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A spin-U(1)-symmetry protected momentum-dependent integer-Z-valued topological invariant is proposed
to time-reversal-invariant superconductivity whose nonzero value will lead to exactly flat surface band(s). The
theory is applied to the weakly spin-orbit-coupled quasi-1D A2Cr3As3 (A=Na, K, Rb, Cs) superconductors
family with highest Tc up to 8.6 K with pz-wave pairing in the Sz = 0 channel. It’s found that up to the leading
atomic spin-orbit coupling (SOC), the whole (001) surface Brillouin zone is covered with exactly flat surface
bands, with some of the regime hosting three flat bands and the remaining part hosting two. Such exactly
flat surface bands will lead to a very sharp zero-bias conductance peak in the scanning tunneling microscopic
spectrum. When a tiny subleading spin-flipping SOC is considered, the surface bands will only be slightly split.
The application of this theory can be generalized to other unconventional superconductors with weak SOC,
particularly to those with mirror-reflection symmetry.
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I. INTRODUCTION

Topological superconductivity (TSC) has aroused great
interest in past decades [1,2]. The key feature of TSC lies in
the presence of gapless Majorana fermions at the end (for one
dimension), edge (for two dimensions), or surface (for three
dimensions) [3–17]. In one dimension, it is proposed that an
effective p-wave TSC realized via Rashba spin-orbit coupling
(SOC) with Zeeman coupling [18] can accommodate Majo-
rana end state, detected by the scanning tunneling microscope
(STM) as a pronounced zero-bias conductance peak (ZBCP)
[19]. However, in two or three dimensions, the dispersion of
the Majorana bands on the edge or surface will broaden the
bands and lead to weak [20–22] or no ZBCP [23,24] in the
STM. Therefore, the experimental identification of TSC in
higher than one dimension is still a challenge.

Here we investigate the evolution of the isolated end states
of a one-dimensional (1D) p-wave superconductor when a
weak imposed three dimensionality expands them into several
branches of surface bands with dispersion. It is interesting to
ask: is it possible to realize a quasi-1D TSC protected by some
symmetries which hosts dispersionless surface band(s)? Here
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we propose a class of TSC protected by the time-reversal (TR)
and the spin-U(1) symmetry (SUS), which hosts exactly flat
surface band(s). Different from conventional nodal-line TSC
[9,25–29], the flat surface band(s) here does not rely on the
presence of the nodal line, and the whole surface Brillouin
zone (BZ) can be covered by flat band(s), causing sharp
ZBCP in the STM. Furthermore, we propose that the recently
synthesized quasi-1D A2Cr3As3 (A=Na, K, Rb, Cs) family
[30–33] with predicted pz-wave pairing symmetry [34,35]
belongs to this TSC class, up to the leading SOC.

The low-energy degrees of freedom in the A2Cr3As3

family are dominated by the Cr-3d orbitals [36,37], which
are expected to be strongly correlated [34,35,38–40], sup-
ported by various experiments [41–45], implying an electron–
interaction-driven pairing mechanism. Diverse experiments
[30–32,41,42,46–50] have revealed unconventional pairing
states, particularly with line nodes [31,46] and possibly
triplet pairings [30–32] in the system. Symmetry analysis
suggests that the leading SOC in the A2Cr3As3 family is the
atomic SOC conserving the SUS [34], and combined weak-
and strong-coupling approaches have predicted time-reversal-
invariant (TRI) pz-wave triplet pairing with line nodes with
the Sz = 0 component [34,35], belonging to the symmetry
class required here up to the leading SOC.

In this paper, we provide a topological invariant asso-
ciated with flat surface band(s) under combined TR+SUS
symmetries for TSCs, and apply it to the quasi-1D A2Cr3As3

family. As a result, the momentum-dependent topological in-
variant Z (kx, ky) for A2Cr3As3 is nonzero all over the (kx, ky)
plane, with different regimes covered with different Z . Conse-
quently, different regimes on the surface BZ are covered with
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different nonzero numbers of flat bands, causing sharp ZBCP
in the STM. Our proposal provides smoking-gun evidence for
experimental identification of such quasi-1D pz-wave super-
conductors as the A2Cr3As3 with weak SOC conserving the
SUS.

II. SUS PROTECTED TOPOLOGICAL INVARIANT

Let us consider a multiband TRI superconductor with SUS,
whose Bogoliubov–de Gennes (BdG) Hamiltonian is

H =
∑
kασ

εkασ c†
kασ ckασ +

∑
kαβ

[�αβ (k)c†
kα↑c†

−kβ↓ + H.c.].

(1)
Here α/β = 1, . . . , Nα represent the band indices and σ labels
spin. The TR symmetry requires εkα↑ = ε−kα↓ and �k = �

†
k.

This BdG Hamiltonian can be written in the particle-hole
symmetric (PHS) four-component Nambu representation as
H = 1

2

∑
k �

†
kH�k, with �

†
k = (c†

k↑, c†
k↓, c−k↑, c−k↓), c†

k↑ ≡
(· · · c†

kα↑ · · · ), and

H =

⎛
⎜⎝

εk↑ 0 0 �k

0 εk↓ −�T
−k 0

0 −�T
−k −εk↓ 0

�k 0 0 −εk↑

⎞
⎟⎠. (2)

Here εkσ ≡ diag(. . . , εkασ , . . .). Note that the SUS requires
the hopping blocks of the BdG matrix Eq. (2) to be diagonal
and the pairing blocks to be block off-diagonal. The combined
TRS and PHS lead to chiral symmetry, which enables us to
do the unitary transformation H → H̃ = U †HU to obtain an
off-diagonal Hermitian matrix H̃. Here the unitary matrix U
and the upper-right off-diagonal block H̃12 of H̃ read

U = 1√
2

(
I I
σy −σy

)
,

H̃12 =
(

εk↑ − i�k 0
0 εk↓ − i�T

−k

)
. (3)

Note that H̃12 is block diagonal, caused by the SUS.
Following the standard procedure introduced in

Refs. [5,12,26], the so-called Q matrix is obtained:

Q(k) = I − 2P(k) =

⎛
⎜⎜⎝

q1 0
0 q2

q†
1 0

0 q†
2

⎞
⎟⎟⎠. (4)

Here P(k) is the projection operator and the Nα × Nα matrix
q1 (q2) is related to the upper-left (lower-right) block of H̃12

in Eq. (3), and hence the 1-4 (2-3) block of H in Eq. (2). Each
block of the Hamiltonian only has the chiral symmetry and
belongs to the AIII class, characterized by a Z topological
invariant in 1D. The detailed formulas of q1/2 are provided in
Appendix A. Note that, in contrast with the cases in ordinary
TRI superconductor [5,12,26], the extra SUS here makes the
off-diagonal block q ≡ diag(q1, q2) of the Q matrix block
diagonalized into q1 and q2 sub-blocks. This enables us to
define the following two 1D winding number Z1/2 for the two
sub-blocks q1/2, instead of the one Z defined for the whole q

for ordinary TRI superconductors [5,12,26]:

Z1/2(kx, ky) = i

2π

∫ π

−π

tr
(
q†

1/2∂kz q1/2
)
dkz. (5)

Here, in defining the path-dependent 1D winding number Z1/2,
we have chosen the path “L” [26] to be a vertical line passing
(kx, ky, 0). Note that due to the double counting brought about
by the gauge redundancy in this representation, the physical
topological invariant here should be Z1(kx, ky), which leads
to |Z1(kx, ky)| flat surface bands as shown in Appendix A.
The relationship between the winding numbers Z and Z1/2 is
similar to that between the Chern number and the spin Chern
number [51,52].

It’s interesting to investigate the case of the intraband-
pairing limit where �

αβ

k = �α
kδαβ . In this case, it is proved in

Appendix A that q1(k) = diag(. . . , e−iθkα↑ , . . .) with e−iθkα↑ =
(εkα↑ − i�α

k )/ | εkα↑ − i�α
k |. Then, from Eq. (5), the wind-

ing number is obtained as

Z1(kx, ky) = 1

2π

∑
α

∫ π

−π

dθkα↑ =
∑

α

Iα (kx, ky). (6)

Equation (6) suggests that, in this limit, Z1(kx, ky) is a sum-
mation of the contributions from each band α, with each
contribution equal to the winding number of the complex
phase angle of εkα↑ + i�α

k along a closed path perpendicular
to the kz = 0 plane.

III. APPLIED TO A2Cr3As3

The point group of the quasi-1D A2Cr3As3 family is D3h,
which includes a C3 rotation about the z axis and a mirror re-
flection about the xy plane. The low-energy band structure of
A2Cr3As3 can be well captured by a three-band tight-binding
(TB) model HTB in the absence of SOC [34], with the three
relevant orbitals to be the 3dz2 , 3dxy, and 3dx2−y2 , respectively.
From the symmetry analysis which is given in Appendix B,
the leading SOC in this family takes the following on-site
formula [34]:

HSOC = iλso

∑
kσ

σ [c†
2σ (k)c3σ (k) − c†

3σ (k)c2σ (k)], (7)

which possesses the SUS required. We adopt λso ≈ 10 meV
[34] below. Note that the mirror-reflection symmetry for-
bids spin-flipping on-site SOC, because each such term
as c†

iμσ ciνσ gμν would be changed to c†
iμσ ciνσ σσgμν =

−c†
iμσ ciνσ gμν under this symmetry operation as shown in

Appendix B.
The FSs of the spin-up electrons shown in Fig. 1(a) consist

of two 1D FSs named as α and β and one 3D FS named as
γ . While each 1D FS contains two FS sheets nearly parallel
to the (kx, ky) plane, the 3D γ -FS intersects with the (kx, ky)
plane with their intersection line shown in Fig. 1(b). Note
that the shape of the γ -FS is counterintuitive: it contains
one connected large concave pocket centering around the �

point, instead of three isolated small convex pockets centering
around the M points. The FSs of the spin-down electrons are
related to those of the spin-up electrons through the relation
εkα↓ = ε−kα↑ brought about by the TRS, and the lack of
inversion symmetry leads to ε−kα↑ �= εkα↑ and hence εkα↓ �=
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FIG. 1. FSs for the spin-up electrons and pairing gap function
of K2Cr3As3. (a) FSs of the TB model with SOC for K2Cr3As3.
The paths Li,i=1,2 are perpendicular to the (kx, ky ) plane. (b) The
intersection lines between the γ -FS and the (kx, ky ) plane, which
are also the nodal lines of the pz-SC. (c) The kz dependence of the
relative gap function of K2Cr3As3 averaged on the FSs. Schematic
diagrams of how the phase angle of εkγ↑ + i�γ

k evolves with kz along
the paths L1 for (d) and L2 for (e).

εkα↑, which means that the band structures of the two spin
species do not coincide.

Both weak-coupling RPA-based calculations and strong-
coupling mean-field results suggest that the leading pairing
symmetry of the system is TRI pz-wave pairing with a domi-
nating triplet component in the Sz = 0 channel with line nodes
[34,35] consistent with experiment [30–32,46], conserving the
SUS. Therefore, the A2Cr3As3 family are expected to belong
to the symmetry class required here. Since the Tc (�9 K)
of A2Cr3As3 is much lower than the low-energy bandwidth
(≈100 meV), its pairing state can be well approximated as
intraband pairing, wherein Eq. (6) applies.

The gap function of the pz-wave pairing obtained by the
RPA approach is C3-rotation invariant about the z axis and
does not obviously depend on kx/y. The kz dependence of the
relative gap function averaged on the FSs is shown in Fig. 1(c),
where the sign of �α

k (α = 1, 2, 3) follows that of kz. Let us
take the γ band as an example to illustrate how to use Eq. (6)
to calculate Iγ . Figures 1(d) and 1(e) illustrate in a schematic
manner how the complex phase angle of εkγ↑ + i�γ

k evolves
from the Ai to Ei points along the two vertical lines Li(i=1,2)

in the BZ shown in Fig. 1(a). Clearly, because the L1 path
passes the γ -FS twice which leads to twice sign changes of
εkγ↑ and that the pz symmetry leads to sign change of �

γ

k on
the two γ -FS sheets, a nontrivial winding number Iγ (L1) =
−1 of the phase angle is obtained. On the contrary, the L2 path
does not pass the γ -FS, which leads to no sign change of εkγ↑
and hence Iγ (L2) = 0. Similarly, Iα/β (L1/2) = −1. As a result
Z (kx, ky)|L1 = −3 and Z (kx, ky)|L2 = −2. Therefore, the three
elliptical areas centered around the M points (the remaining
part) in Fig. 1(b) are covered by Z = −2 (−3), which will

FIG. 2. (a) Energy spectrum as function of kx/y with open bound-
ary condition along the z axis and periodic ones along the x and y
axes. (b) The bulk bands in the pz-wave pairing state with fixed kz =
0. In (a), the segment marked red (blue) is covered by 6 (4) flat bands.
The number of the slab layers is 200. The adopted �1 = 20 meV and
�2 = �3 = 40 meV are enhanced by an order of magnitude over
realistic ones to enhance the visibility.

lead to 2 (3) flat bands over this regime on the surface BZ on
each (001) surface.

Note that the topological properties obtained here are
protected by the SUS. Supposing a vanishingly weak spin-
flipping SOC turns on, the system now belongs to con-
ventional TRI superconductors, whose topological invariant
Z is then defined for the whole off-diagonal block q of
Eq. (4) [5,12,26], which satisfies Z (kx, ky) = Z1(kx, ky) +
Z2(kx, ky) = Z1(kx, ky) + Z1(−kx,−ky). In the case with weak
on-site SOC with SUS for the pz-wave superconductivity
(SC), we have εkγ↑ = ε−kγ↓ ≈ ε−kγ↑; �γ

k = −�
γ

−k, leading
to θkα ≈ −θ−kα . Then from Eq. (6) we find that, except in
a narrow regime to be studied below, in most regimes of the
(kx, ky) plane we have Z1(kx, ky ) = −Z1(−kx,−ky) for integer
Z1, and hence Z (kx, ky) = 0. Here the protection of the SUS
permits that we only count Z1, which is nonzero all over the
(kx, ky) plane.

IV. SURFACE SPECTRUM AND STM

The nontrivial topological invariant of A2Cr3As3 leads to
flat surface bands. We have studied the edge spectrum of this
system on the (001) surface as shown in Appendix C. The
obtained energy spectrum as a function of kx and ky is shown
in Fig. 2(a) along the high symmetric line, in comparison with
the bulk band in the superconducting state shown in Fig. 2(b)
with fixed kz = 0. To enhance visibility, the adopted pairing
gap amplitudes are enhanced from realistic �1 ≈ 1 meV,
�2 = �3 ≈ 2 meV [34] for K2Cr3As3 with Tc ≈ 6 K to
�1 = 20 meV, �2 = �3 = 40 meV. The comparison between
Figs. 2(a) and 2(b) suggests that, in addition to the bulk
continuum, some regime in the (kx, ky) plane is covered by
an extra six flat bands, while the remaining regime is covered
by extra an four, with the boundary of the two regimes to be
just the SC nodal lines shown in Fig. 1(b).

The flat bands shown in Fig. 2(a) are formed by bound
states localized at the two (001) surfaces, which is justified
by the distribution of the wave functions of the Bogoliubov
quasiparticles shown in Fig. 3(a), which illustrates a bound
state with a localized length ξ ≈ 3c with the lattice constant
c = 4.23 Å. Our numerical results suggest ξ ≈ 45c ≈ 20 nm
for realistic gap amplitudes. As the two (001) surfaces sym-
metrically share the surface states, the corresponding areas in
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FIG. 3. (a) Distribution of the squared modulus of the wave
function of the particle part of the Bogoliubov quasiparticle (the hole
part is similar) along the z direction for a typical state in the flat
bands. (b) The differential conductance dI/dV ∼ V spectra of the
STM for the end (red) and the middle (black) of K2Cr3As3.

Fig. 2(a) are covered by 3 (2) flat bands on each surface BZ,
consistent with the topological invariant calculations above.

The topological flat surface bands obtained above can
be detected as the ZBCP in the site-dependent differential
conductance spectrum dI/dV of the STM. Details for the
calculation of dI/dV are provided in Appendix D. Figure 3(b)
shows the dI/dV ∼ V curves for the end (red) and middle
(black) points of the needlelike sample of the quasi-1D ma-
terial, respectively. Obviously, there is a very sharp ZBCP in
the spectrum of the end point, which is absent in that of the
middle point.

V. SPIN-FLIPPING SOC

In real material of A2Cr3As3, there can be weak subleading
NN-spin-flipping SOC, whose explicit formula is given in
Appendix B. This SOC term breaks the SUS, and the topolog-
ical invariant Eq. (5) does not apply. However, this NN-SOC
for the 3d orbitals is so weak (with strength λ1/2 = 2 meV
adopted) that the above obtained flat bands are only slightly
split, as shown in Fig. 4(a) and its zoom-in in Fig. 4(b). As
a result, the sharp ZBCP is still present in the STM spectrum
shown in Fig. 4(d).

Remarkably, even the spin-flipping SOC breaks the SUS
here; there is still a narrow but finite regime in the BZ
covered by a pair of exactly flat bands, as highlighted by
the red oval in Fig. 4(b). This pair of exactly flat bands
are protected by the topological invariant for conventional
TRI SC without SUS [5,12,26]. As introduced above, for
sufficiently weak λ1/2, Z (kx, ky) = Z1(kx, ky ) + Z1(−kx,−ky ).
As the A2Cr3As3 family is noncentrosymmetric, the weak
difference between εkα↑ and ε−kα↑ caused by Eq. (7) leads to
weak noncentrosymmetry in |Z1(kx, ky)| and hence nonzero
Z (kx, ky) = ±1 in the narrow shaded regime in Fig. 4(c),
causing a pair of exactly flat surface bands there.

VI. DISCUSSION AND CONCLUSION

One may worry that the bad quality of the surface and
the breaking of mirror-reflection symmetry there might hinder
the detection of the surface states. The solution of these
problems is shown in Fig. 4(e): when the tip of the STM is
put on the side surface near the end of the sample within the
localized length ξ ≈ 45c ≈ 20, there would be pronounced

FIG. 4. Surface spectrum (a) and its zoom-in (b) with NN-spin-
flipping SOC with strength λ1 = λ2 = 2 meV for K2Cr3As3. (c) The
noncentrosymmetric distribution of Z1(kx, ky ) in the surface BZ, with
the narrow shaded regime covered by |Z| = 1. (d) The STM spectra
for the end (red) and the middle (black) of the sample, respectively.
(e) Schematic configuration for experimental identification of the pz-
wave SC in the quasi-1D A2Cr3As3 family.

ZBCP in the spectrum, and when the tip is far from the
end the ZBCP would vanish. Note that we can use the STM
configuration adopted recently [53] to distinguish between the
edge spectra of the A2Cr3As3 and ACr3As3: while the former
would exhibit the ZBCP, the latter with s± pairing [54] would
not. Interestingly, the number of surface flat bands here can
be easily tuned via doping as shown in Appendix E, readily
tested by experiments.

The SUS-protected topological invariant proposed here
also applies to other unconventional superconductors with
weak SOC, particularly those with mirror-reflection symmetry
proved in Appendix B, which maintains the SUS required
here.

In conclusion, we have proposed an SUS protected
momentum-dependent integer-Z-valued topological invariant
for TRI superconductors, whose nonzero value will lead to
exactly flat surface bands. The projection of the bulk nodal
line onto the surface BZ serves as a boundary across which
the topological invariant changes ±1, which can be nonzero
on both sides due to their integer-Z-valued character, distin-
guished from conventional topological nodal-line supercon-
ductors. Applying this theory to the A2Cr3As3 family up to
the leading SOC, we find that the whole (001) surface BZ
is covered with exactly flat bands, which can be detected
by the STM as sharp ZBCP. Probably, the band flattening
on the surface might drive new instabilities to be detected.
Our discovery not only reveals another type of TRI TSC, but
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it also provides smoking gun evidence for the experimental
identification of the pz-wave pairing symmetry of the quasi-
1D A2Cr3As3 family.
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APPENDIX A: TOPOLOGICAL INVARIANT

In this section, we derive the spin-U(1)-symmetry (SUS)
protected momentum-dependent integer-Z-valued topological
invariant for time-reversal-invariant (TRI) superconductors,
whose nonzero value will lead to exactly flat band(s) on the
surface Brillouin zone.

We start from the following Nα-band model:

H =
∑
kασ

C†
kασCkασ εα

kσ +
∑
kαβ

[C†
kα↑C†

−kβ↓�αβ (k) + H.c.].

(A1)

Here α/β = 1, . . . , Nα denote the band indices. Note that
here we have allowed SOC with SUS and interband pairing.
From time-reversal symmetry (TRS), we obtain εα

k↑ = εα
−k↓

and �(k) = �†(k). We can rewrite H into the formula of

H = 1

2

∑
k

(C†
k↑ C†

k↓ C−k↑ C−k↓)(Hk )

⎛
⎜⎜⎝

Ck↑
Ck↓

C†
−k↑

C†
−k↓

⎞
⎟⎟⎠, (A2)

with C†
k↑ ≡ (· · ·C†

kα↑ · · · ), and

Hk =

⎛
⎜⎝

εk↑ 0 0 �k

0 εk↓ −�T
−k 0

0 −�T
−k −ε−k↑ 0

�k 0 0 −ε−k↓

⎞
⎟⎠ (A3)

is a 4Nα × 4Nα matrix. Here εkσ ≡ diag(· · · εkασ · · · ). Let us
perform the following unitary transformation on Hk:

Hk → H̃k = U †HU, (A4)

where U = 1√
2
( I I
σy −σy

) and

H̃k =

⎛
⎜⎝

0 0 εk↑ − i�k 0
0 0 0 εk↓ − i�T

−k
εk↑ + i�k 0 0 0

0 εk↓ + i�T
−k 0 0

⎞
⎟⎠.

(A5)

Note that

H̃k =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠

†

˜̃Hk

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠, (A6)

with

˜̃Hk =

⎛
⎜⎝

0 εk↑ − i�k 0 0
εk↑ + i�k 0 0 0

0 0 0 εk↓ − i�T
−k

0 0 εk↓ + i�T
−k 0

⎞
⎟⎠.

(A7)

Let us study the eigenvalues and eigenvectors of ˜̃Hk and

H̃k. It is proved here that for the fully gapped case of ˜̃Hk,
the 1-2 (3-4) diagonal block contributes Nα negative eigen-
values and Nα positive ones, respectively, with the corre-
sponding eigenvectors in the form of (μT , νT , 0, 0)

T

and (μT , −νT , 0, 0)
T

[(0, 0, μT , νT )
T

and

(0, 0, μT , −νT )
T

]. Here μ and ν are Nα-component
column vectors. Actually, to solve the eigenvalue problem of

the 1-2 diagonal block of ˜̃Hk in Eq. (A7), one needs to solve
the equation

det

[(
0 εk↑ − i�k

εk↑ + i�k 0

)
− λI

]
= 0, (A8)

with λ to be the eigenvalue. Since

det

[(
0 εk↑ − i�k

εk↑ + i�k 0

)
− λI

]

= det

( −λI εk↑ − i�k
εk↑ + i�k −λI

)

≡ det

(−λI F
F † −λI

)

= det

(−λI F
F † −λI

)
det

(
I λ−1F
0 I

)

= det

(−I 0
F † F †F − λ2I

)
, (A9)

we have det(F †F − λ2I ) = 0. Because F †F is a Hermi-
tian operator with positive-definite eigenvalues, the obtained
values of λ are always positive-negative symmetrically dis-

tributed. Therefore, the 1-2 diagonal block of the ˜̃Hk in
Eq. (A7) contributes Nα negative eigenvalues and Nα positive
ones, respectively, with the corresponding eigenvectors in the
form of (μT , νT , 0, 0)

T
and (μT , −νT , 0, 0)

T
.

Similarly, the 3-4 diagonal block of the ˜̃Hk in Eq. (A7)
contributes the same number of negative and positive eigen-
values, with the corresponding eigenvectors in the form of
(0, 0, μT , νT )

T
and (0, 0, μT , −νT )

T
. Then,

from Eq. (A6), the distribution of the eigenvalues of
H̃k is similar, but with corresponding eigenvectors in the
form of (μT , 0, νT , 0)

T
and (μT , 0, −νT , 0)

T

[(0, μT , 0, νT )
T

and (0, μT , 0, −νT )
T

].
Following the standard procedure for the topological in-

variant of TRI SC [5,12], we evaluate the projection operator
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P̂ as

P̂ =
Nα∑
i=1

⎛
⎜⎝

μi

0
νi

0

⎞
⎟⎠(μ†

i 0 ν
†
i 0) +

⎛
⎜⎝

0
μ′

i
0
ν ′

i

⎞
⎟⎠(0 μ

′†
i 0 ν

′†
i )

=

⎛
⎜⎜⎜⎝

I
2 0 − q1

2 0
0 I

2 0 − q2

2

− q†
1

2 0 I
2 0

0 − q†
2

2 0 I
2

⎞
⎟⎟⎟⎠. (A10)

Here (
μi

0
νi

0

) and (
0
μ′

i
0
ν ′

i

) (i = 1, . . . , Nα) are the 2Nα eigenvectors of

Eq. (A5) with negative eigenvalues:

H̃k

⎛
⎜⎝

μi

0
νi

0

⎞
⎟⎠ = Ei(k)

⎛
⎜⎝

μi

0
νi

0

⎞
⎟⎠, Ei(k) < 0,

H̃k

⎛
⎜⎝

0
μ′

i
0
ν ′

i

⎞
⎟⎠ = E ′

i (k)

⎛
⎜⎝

0
μ′

i
0
ν ′

i

⎞
⎟⎠, E ′

i (k) < 0. (A11)

The formulas of q1, q2 are

q1 = −2
Nα∑
i=1

μiν
†
i ,

q2 = −2
Nα∑
i=1

μ′
iν

′†
i . (A12)

Here we have used the relation
∑Nα

i=1 μiμ
†
i + ∑Nα

i=1 μiμ
†
i =

I → ∑Nα

i=1 μiμ
†
i = I/2;

∑Nα

i=1 νiν
†
i + ∑Nα

i=1(−νi )(−ν
†
i ) =

I → ∑Nα

i=1 νiν
†
i = I/2 and similarly

∑Nα

i=1 μ′
iμ

′†
i =

I/2;
∑Nα

i=1 ν ′
iν

′†
i = I/2. Then the Q̂ operator is

Q̂ = 1 − 2P̂ =

⎛
⎜⎜⎝

0 0 q1 0
0 0 0 q2

q†
1 0 0 0

0 q†
2 0 0

⎞
⎟⎟⎠. (A13)

Note that Q̂ is 2 × 2 block off-diagonal, and furthermore the
off-diagonal block is block diagonal. Due to this property, the
winding number can be defined as Z1/2, with

Z1/2(kx, ky) = i

2π

∫ π

−π

tr
(
q†

1/2∂kz q1/2
)
dkz. (A14)

Note that Z1(kx, ky)[{εk,�k}] = Z2(−kx,−ky)[{εk,�
T
k }].

For nontrivial Z1/2(kx, ky) �= 0, there will be |Z1| + |Z2|
zero modes at the momentum (kx, ky) on the surface Brillouin
zone in the above four-component Nambu representation
(A2). However, the gauge redundancy in this representation
brings up double counting on the number of zero modes
for each momentum. In fact, due to the SUS here, one can
also write the BdG Hamiltonian in the gauge-redundancy-free
two-component Nambu representation as H = ∑

k ψ
†
khψk,

with ψ
†
k = (c†

k↑, c−k↓), and h is equal to the 1-4 block of
Eq. (A3). In this representation, the number of zero modes

at momentum (kx, ky) is |Z1(kx, ky)|, and the other |Z2(kx, ky)|
zero modes obtained in the four-component representation are
just those folded from the momentum (−kx,−ky) artificially
in that representation, which is a double counting. Therefore,
the physical topological invariant here is Z1(kx, ky), which
leads to |Z1(kx, ky)| flat surface bands.

In the following, we consider the special case of the intra-
band pairing limit, which is the case of most of the existing
superconductors. Let us set �αβ (k) = �α (k)δαβ and perform
the calculations provided by Eqs. (A5), (A13), and (A15). As
a result, we obtain

q1 = diag
(
e−iθ1

k1 , e−iθ2
k1 , . . . , e−iθNα

k1
)
,

q2 = diag
(
e−iθ1

k2 , e−iθ2
k2 , . . . , e−iθNα

k2
)
, (A15)

with

e−iθα
k1 = (

εα
k↑ − i�α

k

)/∣∣εα
k↑ − i�α

k

∣∣,
e−iθα

k2 = (
εα

k↓ − i�α
−k

)/∣∣εα
k↓ − i�α

−k

∣∣. (A16)

Then, from Eq. (A17), we evaluate the topological invariant
Z1/2(kx, ky) as

Z1/2(kx, ky) = i

2π

∫ π

−π

tr
(
q†

1/2∂kz q1/2
)
dkz

= i

2π

Nα∑
α=1

∫ π

−π

(
eiθα

k1/2∂kz e
−iθα

k1/2
)
dkz

= 1

2π

Nα∑
α=1

∫ π

−π

∂kzθ
α
k1/2dkz

=
Nα∑

α=1

1

2π

∫ π

−π

dθα
k1/2 ≡

Nα∑
α=1

Iα. (A17)

Equation (A17) suggests that, in the intraband pairing limit,
Z1/2(kx, ky) is a summation of the contributions Iα from each
band α, with each contribution Iα equal to the winding number
of the complex phase angle of εkασ + i�α

±k along a closed
path perpendicular to the kz = 0 plane.

APPENDIX B: FORMULA OF SOC
IN THE A2Cr3As3 FAMILY

The A2Cr3As3 family are quasi-1D superconductors con-
sisting of alkali-metal-atom-separated [(Cr3As3)2−]∞ double-
walled subnanotubes extending along the easy axis, defined as
the z axis here. The point group of the material is D3h, which
includes a C3 rotation about the z axis and a mirror reflection
M about the xy plane. The low-energy degrees of freedom
of the material are the Cr-3d orbitals, which include the dz2

(orbital 1), the dxy (orbital 2), and the dx2−y2 (orbital 3).
Due to the D3h point group and the time-reversal-symmetry

(TRS), our system with the three low energy d orbitals has the
following symmetry operators.

(1) The time-reversal operator T̂ :

T̂ : Ciμ↑ → Ciμ↓, Ciμ↓ → −Ciμ↑. (B1)

(2) The mirror-reflection operator M̂:

M̂ : Ciμ↑ → Ci′μ↑, Ciμ↓ → −Ci′μ↓, (B2)
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with

i′ = M̂i. (B3)

(3) The 120◦ rotation Ĉ1
3 :

Ĉ1
3 : Ciμσ → Ciνσ D(1)

μνe−iσπ/3, (B4)

with

D(1)
μν =

⎛
⎝1 0 0

0 −1
2

√
3

2

0 −√
3

2
−1
2

⎞
⎠. (B5)

(4) The 240◦ rotation Ĉ2
3 :

Ĉ2
3 : Ciμσ → Ciνσ D(2)

μνe−2iσπ/3, (B6)

with

D(2)
μν =

⎛
⎝1 0 0

0 −1
2

−√
3

2

0
√

3
2

−1
2

⎞
⎠. (B7)

These symmetries bring constraint on the formula of SOC in
the system. In the following, we first evaluate possible SOC
conserving the SUS in (A), and then evaluate possible spin-
flipping SOC in (B).

1. Formula of spin-U(1)-symmetric SOC

In this subsection, we analyze possible SOC terms with
SUS, including the on-site formulas in a and the NN ones
in b.

a. Formula of on-site SOC conserving SUS

The on-site SOC with SUS can generally be written as
C†

iμ↑Ciν↑g̃μν + C†
iμ↓Ciν↓g̃∗

μν + H.c. = C†
iμ↑Ciν↑(g̃μν + g̃†

μν ) +
C†

iμ↓Ciν↓(g̃∗
μν + g̃T

μν ) ≡ C†
iμ↑Ciν↑gμν + C†

iμ↓Ciν↓g∗
μν , with

the g matrix to be Hermitian. Note that the TRS has been
considered here. Let us evaluate the requirement on gμν by
the Ĉ1

3 -rotation symmetry for the spin-up electrons.

As C†
iμ↑Ciν↑gμν

Ĉ1
3−−−−→ C†

iμ′↑Ciν ′↑D(1)
μμ′D

(1)
νν ′gμν =

C†
iμ↑Ciν↑(D(1)†gD(1) )μν . To keep rotation symmetry, we

have

D(1)†gD(1) = g → [D(1)†, g] = 0. (B8)

Solving this equation, we get the symmetry-allowed formula
for the 3 × 3 Hermitian matrix g as

g =
⎛
⎝g1 0 0

0 g2 −iγ
0 iγ g2

⎞
⎠. (B9)

Note that the weak diagonal term can be incorporated into the
on-site chemical potential term, which will be ignored here.
As a result, we get the Hamiltonian term describing this SOC,

H (1)
SOC = iλso

∑
i

σ (C†
i2σCi3σ − C†

i3σCi2σ ). (B10)

It can be checked that this Hamiltonian satisfies all the sym-
metries listed above.

b. Formula of NN-SOC with SUS

The combined TRS represented by Eq. (B1), the mir-
ror symmetry represented by Eq. (B2), and the Hermi-
tian character of the Hamiltonian require that the NN-SOC
conserving the SUS takes the formula of C†

iμ↑Ci+zν↑gμν +
C†

iμ↑Ci−zν↑gμν + C†
iμ↓Ci+zν↓g∗

μν + C†
iμ↓Ci−zν↓g∗

μν , with the g-
matrix Hermitian.

Then the Ĉ1
3 -rotation symmetry represented by Eq. (B4) re-

quires the same formula Eq. (B8), which is solved as Eq. (B9).
Again, the weak diagonal part has extra spin-SU(2) symmetry
and can be incorporated into the band structure part, which
will be ignored here. Therefore, we obtain

H (2)
SOC = iλso2

∑
i

σ (C†
i2σCi+z3σ + C†

i2σCi−z3σ

− C†
i3σCi+z2σ − C†

i3σCi−z2σ ). (B11)

2. Formula of spin-flipping SOC

In this subsection, we analyze possible spin-flipping SOC
terms breaking SUS, including the on-site formulas in 1 and
the NN ones in 2.

a. Formula of spin-flipping on-site SOC

It is proved here that the mirror-reflection symmetry M will
forbid spin-flipping on-site SOC.

Actually, assuming we have a spin-flipping SOC term in
the form of C†

iμσCiνσ gμν with σ =↑ or ↓, then from the mirror
symmetry M about the plane passing through i, we have

C†
iμσCiνσ gμν

M−−−−→ C†
iμσCiνσ σσgμν = −C†

iμσCiνσ gμν . Since
M should be respected, we have gμν = 0, which suggests that
the mirror-reflection symmetry M will forbid spin-flipping
on-site SOC.

b. Formula of spin-flipping NN-SOC

Here we evaluate the possible NN-spin-flipping SOC term.
From the combination of the TRS represented by Eq. (B1),
the mirror symmetry represented by Eq. (B2), and the Hermi-
tian character of the Hamiltonian, such SOC term takes the
following general formula:

Hs-flip-SOC =
∑
iμν

C†
iμ↑Ci+zν↓gμν − C†

iμ↓Ci+zν↑g∗
μν

− C†
i+zμ↑Ciν↓gμν + C†

i+zμ↓Ciν↑g∗
μν, (B12)

with gμν = gνμ. This Hamiltonian is already Hermitian.
Then the Ĉ1

3 -rotation symmetry represented by Eq. (B4)
leads to the equation

D(1)†gD(1) = ge
2iπ

3 . (B13)

This equation can be solved as

g =
⎛
⎝ 0 iλ1 λ1

iλ1 λ2 iλ2

λ1 iλ2 −λ2

⎞
⎠, (B14)

where λ1 and λ2 are two independent coupling constants.

033050-7



LIU, LU, ZHANG, WU, FANG, AND YANG PHYSICAL REVIEW RESEARCH 2, 033050 (2020)

FIG. 5. Surface spectra obtained from (a) diagonalizing the BdG
Hamiltonian directly using a slab geometry with open boundary
condition along the z axis (the width is 200c) and periodic ones
along the x or y axis and (b) the iterative Green’s function approach
for K2Cr3As3 with SUS, respectively. The adopted �1 = 20 meV
and �2 = �3 = 40 meV are enhanced by an order of magnitude
over realistic ones to enhance the visibility. The on-site SUS SOC
λso = 10 meV.

Therefore, the symmetry-allowed NN-spin-flipping SOC
term in the A2Cr3As3 family takes the form of Eq. (B12), with
the symmetric g matrix provided by Eq. (B14).

APPENDIX C: SURFACE SPECTRUM

To calculate the surface spectrum, we first need a real-
space BCS-MF Hamiltonian. For the pairing gap function
introduced in the main text, only the k-space gap function
on the FS is provided, and thus we need a real-space pairing
potential. Actually, the pairing state in K2Cr3As3 can be
approximately generated by the following MF Hamiltonian
including only nearest-neighbor (NN) intraorbital pairing po-
tential [34]:

H = HTB + HSOC + H�,

H� =
∑

iμ

[(c†
iμ↑c†

i+zμ↓ + c†
iμ↓c†

i+zμ↑)�μ + H.c.]. (C1)

This pairing state has a weak interband pairing component and
its intraband pairing component is well consistent with that
obtained by the RPA approach. The topological invariants for
this pairing state yield exactly the same results as those of the
RPA.

In the following, we adopt two different approaches to
calculate the surface spectrum of the system described by
Eq. (C1) in the presence of SUS or Rashba SOC. In the
first approach, we directly diagonalize the Bogoliubov–de
Gennes Hamiltonian of the superconducting system using a
slab geometry with open boundary condition along the z axis
(the width is 200c) and periodic ones along the x or y axis.
In the second approach, we utilize an iterative method [55] to
obtain the surface Green’s functions of semi-infinite systems,
from which we calculate the dispersions of the surface states.
The results obtained from both approaches agree well with
each other, which exhibits the exactly flat surface spectrums
shown in Figs. 5 and 6.

FIG. 6. Surface spectra obtained from (a) diagonalizing the BdG
Hamiltonian directly using a slab geometry with open boundary
condition along the z axis (the width is 200c) and periodic ones along
the x or y axis and (b) the iterative Green’s function approach for
K2Cr3As3 in the presence of spin-flipping SOC, respectively. Panels
(c) and (d) are the zoom-in of (a) and (b). The parameters are taken
as �1 = 20 meV, �2 = �3 = 40 meV, the on-site SUS SOC λso =
10 meV, the NN-SUS SOC λso2 = 2 meV, and the NN-spin-flipping
SOC λ1 = λ2 = 2 meV.

APPENDIX D: STM

The site-dependent differential conductance dI/dV spec-
trum of the STM can be evaluated as

ρ(iz, ω) = ρ(ix, iy, iz, ω) (D1)

= −Im
∑

E

∑
μσ

∣∣〈E |C†
ix iyiz,μσ |G〉∣∣2

ω − E + i0+

= −Im
∑

E

∑
kx,ky,μσ

∣∣〈E |C†
kxkyiz,μσ

|G〉 e−i(kx ix+ky iy )√
NxNy

∣∣2

ω − E + i0+

= − 2 Im

NxNy

∑
E

∑
kx,ky,μ,m

∣∣〈E |γ †
kx,ky,m

|G〉ψ∗
izμ,m(kx, ky )

∣∣2

ω − E + i0+

= − 2 Im

NxNy

∑
kx,ky,m,μ

∣∣ψizμ,m(kx, ky)
∣∣2

ω − Em(kx, ky ) + i0+ , (D2)

where Nx, Ny are the size of the lattice along x and y directions,
Em(kx, ky ) is the mth eigenvalue of the BdG Hamiltonian
matrix for the fixed momentum (kx, ky), and ψizμ,m(kx, ky) is
the corresponding eigenvector. Note that the spectrum only
depends on iz and not on ix or iy. The coordinates iz = 1(Nz )
and iz = Nz/2 correspond to the end and the middle of the
sample, respectively.

APPENDIX E: FERMI SURFACE EVOLUTION
AND LIFSHITZ TRANSITION UPON DOPING

The FS topology of K2Cr3As3 can be drastically changed
upon slightly doping, accompanied by several Lifshitz
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FIG. 7. (a1)–(d1) Fermi surfaces of the spin-up electrons for K2Cr3As3 in the presence of the leading on-site SOC term for hole doping
with different Fermi energy Ef = 0 meV, −5 meV, −10 meV, and −15 meV. (a2)–(d2) The corresponding surface spectrum. The segment
marked red (blue) represents g = 3 (g = 2) flat bands.

transitions. As a result, the distribution of the number of topo-
logical flat surface bands will be easily engineered through
doping, which can be detected by experiments. The FSs in
both figures (Fig. 7 for hole doping and Fig. 8 for electron
doping) are the FSs of the spin-up electrons, and the FSs for

the spin-down channel can be obtained by time-reversal oper-
ation. Consistent with the topological invariant calculations in
the main text, the corresponding areas in the surface spectrum
of Figs. 7 and 8 are covered by two or three flat bands on the
surface Brillouin zone.

FIG. 8. Same as Fig. 7 but for electron doping with Fermi energy Ef = 6 meV, 14 meV, 20 meV, and 45 meV, respectively.
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