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Unified framework for the entropy production and the stochastic interaction based
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We show a relation between the entropy production in stochastic thermodynamics and the stochastic
interaction in the integrated information theory. To clarify this relation, we introduce an information-geometric
interpretation of the entropy production for a total system and the partial entropy productions for subsystems.
We show that the violation of the additivity of the entropy productions is related to the stochastic interaction.
This framework is a thermodynamic foundation of the integrated information theory. We also show that our
information-geometric formalism leads to an expression of the entropy production related to an optimization
problem minimizing the Kullback-Leibler divergence. We analytically illustrate this interpretation by using the
spin model.
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I. INTRODUCTION

Information geometry [1,2] is a differential geometric the-
ory for elucidating various results in information theory and
probability theory. Applications of information geometry have
been found in a variety of fields, including machine learning
[3], neuroscience [4], statistical physics [5,6], and thermody-
namics [7–22]. The projection theorem [23,24] plays a crucial
role in applications of information geometry. For example,
the projection theorem unifies the conventional definitions
of information measures such as the mutual information,
the transfer entropy, and several measures in the integrated
information theory [2,25,26].

The integrated information theory seeks for measures of in-
separability of networks [25–35]. Several measures have been
proposed by considering different ways of dividing networks
[25,26,34]. A possible promising measure of information inte-
gration is the stochastic interaction [29,31], which quantifies
the inseparability of stochastic dynamics in two interacting
systems.

In the field of stochastic thermodynamics [36,37], a similar
problem of inseparability takes place. For example, in the
context of Maxwell’s demon, information thermodynamic
measures of the correlation between two interacting dynamics
have been discussed [38–50]. For two interacting dynam-
ics, we introduce a measure of information thermodynamics,
namely, the partial entropy production for the subsystem

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

[42–44]. If two interacting dynamics are well separated, the
sum of the partial entropy productions for each subsystem is
equivalent to the total entropy production. This fact is known
as the additivity of the entropy productions. If two interacting
dynamics are not well separated, this additivity is generally
violated.

In this paper, we introduce a framework of stochastic ther-
modynamics based on information geometry. We introduce
several submanifolds related to backward dynamics, and the
total entropy production and the partial entropy production
can be considered to be given by the projections of the entire
system onto these submanifolds. From the inclusion property
of these submanifolds, we obtain a geometric interpretation of
the additivity of the entropy productions. This interpretation
clarifies a relation between the violation of the additivity and
the stochastic interaction. Additionally, our framework leads
to an expression of the entropy production by considering
an optimization problem to minimize the Kullback-Leibler
divergence. We analytically illustrate our results by using the
spin models.

II. THE PROJECTION THEOREM

We first introduce the projection theorem in information
geometry, which is a differential geometrical theory for the
manifold of the probability distribution [23,24]. In informa-
tion geometry, a Riemannian metric is given by the Fisher
information matrix, and a dual pair of affine connections
is defined [1]. Let pS(s) be the joint probability, where
S = {S1, . . . , SN } is the set of random variables and s =
{s1, . . . , sN } is the set of events. In information geometry, the
set of the joint probabilities is considered a manifold. A subset
of probabilities gives a submanifold M, and a probability
pS(s) corresponds to a point.
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FIG. 1. Schematic of the projection theorem. The subset of prob-
abilities gives a submanifold M, and the probability p corresponds
to a point. If M is flat, we have a unique solution q∗

S of the
optimization problem to minimize the Kullback-Leibler divergence
between the probability p and the probability qS ∈ M. The flatness
of the manifold is given by the Pythagorean theorem, and the solution
q∗

S is the projection onto the flat submanifold M.

We now consider an optimization problem to minimize the
Kullback-Leibler divergence between two probabilities pS(s)
and qS(s),

Dopt (pS||M) := minqS∈MD(pS||qS), (1)

D(pS||qS) :=
∑

s

pS(s) ln
pS(s)

qS(s)
, (2)

when qS(s) is in a submanifold M. If the submanifold M
is flat, we have the unique solution q∗

S ∈ M that satisfies
Dopt (pS||M) = D(pS||q∗

S). This unique solution q∗
S can be

interpreted as the projection from point pS onto the flat
submanifold M. In Fig. 1, we show an intuitive schematic
of the projection theorem.

This projection can be understood by considering the
Pythagorean theorem

D(pS||qS) = D(pS||q∗
S) + D(q∗

S||qS) (3)

for any probability qS on the flat submanifold M [1]. This
Pythagorean theorem can be regarded as the definition of
the flatness of a submanifold M. In information geometry,
the Pythagorean theorem holds when the geodesic connecting
pS and q∗

S is orthogonal to the dual geodesic connecting
q∗

S and qS. From the nonnegativity of the Kullback-Leibler
divergence D(q∗

S||qS) � 0, we obtain the fact that q∗
S is the

unique solution of an optimization problem,

D(pS||qS) � D(pS||q∗
S) = Dopt (pS||M). (4)

III. THE ENTROPY PRODUCTION
AND THE PROJECTION THEOREM

A. The total entropy production

We here consider a Markov process. Let Z and Z′ be
random variables of the state of a system Z at times t
and t + dt , respectively. Let pZ,Z′ (z, z′) be the joint prob-
ability of the states s = {z, z′} corresponding to random
variables S = {Z, Z′}. The transition probability is given by

T (z′, z) := pZ′|Z(z′|z), where the conditional probability is de-
fined as pZ′|Z(z′|z) := pZ′,Z(z′, z)/pZ(z) = pS(s)/[

∑
z′ pS(s)].

Because the transition probability T (z′, z) is a function of
(z′, z), we can define a new quantity T (z, z′) by replacing z
with z′. We remark that T (z′, z) is not equal to the conditional
probability pZ|Z′ (z|z′) := pS(s)/[

∑
z pS(s)].

In stochastic thermodynamics [37], the total entropy pro-
duction σZ

tot is defined as the sum of the entropy changes,

σZ
tot := σZ

sys + σZ
bath. (5)

The entropy change of the system σZ
sys is defined as the

Shannon entropy change from time t to t + dt ,

σZ
sys := H (Z′) − H (Z), (6)

where H (Z) = −∑
z pZ(z) ln pZ(z) is the Shannon entropy.

The entropy change of the heat bath σZ
bath is defined as

σZ
bath := E

[
ln

T (z′, z)

T (z, z′)

]
= E[− ln T (z, z′)] − H (Z′|Z), (7)

where the symbol E[· · · ] := ∑
s pS(s) · · · denotes the ex-

pected value and H (Z′|Z) := H (Z′, Z) − H (Z) is the condi-
tional Shannon entropy. The entropy change of the heat bath
can be regarded as the difference between the conditional
cross entropy E[− ln T (z, z′)] and the conditional Shannon
entropy. The nonnegativity of the entropy production is known
as the second law of thermodynamics. If the entropy produc-
tion is zero, the system is reversible, and the detailed bal-
ance pZ(z)T (z′, z) = pZ′ (z′)T (z, z′) holds (see Appendix A).
Hence, σZ

tot quantifies the irreversibility of the dynamics.
We show that the total entropy production can be obtained

by the projection of pS onto a submanifold, called the back-
ward manifold. The backward manifold MB is defined as the
set of probabilities qS satisfying

MB = {qS|qS(s) = qZ′ (z′)T (z, z′)}, (8)

where qZ′ (z′) = ∑
z qS(s) and T (z, z′) is defined from pS(s).

The backward manifold consists of probabilities such that
backward dynamics from Z′ to Z is equal to the transition
probability of pS. The backward manifold is uniquely deter-
mined by pS. The total entropy production of the Markov
process is given by

σZ
tot = Dopt (pS||MB), (9)

which is the first main result of this paper. This result means
that the total entropy production can be regarded as the mini-
mum length of pS to the backward manifold (see also Fig. 2).
To prove Eq. (9), we introduce the joint probability q∗

S(s) :=
pZ′ (z′)T (z, z′) ∈ MB; the entropy production is given by the
Kullback-Leibler divergence σZ

tot = D(pS||q∗
S) [51]. Because

the Pythagorean theorem

D(pS||qS) = D(pS||q∗
S) + D(q∗

S||qS) (10)

is valid for any qS ∈ MB (see Appendix A), we obtain the first
main result, Eq. (9).

B. The partial entropy production

We next consider the situation where the system Z consists
of two subsystems X and Y and random variables Z and Z′
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FIG. 2. Schematic of the total entropy production and the pro-
jection onto the backward manifold MB. The entropy production
σZ

tot is given by the minimum length from the backward manifold
Dopt (pS||MB).

are given by Z = {X ,Y } and Z′ = {X ′,Y ′}, respectively. The
transition probability of subsystem X for fixed states {y, y′} is
given by T X (z′, z) := pX ′|Y ′,Z(x′|y′, z).

The partial entropy production for subsystem X is defined
as

σX
partial := σX

sys + σX
bath − �X→Y , (11)

σX
sys = H (X ′) − H (X ), (12)

σX
bath = E

[
ln

T X (z′, z)

T X (z, z′)

]
, (13)

�X→Y = I (X ′; {Y ,Y ′}) − I (X ; {Y ,Y ′}), (14)

where I (Z; Z′) = H (Z) − H (Z|Z′) is the mutual information
between two random variables Z and Z′. The additional
term �X→Y quantifies dynamic information flow from sub-
system X to subsystem Y . Thus, the nonnegativity of the
partial entropy production can be regarded as the second
law of information thermodynamics for the subsystem σX

sys +
σX

bath � �X→Y , which implies a trade-off relation between
the entropy changes σX

sys + σX
bath and information flow �X→Y .

The partial entropy production for subsystem X quantifies
the local irreversibility of the dynamics in system X . The
partial entropy production vanishes if the dynamics in sys-
tem X are locally reversible, that is, pZ,Y ′ (z, y′)T X (z′, z) =
pZ′,Y (z′, y)T X (z, z′).

We here show that the partial entropy production can also
be derived from the projection of pS onto the local backward
manifold. The local backward manifold of system X is defined
as the set of probabilities such that

MX
LB = {qS|qS(s) = qY ,Z′ (y, z′)T X (z, z′)}, (15)

where qY ,Z′ (y, z′) = ∑
x qS(s) and T X (z, z′) is defined from

pS(s). The local backward manifold means the set of probabil-
ities such that local backward dynamics from X ′ to X is equal
to the transition probability in X of pS. The partial entropy
production of subsystem X is given by

σX
partial = Dopt

(
pS||MX

LB

)
, (16)

which is the second main result of this paper. To
prove Eq. (16), we introduce the probability qX∗

S (s) =

FIG. 3. Schematic of the partial entropy production and the
hierarchy of the entropy productions. Because the local backward
manifold includes the backward manifold, the partial entropy pro-
duction is always smaller than the total entropy production.

T X (z, z′)pY ,Z′ (y, z′) ∈ MX
LB. Because we can show the ex-

pression

σX
partial = D

(
pS||qX∗

S

)
(17)

and the Pythagorean theorem

D
(
pS||qX

S

) = D
(
pS||qX∗

S

) + D
(
qX∗

S ||qX
S

)
(18)

for any qX
S ∈ MX

LB, we obtain the second main result,
Eq. (16). If we introduce the quantities for subsystem Y
such as (T Y , σY

partial, σ
Y
sys, σ

Y
bath,�

Y→X ,MY
LB) by replacing

(X , X ′) with (Y ,Y ′), we obtain the same results, Eqs. (11)–
(19) for subsystem Y .

We note that our geometric interpretation provides the
hierarchy of the entropy productions. Because the backward
manifold is a submanifold of the local backward mani-
fold MB ⊂ MX

LB, we obtain the hierarchy Dopt (pS||MX
LB) �

Dopt (pS||MB), or, equivalently,

σX
partial � σZ

tot. (19)

This hierarchy of the entropy productions implies that the
second law of information thermodynamics always gives a
tighter bound than the second law of thermodynamics (see
also Fig. 3). Moreover, if subsystem X1 includes subsystem
X2, we obtain the hierarchy of the entropy productions

σ
X2
partial � σ

X1
partial (20)

from the inclusion property MX1
LB ⊂ MX2

LB. This hierarchy
clarifies the relation between the second laws of information
thermodynamics in complex systems.

IV. THE INTEGRATED INFORMATION THEORY
AND THE ADDITIVITY

A. The stochastic interaction in the integrated
information theory

We here introduce the stochastic interaction [29,31] as
a measure of bidirectional information flow. The stochastic
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interaction [29,31] is defined as

�SI := D(pZ,Z′ ||pX ′|Z pY ′|Z pZ). (21)

This quantity is zero if the stochastic process satisfies the bi-
partite condition CBI : pZ′|Z(z′|z) = pX ′|Z(x′|z)pY ′|Z(y′|z). The
bipartite condition CBI means that two transitions in X and Y
are statistically independent because the transition probability
T X (z′, z) = pX ′|Z(x′|z) does not depend on y′ under the bi-
partite condition. We also define the stochastic interaction for
backward dynamics as

�
†
SI := D(pZ,Z′ ||pX |Z′ pY |Z′ pZ′ ), (22)

which exactly vanishes under the backward bipartite condition
C∗

BI : pZ|Z′ (z|z′) = pX |Z′ (x|z′)pY |Z′ (y|z′).
While the stochastic interactions are measures of bidirec-

tional information flow, the dynamic information flow �X→Y

is a measure of directed information flow. �X→Y can be
decomposed into the mutual information difference �I and
the measures of directed information flow, i.e., the transfer
entropy I (X ;Y ′|Y ) [52,53] and the backward transfer entropy
I (X ′;Y |Y ′) [47],

�X→Y = �I + I (X ′;Y |Y ′) − I (X ;Y ′|Y ), (23)

�I := I (X ′;Y ′) − I (X ;Y ), (24)

where I (Z; Z′|Z′′) := H (Z|Z′′) − H (Z|Z′, Z′′) is the condi-
tional mutual information between Z and Z′ under the con-
dition Z′′. To compare the dynamic information flow with the
stochastic interaction, we consider the bidirectional informa-
tion flow by considering the sum of �X→Y and �Y→X . The
relation between the stochastic interaction and the dynamic
information flow is given by

�X→Y + �Y→X − �I = �SI − �
†
SI. (25)

B. The additivity and the stochastic interaction

We next discuss the additivity of the partial entropy pro-
ductions. We show that the violation of the additivity is
related to a measure of integrated information, i.e., stochastic
interaction. Under the bipartite condition CBI, we have the
additivity of the entropy productions up to the order O(dt2)
[43],

σZ
tot = σX

partial + σY
partial. (26)

From Eq. (26), the hierarchy equation (19) is equivalent to
the second law of information thermodynamics for subsystem
Y , that is, σY

partial � 0. If time evolutions of two systems are
strongly correlated, the assumption of the bipartite condition
is not valid, and the additivity Eq. (26) is violated. The amount
of the violation is given by the stochastic interactions and the
additional term

σZ
tot − σX

partial − σY
partial = �bath + �SI − �

†
SI, (27)

�bath := σZ
bath − σX

bath − σY
bath. (28)

The additional term �bath quantifies to what extent the addi-
tivity is violated in the heat baths. This measure �bath can be
considered a measure of information integration for thermal
systems because the entropy change does not attract much
attention in integrated information theory.

FIG. 4. Schematic of the additivity and the rectangle. Under both
bipartite conditions CBI and C∗

BI, the backward manifold is equal
to the intersection of the local backward manifolds. The additivity
of the entropy production indicates that the parallel sides of a
quadrangle (pS, qX∗

S , q∗
S, qY∗

S ) have the same length.

We show a geometrical condition of this additivity under
the bipartite conditions CBI and C∗

BI. Both bipartite conditions
imply the relation between three manifolds,

MB = MX
LB ∩ MY

LB. (29)

Because Eq. (26) can be written as

D(pS||q∗
S) = D

(
pS||qX∗

S

) + D
(
pS||qY∗

S

)
, (30)

we obtain the relations

D
(
pS||qX∗

S

) = D
(
qY∗

S ||q∗
S

)
, (31)

D
(
pS||qY∗

S

) = D
(
qX∗

S ||q∗
S

)
(32)

from the Pythagorean theorem Eq. (30). Equations (31) and
(32) imply that the parallel sides of a quadrangle have the
same length. Therefore, the additivity Eq. (26) can be under-
stood from the rectangle condition in information geometry
(Fig. 4). The measures of information integration �bath +
�SI − �

†
SI quantify a distortion of this rectangle.

V. EXAMPLES

A. The projection theorem for a single-spin model

We illustrate the main result, Eq. (9), using the single-spin
model (see Appendix B). Let Z = {S1} and Z′ = {S2} be ran-
dom variables of the spin at times t and t + dt , respectively.
Each spin has the binary state si ∈ {0, 1}. The joint probability
is generally given by the exponential family

pθ̂
S(s1, s2) = exp

⎡
⎣∑

i

siθ̂
i +

∑
i< j

sis j θ̂
i j − φS(θ̂)

⎤
⎦, (33)

where θ̂ = {θ̂1, θ̂2, θ̂12} is the set of parameters and φS(θ̂)
is the normalization factor that satisfies

∑
s pθ̂

S(s) = 1. The
number of the elements in θ̂ is (22 − 1) = 3, so the set of
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probabilities pθ̂
S can be represented by a three-dimensional

submanifold. The backward manifold MB is given by the
constraint of the parameters

MB = {
pθ

S|θ1 = θ̂2, θ12 = ˆθ12
}
. (34)

Because the free parameter is θ2, the backward manifold for
the single-spin model is one-dimensional.

Our result (9) can be rewritten as the optimization problem
of θ2,

σZ
tot = minθ2 D

(
pθ̂

S||pθ
S

)∣∣
θ1=θ̂2,θ12= ˆθ12 (35)

= E[s1](θ̂1 − θ̂2) − φS(θ̂1, θ̂2, θ̂12)

+ minθ2{E[s2](θ̂2 − θ2) + φS(θ̂2, θ2, θ̂12)}. (36)

This problem can be numerically solved by using a conven-
tional optimization tool.

B. The projection theorem for a two-spin model

We next illustrate our results using the two-spin model (see
Appendix C). Let Z = {S1, S2} and Z′ = {S3, S4} be random
variables of two spins at times t and t + dt , respectively. The
spin has the binary state si ∈ {0, 1}. We assume the situation
where both bipartite conditions CBI and C∗

BI hold. Under the
bipartite conditions, the joint probability of the spin state is
generally given by the exponential family

pθ̂
S(s) = exp

[∑
i

siθ̂
i + s1s3θ̂

13 + s1s4θ̂
14

+ s2s3θ̂
23 + s2s4θ̂

24 − φS(θ̂)

]
. (37)

The backward manifold is given by the constraint of the
parameters

MB = {
pθ

S|θX = θ̂
X

, θY = θ̂
Y}

, (38)

θX = (θ1, θ13, θ14), θ̂
X = (θ̂3, θ̂13, θ̂23), (39)

θY = (θ2, θ24, θ23), θ̂
Y = (θ̂4, θ̂24, θ̂14), (40)

where a coordinate θ represents a probability on the backward
manifold. Because free parameters are {θ3, θ4}, the backward
manifold for the two-spin model is two-dimensional. The
condition of the local backward manifolds is also given by
the linear constraint of θ,

MX
LB = {

pθ
S|θX = θ̂

X }
, MY

LB = {
pθ

S|θY = θ̂
Y}

. (41)

Because the free parameters are {θ3, θ4, θY} ({θ3, θ4, θX }),
the local backward manifold MX

LB (MX
LB) is five-dimensional.

The intersection of these two local backward manifolds is the
backward manifold MB = MX

LB ∩ MY
LB. The total entropy

production and the partial entropy productions are obtained
from the optimization problems

σZ
tot =minθ3,θ4 D

(
pθ̂

S||pθ
S

)∣∣
θX =θ̂

X
,θY=θ̂

Y , (42)

σX
partial =minθ3,θ4,θY D

(
pθ̂

S||pθ
S

)∣∣
θX =θ̂

X , (43)

σY
partial =minθ3,θ4,θX D

(
pθ̂

S||pθ
S

)∣∣
θY=θ̂

Y . (44)

Without the bipartite conditions CBI and C∗
BI, the joint

probability is generally given by

pθ̂
S(s) = exp

⎡
⎣∑

i

siθ̂
i +

∑
i< j

sis j θ̂
i j +

∑
i< j<k

sis jsk θ̂
i jk

+
∑

i< j<k<l

sis jsksl θ̂
i jkl − φS(θ̂)

⎤
⎦. (45)

If the vector (θ̂12, θ̂34, θ̂123, θ̂134, θ̂124, θ̂234, θ̂1234) is nonzero,
the bipartite conditions are violated, and measures of informa-
tion integration �SI, �

†
SI, and �bath have nonzero values.

VI. CONCLUSION AND DISCUSSION

By applying the information-geometric framework, we
showed the relation between the entropy production and the
stochastic interaction. Our result could be the foundation of
the integrated information theory based on the physical law.
We may discuss the thermodynamic cost of the information
integration based on this framework.

Because the second law of information thermodynam-
ics is essential for biochemical information processing
[45,54–59], this work would give geometric insight into
biochemical information processing. This work provides
the physical validity of the integrated information theory
[25,26,30,32] for biochemical information processing.

From the viewpoint of thermodynamics, our results are
complementary to other geometric expressions of the second
law, such as the principle of Carathèodory [60] and the
maximum entropy thermodynamics [61,62]. Our framework
would be applicable to other generalizations of the entropy
production, for example, thermodynamics under feedback
control by selecting the backward manifolds for feedback
control (see Appendix D).
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APPENDIX A: THE SECOND LAW OF
THERMODYNAMICS

FOR THE MASTER EQUATION

We here review the second law of thermodynamics in
stochastic thermodynamics. We start with the master equation

d

dt
p(z′; t )=

∑
z

[W (z → z′; t )p(z; t ) − W (z′ → z; t )p(z′; t )],

(A1)
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where p(z; t ) is the probability of state z at time t and W (z →
z′; t ) is the transition rate from state z to state z′ at time t .
In the notation of this paper, the probability of z is given by
pZ(z) = p(z; t ). From the master equation (A1), we obtain the
probability at time t + dt ,

p(z′; t + dt ) =
∑

z

{W (z → z′; t )p(z; t )dt

+ [1 − W (z′ → z; t )dt]p(z′; t )}. (A2)

In the notation of the main text, pZ(z) and pZ′ (z′) are given by
pZ(z) = p(z; t ) and pZ′ (z′) = p(z′; t + dt ), respectively. We
also obtain the relation between pZ and pZ′ as

pZ′ (z′) = p(z′; t ) + O(dt ) = pZ(z′) + O(dt ). (A3)

The transition probability T (z′, z) is given by

T (z′, z) =
{

W (z → z′; t )dt (z �= z′),
1 − ∑

z �=z′ W (z′ → z; t )dt (z = z′). (A4)

Here, we consider the detailed balance. The condition of
the detailed balance is given by

W (z → z′; t )p(z; t ) = W (z′ → z; t )p(z′; t ) (A5)

for any z and z′. This condition is valid if the system is in
equilibrium. By using the transition probability Eq. (A4), we
obtain another expression of the detailed balance condition
(A5) as

T (z′, z)pZ(z) = T (z, z′)pZ′ (z′), (A6)

where we used W (z′ → z; t )p(z′; t )dt = T (z, z′)pZ(z′) =
T (z, z′)pZ′ (z′) + O(dt2). Therefore, the detailed balance con-
dition (A5) implies the reversibility of dynamics in the transi-
tion from t to t + dt . From the identity by Bayes’s rule

pZ|Z′ (z|z′) = T (z′, z)
pZ(z)

pZ′ (z′)
, (A7)

the detailed balance condition (A5) can be rewritten as

T (z, z′) = pZ|Z′ (z|z′). (A8)

Next, we discuss the second law of thermodynamics. For
the master equation, the total entropy production ratio σZ

tot/dt
is defined as

σZ
tot

dt
=

∑
z,z′

W (z → z′; t )p(z; t ) ln
W (z → z′; t )p(z; t )

W (z′ → z; t )p(z′; t )
. (A9)

If the detailed balance condition is valid, the entropy pro-
duction vanishes, σZ

tot = 0. By using the transition probability
T (z′|z), we obtain another expression of the total entropy
production

σZ
tot =

∑
z,z′|z �=z′

T (z′, z)pZ(z) ln
T (z′, z)pZ(z)

T (z, z′)pZ′ (z′)
+ O(dt2) (A10)

=
∑
z,z′

T (z′, z)pZ(z) ln
T (z′, z)pZ(z)

T (z, z′)pZ′ (z′)
. (A11)

To introduce two probabilities, pS(s) = T (z′, z)pZ(z) and
q∗

S(s) = T (z, z′)pZ′ (z′), with S = {Z, Z′} and s = {z, z′}, this
expression of the total entropy production (A11) can be

regarded as the Kullback-Leibler divergence between two
probabilities,

σZ
tot =

∑
s

pS(s) ln
pS(s)

q∗
S(s)

(A12)

= D(pS||q∗
S). (A13)

From the nonnegativity of the Kullback-Leibler divergence,
we obtain the second law of thermodynamics for the master
equation,

σZ
tot � 0. (A14)

APPENDIX B: THE PROJECTION THEOREM FOR A
SINGLE-SPIN MODEL

We here show a detailed calculation of the single-spin
model. The spin state at time t is z = s1 ∈ {0, 1}, and the spin
state at time t + dt is z′ = s2 ∈ {0, 1}. We here start with the
master equation

d

dt
p(s′; t )=

∑
s

[W (s → s′; t )p(s; t ) − W (s′ → s; t )p(s′; t )],

(B1)

where p(s; t ) is the probability of state s at time t and W (s →
s′; t ) is the transition rate from s to s′ at time t . The transition
probability T (s2, s1) is given by

T (s2, s1) =

⎧⎪⎨
⎪⎩

1 − W (0 → 1; t )dt (s1 = 0, s2 = 0),
W (0 → 1; t )dt (s1 = 0, s2 = 1),
W (1 → 0; t )dt (s1 = 1, s2 = 0),
1 − W (1 → 0; t )dt (s1 = 1, s2 = 1).

(B2)

The joint probability pS(s) is given by

pS(s) = T (s2, s1)p(s1; t ) (B3)

=

⎧⎪⎨
⎪⎩

[1 − W (0 → 1; t )dt]p(0; t ) (s1 = 0, s2 = 0),
W (0 → 1; t )dt p(0; t ) (s1 = 0, s2 = 1),
W (1 → 0; t )dt[1 − p(0; t )] (s1 = 1, s2 = 0),
[1 − W (1 → 0; t )dt][1 − p(0; t )] (s1 = 1, s2 = 1).

(B4)

Here we introduce the joint probability pθ̂
S(s) as the exponen-

tial family

pθ̂
S(s) = eθ̂1s1+θ̂2s2+θ̂12s1s2−φS(θ̂1,θ̂2,θ̂12 ), (B5)

φS(θ̂1, θ̂2, θ̂12) = ln
[
1 + eθ̂1 + eθ̂2 + eθ̂1+θ̂2+θ̂12]

, (B6)

which implies

pθ̂
S(s) =

⎧⎪⎪⎨
⎪⎪⎩

e−φS(θ̂1,θ̂2,θ̂12 ) (s1 = 0, s2 = 0),
eθ̂2−φS(θ̂1,θ̂2,θ̂12 ) (s1 = 0, s2 = 1),
eθ̂1−φS(θ̂1,θ̂2,θ̂12 ) (s1 = 1, s2 = 0),
eθ̂1+θ̂2+θ̂12−φS(θ̂1,θ̂2,θ̂12 ) (s1 = 1, s2 = 1).

(B7)

The transition probability T (s2, s1) = pθ̂
S(s)/[

∑
s2

pθ̂
S(s)] is

033048-6
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given by

T (s2, s1) = eθ̂2s2+θ̂12s1s2−φS2 |S1 (s1|θ̂2,θ̂12 ),

φS2|S1 (s1|θ̂2, θ̂12) = ln
[
1 + eθ̂2+θ̂12s1

]
. (B8)

Because of one-to-one correspondence, we identify pS(s) with
pθ̂

S(s). From Eqs. (B4) and (B7), we obtain the relation be-
tween (θ̂1, θ̂2, θ̂12) and (W (0 → 1; t ),W (1 → 0; t ), p(0; t ))
as

φS(θ̂1, θ̂2, θ̂12) = ln
1

pS(0, 0)

= − ln{[1 − W (0 → 1; t )dt]p(0; t )}, (B9)

θ̂1 = φS(θ̂1, θ̂2, θ̂12) + ln{W (1 → 0; t )dt[1 − p(0; t )]}

= ln
pS(1, 0)

pS(0, 0)

= ln
W (1 → 0; t )dt[1 − p(0; t )]

[1 − W (0 → 1; t )dt]p(0; t )
, (B10)

θ̂2 = φS(θ̂1, θ̂2, θ̂12) + ln[W (0 → 1; t )dt p(0; t )]

= ln
pS(0, 1)

pS(0, 0)

= ln
W (0 → 1; t )dt

1 − W (0 → 1; t )dt
, (B11)

θ̂12 = φS(θ̂1, θ̂2, θ̂12) − θ̂1 − θ̂2

+ ln{[1 − W (1 → 0; t )dt][1 − p(0; t )]}

= ln
pS(0, 0)pS(1, 1)

pS(0, 1)pS(1, 0)

= ln
[1 − W (0 → 1; t )dt][1 − W (1 → 0; t )dt]

[W (0 → 1; t )dt][W (1 → 0; t )dt]
. (B12)

The backward manifold is defined as

MB = {qS|qS(s) = qS2 (s2)T (s1, s2)}. (B13)

If we use an expression of the exponential family for qS(s) =
pθ

S(s), the reversible manifold is given by

MB = {
pθ

S(s)|θ1 = θ̂2, θ12 = θ̂12
}

(B14)

because the condition qS(s) = qS2 (s2)T (s1|s2) can be written
as

eθ1s1+θ12s1s2−φS1 |S2 (s2|θ1,θ12 ) = eθ̂2s1+θ̂12s2s1−φS2 |S1 (s2|θ̂2,θ̂12 ), (B15)

φS1|S2 (s1|θ1, θ12) = ln[1 + eθ1+θ12s1 ]. (B16)

We obtain the following Pythagorean theorem for any qS ∈
MB:

D(pS||qS) = D(pS||q∗
S) + D(q∗

S||qS),

q∗
S(s) = eθ̂2s1+θ2∗s2+θ̂12s1s2−φS(θ̂2,θ2∗,θ̂12 ), (B17)

with the constraint ∑
s1

q∗
S(s) =

∑
s1

pS(s). (B18)

In our main result, the total entropy production is given by the
following optimization problem:

σZ
tot = Dopt (pS||MB) = D(pS||q∗

S). (B19)

By using the expression by (θ1, θ2, θ12), this optimization
problem can be written as

σZ
tot = minqS∈MB D(pS||qS) (B20)

= E[s1](θ̂1 − θ̂2) − φS(θ̂1, θ̂2, θ̂12)

+ minθ2{E[s2](θ̂2 − θ2) + φS(θ̂2, θ2, θ̂12)} (B21)

= E[s1](θ̂1 − θ̂2) + E[s2](θ̂2 − θ2∗)

−φS(θ̂1, θ̂2∗, θ̂12) + φS(θ̂2, θ2∗, θ̂12), (B22)

where E denotes the expected value E[· · · ] = ∑
s pS(s) · · · .

The constraint (B18) is calculated as

e(θ̂2−θ2∗ )s2−φS(θ̂1,θ̂2,θ̂12 )+φS(θ̂2,θ2∗,θ̂12 )

= expφS1 |S2 (s2|θ̂2,θ̂12 )−φS1 |S2 (s2|θ̂1,θ̂12 ) . (B23)

Under the constraint (B23), the optimization problem (B22) is
calculated as

σZ
tot =E[s1(θ̂1 − θ̂2) + s2(θ̂2 − θ2∗)]

− E[φS(θ̂1, θ̂2, θ̂12) + φS(θ̂2, θ2∗, θ̂12)]

=E[s1(θ̂1 − θ̂2)+φS1|S2 (s2|θ̂2, θ̂12) − φS1|S2 (s2|θ̂1, θ̂12)].
(B24)

We can check the equivalence between Eq. (B24) and the
original definition of the total entropy production as follows:

σZ
tot =

∑
s

T (s2, s1)pS1 (s1) ln
T (s2, s1)pS1 (s1)

T (s1, s2)pS2 (s2)

= E

[
ln

T (s2, s1)pS1 (s1)

T (s1|s2)pS2 (s2)

]

= E

[
ln

pS1|S2 (s1|s2)

exp[θ̂2s1 + θ̂12s1s2 − φS2|S1 (s2|θ̂2, θ̂12)]

]

= E

[
ln

exp[θ̂1s1 + θ̂12s1s2 − φS1|S2 (s2|θ̂2, θ̂12)]

exp[θ̂2s1 + θ̂12s1s2 − φS2|S1 (s2|θ̂2, θ̂12)]

]

= E[s1(θ̂1 − θ̂2)+φS1|S2 (s2|θ̂2, θ̂12) − φS1|S2 (s2|θ̂1, θ̂12)],
(B25)

where we used φS2|S1 (s2|θ̂2, θ̂12) = φS1|S2 (s2|θ̂2, θ̂12).

APPENDIX C: THE PROJECTION THEOREM FOR A
TWO-SPIN MODEL

We start with the joint distribution

pθ̂
S(s) = exp

⎡
⎣∑

i

siθ̂
i +

∑
i< j

sis j θ̂
i j +

∑
i< j<k

sis jsk θ̂
i jk

+
∑

i< j<k<l

sis jsksl θ̂
i jkl − φS(θ̂)

⎤
⎦, (C1)
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where s = (s1, s2, s3, s4) = (x, y, x′, y′) is the spin notation,
with si ∈ {0, 1}, and φS(θ̂) is the normalization constant that
satisfies

∑
s pθ̂

S(s) = 1.
We consider both bipartite conditions CBI and C∗

BI.
We here compare pθ̂

X ′|Z(x′|z) = ∑
s4

pθ̂
S(s)/[

∑
s3,s4

pθ̂
S(s)] with

pθ̂
X ′|Z,Y ′ (x′|z, y′) = pθ̂

S(s)/[
∑

s3
pθ̂

S(s)]. The conditional proba-

bility pθ̂
X ′|Z(x′|z) is calculated as

pθ̂
X ′|Z(x′|z) = es3 θ̂

3+s1s3 θ̂
13+s2s3 θ̂

23+s1s2s3 θ̂
123−φX ′ |Z (s1,s2|θ̂), (C2)

φX ′|Z(s1, s2|θ̂) := ln
[
eθ̂3+s1 θ̂

13+s2 θ̂
23+s1s2 θ̂

123 + 1
]
. (C3)

The conditional probability pθ̂
X ′|Z,Y ′ (x′|z, y′) is calculated as

pθ̂
X ′|Z,Y ′ (x′|z, y′)

= exp[s3θ̂
3 + s1s3θ̂

13 + s2s3θ̂
23 + s3s4θ̂

34 + s1s2s3θ̂
123

+ s1s3s4θ̂
134 + s2s3s4θ̂

234 + s1s2s3s4θ̂
1234

− φX ′|Z,Y ′ (s1, s2, s4|θ̂)], (C4)

φX ′|Z,Y ′ (s1, s2, s4|θ̂)

:= ln[exp(θ̂3 + s1θ̂
13 + s2θ̂

23 + s4θ̂
34 + s1s2θ̂

123

+ s1s4θ̂
134 + s2s4θ̂

234 + s1s2s4θ̂
1234) + 1]. (C5)

From Eqs. (C3) and (C5), we obtain the condition of CBI :
pθ̂

X ′|Z,Y ′ = pθ̂
X ′|Z as

CBI : θ̂34 = θ̂134 = θ̂234 = θ̂1234 = 0. (C6)

In the same way, we also obtain the condition of C∗
BI as

C∗
BI : θ̂12 = θ̂123 = θ̂124 = θ̂1234 = 0. (C7)

To clarify the relation between CBI and C∗
BI, we can consider

the permutation (α(1), α(2), α(3), α(4)) = (3, 4, 1, 2). The
condition of C∗

BI is given by the condition of CBI with the
permutation α,

C∗
BI : θ̂ α(3)α(4) = θ̂ α(3)α(4)α(1) = θ̂ α(3)α(4)α(2)

= θ̂ α(3)α(4)α(1)α(2) = 0. (C8)

Next, we discuss the backward manifold MB. The transi-
tion probability T (z′, z) = pθ̂

Z′|Z(z′|z) = pθ̂
S(s)/[

∑
s3,s4

pθ̂
S(s)]

is calculated as

T (z′, z) = exp

[
s3θ̂

3 + s4θ̂
4 +

∑
i<4

sis4θ̂
i4 +

∑
i<3

sis3θ̂
i3

+
∑

i< j<k

sis jsk θ̂
i jk +

∑
i< j<k<l

sis jsksl θ̂
i jkl

− φZ′|Z(s1, s2|θ̂)

]
, (C9)

φZ′|Z(s1, s2|θ̂)

:= ln[exp(θ̂3 + θ̂4 + s1θ̂
14 + s2θ̂

24 + θ̂34 + s1θ̂
13 + s2θ̂

23

+ s1s2θ̂
123 + s1s2θ̂

124 + s1θ̂
134 + s2θ̂

234 + s1s2θ̂
1234)

+ exp(θ̂3 + s1θ̂
13 + s2θ̂

23 + s1s2θ̂
123)

+ exp(θ̂4 + s1θ̂
14 + s2θ̂

24 + s1s2θ̂
124) + 1]. (C10)

The conditional probability pθ̂
Z|Z′ (z|z′) = pθ̂

S(s)/[
∑

s1,s2
pθ̂

S(s)]
is also calculated as

pθ̂
Z|Z′ (z|z′)

= exp

[
s1θ̂

1 + s2θ̂
2 +

∑
1<i

s1siθ̂
1i +

∑
2<i

s2siθ̂
2i

+
∑

i< j<k

sis jsk θ̂
i jk +

∑
i< j<k<l

sis jsksl θ̂
i jkl −φZ|Z′ (s3, s4|θ̂)

⎤
⎦,

× φZ|Z′ (s3, s4|θ̂)

:= ln[exp(θ̂1 + θ̂2 + s3θ̂
23 + s4θ̂

24 + θ̂12 + s3θ̂
13 + s4θ̂

14

+ s3s4θ̂
134 + s3s4θ̂

234 + s3θ̂
123 + s4θ̂

124 + s3s4θ̂
1234)

+ exp(θ̂1 + s3θ̂
13 + s4θ̂

14 + s3s4θ̂
134)

+ exp(θ̂2 + s3θ̂
23 + s4θ̂

24 + s3s4θ̂
234 + s3θ̂

123) + 1].
(C11)

The backward manifold is defined as

MB = {
pθ

S(s)|pθ
S(s) = pθ

Z′ (z′)T (z, z′)
}
, (C12)

where pθ
Z′ (z′) = ∑

z pθ
S(s). Equations (C10) and (C11) yield

MB = {
pθ̂

S|θ1 = θ̂3, θ2 = θ̂4, θ23 = θ̂14, θ24 = θ̂24, θ12

= θ̂34,

θ13 = θ̂13, θ14 = θ̂23, θ134 = θ̂123, θ234 = θ̂124,

θ123 = θ̂134, θ124 = θ̂234, θ1234 = θ̂1234
}
. (C13)

Under both bipartite conditions CBI and C∗
BI, the joint proba-

bility is given by

pBI θ̂
S = pθ̂

S

∣∣
θ̂34=θ̂134=θ̂234=θ̂12=θ̂123=θ̂124=θ̂1234=0. (C14)

For this distribution pBI θ̂
S, the condition of the backward

manifold is given by

MB = {
pBIθ

S

∣∣θ1 = θ̂3, θ2 = θ̂4, θ23 = θ̂14, θ24 = θ̂24,

θ13 = θ̂13, θ14 = θ̂23
}
. (C15)

Next, we discuss the local backward manifold MX
LB. Then

the transition probability T X (z′, z) = pθ
X ′|Z,Y ′ (x′|z) is given

by Eq. (C5). The conditional probability pθ̂
X |Z′,Y (x|z′, y) =

pθ̂
S(s)/[

∑
s1

pθ̂
S(s)] is calculated as

pθ̂
X |Z′,Y (x|z′, y)

= exp[s1θ̂
1 + s1s2θ̂

12 + s1s3θ̂
13 + s1s4θ̂

14

+ s1s2s3θ̂
123 + s1s2s4θ̂

124 + s1s3s4θ̂
134

+ s1s2s3s4θ̂
1234 − φX |Z′,Y (s2, s3, s4|θ̂)], (C16)

φX |Z′,Y (s2, s3, s4|θ̂)

:= ln[exp(θ̂1 + s2θ̂
12 + s3θ̂

13 + s4θ̂
14 + s2s3θ̂

123

+ s2s4θ̂
124 + s3s4θ̂

134 + s2s3s4θ̂
1234) + 1]. (C17)
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The local backward manifold is defined as

MX
LB = {

pθ
S|pθ

S(s) = pθ
Z′,Y (z′, y)T X (z, z′)

}
, (C18)

where pθ
Z′,Y (z′, y) = ∑

s1
pθ

S(s). Equations (C5) and (C17)
yield

MX
LB = {

pθ
S

∣∣θ1 = θ̂3, θ12 = θ̂34, θ13 = θ̂13, θ14 = θ̂23,

θ123 = θ̂134, θ124 = θ̂234, θ134 = θ̂123,

θ234 = θ̂124, θ1234 = θ̂1234
}
. (C19)

In the same way, we obtain the condition of MY
LB,

MY
LB = {

pθ
S

∣∣θ2 = θ̂4, θ12 = θ̂34, θ23 = θ̂14,

θ24 = θ̂24, θ123 = θ̂134, θ124 = θ̂234,

θ134 = θ̂123, θ234 = θ̂124, θ1234 = θ̂1234}. (C20)

To clarify the relation between MX
LR and MY

LR, we
can consider the permutation (α′(1), α′(2), α′(3), α′(4)) =
(2, 1, 4, 3). The condition of MY

LR is given by the condition
of MX

LR with the permutation α′,

MY
LB = {

pθ
S

∣∣θα′(1) = θ̂ α′(3), θα′(1)α′(2) = θ̂ α′(3)α′(4),

θα′(1)α′(3) = θ̂ α′(1)α′(3), θα′(1)α′(4) = θ̂ α′(2)α′(3),

θα′(1)α′(2)α′(3) = θ̂ α′(1)α′(3)α′(4),

θα′(1)α′(2)α′(4) = θ̂ α′(2)α′(3)α′(4),

θα′(1)α′(3)α′(4) = θ̂ α′(1)α′(2)α′(3),

θα′(2)α′(3)α′(4) = θ̂ α′(1)α′(2)α′(4),

θα′(1)α′(2)α′(3)α′(4) = θ̂ α′(1)α′(2)α′(3)α′(4)
}
. (C21)

For this distribution pBI θ̂
S under both bipartite conditions, the

local backward manifolds are given by

MX
LB = {

pBIθ
S

∣∣θ1 = θ̂3, θ13 = θ̂13, θ14 = θ̂23
}
, (C22)

MY
LB = {

pBIθ
S

∣∣θ2 = θ̂4, θ24 = θ̂24, θ23 = θ̂14
}
. (C23)

APPENDIX D: THE CASE OF FEEDBACK CONTROL

We consider the situation where the time evolution of
system X depends on the fixed memory M. This situation
is well known as the problem of Maxwell’s demon under
feedback control. We show that the partial entropy production
for this case can also be discussed in our unified framework.

Let X and X ′ be random variables of system X at times t
and t + dt , respectively. Let M be a random variable of the
memory M. We denote the set of random variables as S =
{X , X ′, M} and the set of states as s = {x, x′, m}. The joint
probability of S is given by pS(s). We consider the situation

where the transition probability of X depends on the state of
memory,

pX ′|X ,M (x′|x, m) =: T XM(x′, m, x), (D1)

where pX ′|X ,M (x′|x, m) = pS(s)/[
∑

x′ pS(s)]. We here intro-
duce the feedback backward manifold such that

MFB = {qS|qS(s) = T XM(x, m, x′)qX ′M (x′, m)}, (D2)

where qX ′M (x′, m) = ∑
x qS(s). The feedback reversible man-

ifold is equivalent to the reversible manifold MB = MFB

if we consider the time evolution from Z = {X , M} to Z′ =
{X ′, M}. If the joint probability qS is on this manifold MFB,
the dynamics of X are reversible in time under feedback
control. If we introduce the joint probability qXM∗

S (s) =
T XM(x, m, x′)pX ′,M (x′, m), the following Pythagorean the-
orem is valid for any qS ∈ MFR:

D(pS||qS) = D
(
pS||qXM∗

S

) + D
(
qXM∗

S ||qS
)
. (D3)

Thus, the feedback backward manifold is flat, and the solution
of the optimization problem Dopt (pS||MFB) is given by

Dopt (pS||MFB) := minqS∈MFB D(pS||qS) (D4)

= D
(
pS||qXM∗

S

)
. (D5)

We here derive the result that the partial entropy production
under feedback control σX

feedback is given by the optimization
problem

σX
feedback = Dopt (pS||MFB). (D6)

The partial entropy production under feedback control
σX

feedback is defined as

σX
feedback := σX

sys + σX
bath − �I, (D7)

σX
sys := H (X ′) − H (X ), (D8)

σX
bath := E

[
ln

T XM(x′, m, x)

T XM(x, m, x′)

]
, (D9)

�I := I (X ′; M) − I (X ; M), (D10)

where σX
sys is the entropy change of system X , σX

bath is the
entropy change of the heat bath attached to system X , and
�I is the mutual information change between system X and
the memory M. To show the relation

σX
feedback = D

(
pS||qXM∗

S

)
, (D11)

we obtain the result (D6). The second law of information
thermodynamics under feedback control is given by the non-
negativity of σX

feedback,

σX
sys + σX

bath � �I. (D12)

This inequality implies a trade-off relation between the en-
tropy changes in system X and the information between
system X and the memory M.
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