs A and B that the operators act in. 〈OAOB〉γ determines
which combination of classical probabilities shows up in a
given two-point function. We can easily compute this quantity
for any specific OA, OB and γ . Naively, in order to gain a
full understanding, we have a formidable task to calculate this
coefficient for every combination of OA, OB and γ , case by
case. However, these coefficients can all be reduced to a kind
of overlap matrix Mk .

The matrix Mk , with elements Mk
α,β , is defined for pairings

(connections) α, β with 2k end points. The index α labels the
connection inside the disk, and β labels the connection outside
the disk:

Mk
α,β ≡ d [α,β], (E1)

where [α, β] is the total number of loops formed by connect-
ing the strands in α and β. In the context of the Temperley-
Lieb algebra, this is the inner product between states, so is
well studied [3].

For example, Fig. 23 shows the matrix M3. There are
five different choices of connection inside and outside the
disk. We can calculate the determinant of M3 directly and
see that it is generically invertible, except for d = ±1,±√

2.
More generally, the determinant of Mk vanishes if and only
if d = cos(pπ/(q + 1)), q � k; see, e.g., Ref. [3] which dis-
cusses the Temperley Lieb algebra in the context of the
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FIG. 23. M3
α,α′ .

quantum loop models. We shall discuss these special values
d = ±√

2 at the end of this Appendix. Now we focus on
generic d , when all Mk are invertible.

To derive the relation between 〈OAOB〉γ and Mk , we
manipulate 〈OAOB〉γ in the following way. We treat γ as a
map that maps connections αB inside disk B into connections
outside disk A. This mapping can be understood as simply
removing the boundary of disk B and keeping only the strands
that connect to end points on the boundary of disk A (for an
example, see Fig. 14). We denote the action of this map as
γ ◦ αB. This map naturally extends to a map from operators on
disk B to operators acting on the linear space of connections
outside disk A, which we label by βA:

γ (OB)β ′
A,βA ≡

∑
Oα′

B,αB d̄ [γα′
B]d [γαB], (E2)

where [γαB] is the number of complete loops formed by
strands in γ and strands in αB (these loops are completely
outside disk A), and the summation runs over the preimage
of βA (or β ′

A): namely, the set of all αB (respectively α′
B)

s.t. γ ◦ αB = βA (respectively γ ◦ α′
B = β ′

A). On the sphere,
connections inside and outside the discs are in 1-to-1 corre-
spondence, so we can also treat the resulting operator as an
operator inside disk A.

By definition [αAγαB] = [αA, γ ◦ αB] + [γαB]. Thus we
can rewrite 〈OAOB〉γ as

〈OAOB〉γ =
∑

d̄ [α′
Aγα′

B]d [αAγαB]Oα′
A,αA Oα′

B,αB (E3)

=
∑

Oα′
A,αA

∑
d̄ [α′

A,β ′
A]d [αA,βA]γ (OB)β ′

A,βA (E4)

=
∑

MkA
αA,βA

M̄kA

α′
A,β ′

A
Oα′

A,αAγ (OB)β ′
A,βA , (E5)

where kA is half of the number of end points on the boundary
of disk A, M̄kA is the complex conjugate of MkA , and we

have used the definition: MkA
αA,βA

= d [αA,βA]. To simplify our
notation, we define a bilinear form on the space of operators
with 2kA end points as

〈OA, O′
A〉 ≡ MkA

αA,βA
M̄kA

α′
A,β ′

A
Oα′

A,αA O′
β ′

A,βA
. (E6)

With this definition, Eq. (E3)–(E5) are expressed as

〈OAOB〉γ = 〈OA, γ (OB)〉. (E7)

Note that the linear space of operators with 2kA end points,
LOkA , is related to the linear space of all connections with
2kA end points, LCkA , as LOkA = LC∗

kA
⊗ LCkA , where LC∗

kA

denotes the dual space of LCkA . The bilinear form in Eq. (E6)
defines a map W kA from LOkA to LO∗

kA
, whose matrix elements

are W kA

αAα′
A,βAβ ′

A
≡ MkA

αA,βA
M̄kA

α′
A,β ′

A
. In compact notation W kA =

MkA ⊗ M̄kA . The eigenvalues of W kA are products of the eigen-
values of MkA and M̄kA ; the eigenvectors of W kA (in this case,
eigenoperators) are the tensor products of the eigenvectors
of MkA and M̄kA (in this case, eigenbras and eigenkets). In
particular, we have shown that MkA is invertible for generic d ,
and this statement implies that W kA is invertible for generic d .
This result is important to the study of the operator spectrum.

Now we explore the physical meaning of the formal results
above. First we want to count the number of independent
watermelon operators. Recall that watermelon operators are
defined in Eq. (68): (ignoring the spin index for a moment)
an operator is defined as a watermelon operator if and only
if its correlation function with any other operator vanishes
when there is a self contact among its end points. Consider
an operator OA that acts on disk A with 2kA end points, and an
arbitrary operator acts on disk B with 2kB end points. Using
the notation developed above, OA is a watermelon operator if
and only if

〈OAγ (OB)〉 = 0,∀OB, ∀ γ with self contact. (E8)

Since the bilinear form is invertible for generic d , the
number of linearly independent watermelon operators on A,
Nk , is the dimension of LOkA minus the dimension of the union
of the images of all connections γ with self-contact on disk A
(we denote this set by SCA):

Nk = C2
k − dim

[ ∪γ∈SCA Im[γ ]
]
. (E9)

where

Ck = 1

k + 1

(
2k

k

)
(E10)

is the number of possible connections in a disk with 2k end
points, which is known as the kth Catalan number. The seem-
ingly complicated second term also has an intuitive definition.
Since the strands of γ are unchanged by any operator in B,
if γ has a self-contact on disk A, the end points enclosed by
this self-contact must also connect to disk A. These strands
all become removable strands in γ (OB) (which are defined
in Sec. IV as strands that are not reconnected and are not
blocked by any strands being reconnected), no matter what
OB we choose. It is not hard to see that ∪γ∈SCA Im[γ ] is
the space of all operators on disk A with 2k end points that
have removable strands. Thus Nk , the number of watermelon
operators with 2k end points, equals the number of k-loop
reconnection operators.
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For each k-loop reconnection operator, we can make it or-
thogonal to the space ∪γ∈SCA Im[γ ] by subtracting an operator
in that space. This is always possible when the bilinear form
W k is invertible on the subspace ∪γ∈SCA Im[γ ]. This is indeed
true for generic d .38 Thus each k-loop reconnection operator
becomes a unique watermelon operator after adding operators
that do not reconnect k loops.

We can then organize these watermelon operators by their
spins, as introduced in Sec. VIII D. Since the topological
type is just the k-loop reconnection operator up to rotation
(Sec. IV), we can form exactly one spin-0 watermelon op-
erator for each topological type. Their two-point functions
can be diagonalized for generic d . Thus we arrive at the
conclusion that the number of degenerate scaling operators
at dimension39 x2k is just the number of distinct topological
types for k-loop reconnection operators!

At special d , when Mk is not invertible, some watermelon
operators become hidden operators. We would like to illus-
trate the general idea in the case of three-loop reconnection
operators at d = √

2. In this case, M3 annihilates the state
|JW2〉, hence |αA〉〈JW2| and |JW2〉〈αA| with any αA are all
annihilated by W 3 (the inner product). They have zero equal-
time correlator with any other operator outside A. We say
OA ∼ O′

A if they differ by a hidden operator, as described in
the main text. Using the definition of |JW2〉 in Fig. 21, we
have the following relation:

(
√

2(|α1〉 + |α2〉) + |β1〉 + |β2〉 + |β3〉) 〈αi| ∼ 0,

(
√

2(|α1〉 + |α2〉) + |β1〉 + |β2〉 + |β3〉) 〈β j | ∼ 0,

|αi〉 (
√

2(〈α1| + 〈α2|) + 〈β1| + 〈β2| + 〈β3|) ∼ 0,

|β j〉 (
√

2(〈α1| + 〈α2|) + 〈β1| + 〈β2| + 〈β3|) ∼ 0. (E11)

These relations imply

|α1〉〈α2| ∼ O(R2), (E12)

|β j〉〈β j+1| ∼ |β1〉〈β2| + O(R2), (E13)

|β j+1〉〈β j | ∼ −|β1〉〈β2| + O(R2), ∀ j, (E14)

where O(R2) stands for any operator that can at most recon-
nect two loops. These relations imply that all three-loop re-
connection operators except

∑
j=1,2,3 |β j〉〈β j+1| − |β j+1〉〈β j |

are reduced to operators that do not reconnect three loops
(up to hidden operators), which means the watermelon oper-
ators constructed from these operators are hidden operators.
However, they can still have nontrivial correlators in the time
direction, as discussed in Sec. V.

38When d → ∞, diagonal terms in W k dominate since they have
the largest power of d; the inner product is proportional to a Kro-
necker delta function, hence invertible. In general, the determinant
of W k restricted to this subspace is a polynomial of d . Since we have
already shown that this polynomial is not identically zero, its zeros
must be discrete.

39x2k = x2k,0, see Eqs. (17) and (66).

APPENDIX F: GROUND-STATE DEGENERACY
ON THE TORUS

In this Appendix, we explain the existence of JW projectors
at special d , introduced in Secs. VI D and IX A. We focus on
the cases d = ±√

2, and discuss the ground-state degeneracy
after adding the JW projectors. Results discussed here were
first reported in Ref. [3] using the representation of the SU(2)k

Kac-Moody algebra on loop states. We provide an alternative,
self-contained explanation.

For generic d , there does not exist any local reconnection
operator that annihilates the state |GS〉 = ∑

C d |C||C〉 (for
local operators here, we ignore small loops in the sense of
Eq. (57)). This has to do with the nonlocality of the wave func-
tion ψ (C) = d |C|. For example, consider the wave-function
amplitude for three-strand configurations inside a disk shown
in Fig. 23. On the sphere, there are five possible connections
inside and outside the disk. The wave-function amplitude for
states inside the disk depends on the total number of loops,
hence on the connections outside the disk. In the matrix M3

shown in Fig. 23, each column, labeled by the connection
β outside the disk, is proportional to the wave function for
the degrees of freedom inside the disk that we get from the
ground state if we fix the configuration outside to be Cβ , with
connection β:

〈GS|(|α〉 ⊗ |Cβ〉) = d |αCβ | ∝ d [α,β] ≡ Mk
α,β, (F1)

where α labels the connection inside the disk. As described
in Appendix E, this matrix is invertible for generic d , which
means the five column vectors form a complete basis of all
three-strand states: In order to annihilate the ground state, an
operator must simultaneously annihilate all states inside the
disk, hence must be identically zero.

However, the determinant is zero for d = 0,±1,±√
2. For

these special d , the five column vectors no longer span the
total five-dim Hilbert space, and there are hidden states inside
the disk that do not show up in the reduced density matrix of
the ground state. The case d = 0 is trivial. The cases d = ±1
are explained in Sec. III. At d = ±√

2, the hidden state is the
state |JW2〉± shown in Fig. 21. It is easy to check that |JW2〉±
is orthogonal to all columns of M3

α,α′ . Because of this hidden
state, there is a projector |JW2〉±〈JW2|± that annihilates the
ground state. We can add this projector to the Hamiltonian
while preserving the ground state. More generally, at each
k � 2, the matrix Mk

α,α′ . is noninvertible if and only if d =
2 cos(pπ/(q + 1)), q � k (Ref. [3]). At these special weights,
we have hidden states of k-strand configurations.

Now we focus on the case k = 3, d = ±√
2, and study

the ground states on the torus after adding the JW projector.
On the torus, loop states can have various winding numbers.
Without the JW projector, different winding sectors are degen-
erate. However, just like the two-loop reconnection in the toric
code, the three-loop JW projector connects configurations
in different sectors, and puts additional constraints on the
ground-state wave function. On the torus, we can write the
ground-state wave function as ψ (C) = ψ (nx, ny)d |C|, where
nx and ny are the winding numbers. The second part d |C| is
required by the loop creation/annihilation term, and is con-
sistent with the corresponding JW projector when d = ±√

2.
We want to solve the additional constraints on ψ (nx, ny) to
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FIG. 24. JW on the torus.

get the ground states, but a priori, it is not clear at all whether
there are zero, finitely many, or infinitely many zero-energy
states.40 (We shall see later that the naive guess ψ (nx, ny) = 1
does not give a zero-energy state.) Unlike the cases d = ±1, it
is not a trivial task to write down all constraints on ψ (nx, ny).

JW projectors connect different sectors, when the loops
being reconnected wind nontrivially around the torus (see
Figs. 24 and 25). To find all constraints, we want to find all
possible ways for the three loops to wind around the torus.
The first thing to notice is that there are more possible ways
to connect the end points outside the disk on the torus than
on the sphere. For the three-loop JW projector, there are
six end points on the boundary of the disk, and 15 = 5 × 3
ways to connect them (5 is the number of choices for the
1st point, 3 is the number of choices for the next unpaired
point). Under cyclic permutation (roughly speaking, 60 degree
rotation of the disk), these 15 ways fall into 5 equivalent
classes, [A], [B], [C], [D], and [E ], as shown in Fig. 24. For
example, there are two elements in class [A]: (12)(34)(56),
and (16)(23)(45). However, only the five elements in class A
and class B can be realized on the sphere without crossing. On
the torus, we must consider three new classes, each of which
has different realizations (in terms of winding numbers) on the
torus.

To study all possible realizations of these classes on the
torus, we need to clarify a few points about winding numbers
on the torus. We first state four basic facts: (1) The winding
number of each loop around the x direction and the y direction
must be coprime, otherwise there must be a self-crossing.
(2) If there are multiple loops that wind nontrivially, their
winding numbers must be the same, otherwise there would be
a crossing between them. (1) and (2) together state that the two
winding numbers nx and ny uniquely determine the winding
numbers of all nontrivial loops in a given configuration. The
number of nontrivial loops must be the greatest common
divisor (g.c.d.) of nx and ny, and the winding number of each

40If there is no zero-energy state on the torus, we must look for the
ground states among the finite-energy states. Luckily, there are zero-
energy states, and we do not need to solve the much harder problem.

FIG. 25. JW constraints on the torus.

nontrivial loop must be the total winding number divided by
this g.c.d. (3) We can transform a nontrivial loop with arbitrary
winding number to a nontrivial loop winding around the y
direction by modular transformations. Modular transforma-
tions on the torus are generated by S ((x, y) → (y,−x)) and
T ((x, y) → (x − y, y)). (4) We need to use signed winding
numbers to distinguish the case (nx, ny) = (1, 1), with the
case (nx, ny) = (1,−1). We define nx and ny as follows. First,
assign an arbitrary orientation (arrow) to the nontrivial loops;
the orientation should be the same for all nontrivial loops in
the configuration. Second, define nx as the number of strands
passing through the horizontal line from below, minus the
number of strands passing through the horizontal line from
above. Define ny in a similar way in the other direction. Since
this arrow is assigned arbitrarily, (nx, ny) � (−nx,−ny ), but
(nx, ny) and (nx,−ny) label distinct topological sectors.

With these preliminaries, we can write down all constraints
on ψ (nx, ny) from the JW projector. For each of the five
classes, we enumerate cases where there are one, two, or three
strands winding around the torus. In each case, use modular
transformations to fix the winding number of each nontrivial
strand. For each such realization, we can write down the
constraint that the JW projector annihilates the ground state

|JW2〉±〈JW2|±|�〉 = 0, for d = ±
√

2. (F2)

In Fig. 25, each square represents a wave-function amplitude.
It turns out that there are three nontrivial constraints up to
modular transformations and reflection about the x axis:

ψ (2, 2) + ψ (2, 0) + ψ (0, 2) − 2ψ (0, 0) = 0, (F3)

ψ (1, 2) + ψ (1,−2) − dψ (1, 0) = 0, (F4)

ψ (0, 3 + n) = ψ (0, 1 + n), n � 0, (F5)

where d = ±√
2. The action of S and T and the reflection Rx

on wave function ψ are defined such that

S ◦ ψ (nx, ny) = ψ (ny,−nx ), (F6)

T ◦ ψ (nx, ny) = ψ (nx, nx + ny), (F7)

Rx ◦ ψ (nx, ny) = ψ (−nx, ny). (F8)
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Modular transformations acting on the three nontrivial con-
straints generate infinitely many constraints on the infinitely
many complex numbers ψ (nx, ny). Now we want to under-
stand and solve these constraints to find the ground states on
the torus. Note that modular transformations do not change
the g.c.d. of nx and ny. nx and ny in Eq. (F3) has g. c. d. 2; nx

and ny in Eq. (F4) has g.c.d. 1. These two equations generate
all constraints on ψ (nx, ny) with g. c. d.(nx, ny) = 1, 2. On the
other hand, after modular transformations, Eq. (F5) simply
says

ψ (mnx, mny) = ψ (nx, ny), (F9)

∀nx, ny ∈ 2Z,∀m, (F10)

and ψ (mnx, mny ) = ψ (nx, ny), (F11)

∀ odd m,∀(nx, ny) = 1. (F12)

The parities of the winding numbers nx and ny are still good
quantum numbers, we have four sectors: (even, even), (odd,
odd), (even, odd), and (odd, even). The last three sectors
are related by modular transformations, so we only need to
consider two cases: (even, even) and (odd, odd). In the (even,
even) sector, we need to consider only those (nx, ny) with
g.c.d. 2, and solve constraints generated by Eq. (F3); in the
(odd, odd) sector, we need to consider only those (nx, ny) with
g.c.d. 1, and solve constraints generated by Eq. (F4). All other
amplitudes are fixed by Eq. (F5).

The degeneracy in the (even, even) sector has its own
meaning: it is the total ground-state degeneracy in the domain-
wall interpretation of the loop model. This is because the spin
on a plaquette always goes back to itself after traveling along
the nontrivial cycles of the torus, and the number of domain
walls encountered along the cycle must be even.

Constraints generated by Eq. (F3) are

ψ (2m + 2r, 2n + 2s) + ψ (2m, 2n) + ψ (2r, 2s)

= 2ψ (0, 0), ∀
(

m r
n s

)
∈ SL2(Z). (F13)

A simple solution is ψ (0, 0) = 1, ψ (2m, 2n) = 2
3 ,

∀(m, n) �= (0, 0). For every other solution, we can always
subtract this solution to make ψ (0, 0) = 0. After playing
with these equations, it is not hard to see that every amplitude
reduces to the amplitudes ψ (2, 0), ψ (0, 2), and ψ (0, 0).
Thus, apart from the previous solution, we have at most two
other solutions. By explicit construction, we found two other
solutions

ψ (2m, 2n) =
⎧⎨
⎩

1 (m, n) = (odd, odd)
ω (m, n) = (even, odd)
ω−1 (m, n) = (odd, even)

, (F14)

where ω = e±2π i/3. These two solutions and the previous so-
lution ψ (0, 0) = 1. ψ (2m, 2n) = 2

3 ,∀(m, n) �= (0, 0) are the
only three linearly independent solutions. Thus the ground-
state degeneracy in the (even, even) sector is 3; the total
ground-state degeneracy in the domain-wall interpretation of
the loop model is 3.

Next, we solve the ground states in the (odd, odd) sector.
All constraints in this sector are generated by Eq. (F4), or

equivalently by a modular transformation of Eq. (F4):

ψ (1,−1) + ψ (1, 3) = dψ (1, 1). (F15)

It is not hard to see that all amplitudes are fixed by ψ (1, 1) and
ψ (1,−1). Thus there are at most two solutions in this sector.
Indeed, we find two independent solutions ψA and ψB:

ψA(1, 1) = 0, ψA(1,−1) = 1,

ψB(1, 1) = 1, ψB(1,−1) = 0. (F16)

It is not easy to explicitly write down the expression for
ψA(nx, ny) and ψB(nx, ny), but it is easy to write down the
representation of the modular group on the two-dim solution
space. The representation of S and T 2 is given by(

S ◦ ψA

S ◦ ψB

)
=

(
0 1
1 0

)(
ψA

ψB

)
, (F17)

(
T 2 ◦ ψA

T 2 ◦ ψB

)
=

(
0 −1
1 d

)(
ψA

ψB

)
. (F18)

We ignore the modular transformation T , since it does not
preserve the (odd, odd) sector. Equations (F16) and (F17)
completely fixe all amplitudes ψ (nx, ny) in the (odd, odd)
sector. In fact, Eq. (F16) is just a choice of basis. Equation
(F17) is required by the choice of basis, and by the constraint
in Eq. (F15). It is straightforward to check the consistency of
Eqs. (F16), (F17), and (F15). Thus there are two ground states
in the (odd, odd) sector, two ground states in the (odd, even)
sector, and two ground states in the (even, odd) sector. The
solutions in the last two sectors are the modular transformed
ψA and ψB.

As a conclusion, we confirm the results that there are nine
ground states on the torus for the lattice Hamiltonian with JW
projector. These nine states originate from different windings
of loop configurations, their degeneracy is not lifted by the
JW projector, and can only be lifted by irrelevant operators
within the universality class. In general, the splittings of
these subspectrum states are smaller than the lowest excitation
energy in the continuous spectrum by a power of the system
size. In the case of d = ±√

2, there is a marginally irrelevant
operator; therefore the splitting between these state may be
only logarithmically smaller than that of excited states in the
continuum spectrum.

FIG. 26. RG fixed line governing the dense and dilute classi-
cal loop model. The dense fixed line (red) is stable as a classi-
cal ensemble, and the dilute fixed line unstable, with respect to
varying x.
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APPENDIX G: DILUTE CRITICAL POINTS

The critical value of the weight per unit length in the
classical lattice model is [25]

xc = (2 + (2 − |d|2)1/2)−1/2. (G1)

A single line of renormalization group fixed points governs
both the dense and dilute universality classes, as illustrated
schematically in Fig. 26: the line of dense fixed points contin-
ues into the line of dilute fixed points at |d|2 = 2. The critical
exponents vary continuously along this line.

The quantum model may be generalized to nonzero x by
modifying the flip operator in Eqs. (7) and (11). The surface
of “dense” quantum critical points then continues, at |d|2 = 2,

into another surface of “dilute” quantum critical points at
|d|2 < 2. The scaling dimensions in this phase follow from the
results in the previous sections, if we replace the dense critical
exponents with the known values in the dilute phase [22].
For example, the reconnection operators have larger scaling
dimensions.

We can apply our bound on z, in terms of the fractal dimen-
sion (Sec. VI B), anywhere on this enlarged critical surface.
The strongest bound is in the limit d → 0 on the dilute branch,
where d f → 4/3. In this limit, the bound becomes z � 2.66̇.

By the superuniversality argued for in Sec. VII (assuming
the surface of critical points in the lattice model corresponds
in the usual way to a surface of RG fixed points) we can then
apply this bound everywhere on the critical surface, including
for the dense loops, as stated in the introduction.
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