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The periodic driving of a quantum system can enable new topological phases without analogs in static systems.
This provides a route towards preparing nonequilibrium quantum phases rooted in the nonequilibrium nature by
periodic driving engineering. Motivated by the ongoing considerable interest in topological semimetals, we are
interested in the novel topological phases in the periodically driven topological semimetals without a static
counterpart. We propose to design nonequilibrium topological semimetals in the regime of a weakly driving
field where the spectrum width has the same magnitude as the driving frequency. We identify two types of
nonequilibrium Weyl semimetals (i.e., Floquet and anomalous Floquet Weyl semimetals) that do not exhibit
analogs in equilibrium. The proposed setup is shown to be experimentally feasible using the state-of-the-art
techniques used to control ultracold atoms in optical lattices.
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I. INTRODUCTION

At the heart of modern physics are the discovery and con-
trol of new phases of matter, highlighted by the foundational
aspects of our understanding of periodic driving, which pro-
vides wholly new types of topological phases without analogs
in equilibrium [1–15]. A paradigmatic example is given by the
periodically driven two-dimensional Dirac model [2,4,5,16–
19], where robust chiral edge states can appear even though
the Chern numbers of all bulk Floquet bands are zero. A
system exhibiting this anomalous behavior has been realized
recently using microwave photonic networks [20]. Heretofore,
such investigations of periodically driving a quantum system
were largely restricted to static systems that are topological
insulators. Meanwhile, considerable effort has been devoted to
the investigation of various intriguing phenomena associated
with Weyl points such as the Fermi arc surface states [21–24]
and chiral anomaly [25–32]. Unlike topological insulators,
whose gapless excitations are always at the sample boundary,
topological semimetals host gapless fermions in the bulk. An
outstanding challenge is to realize novel nonequilibrium topo-
logical phases in periodically driven topological semimetals
without analogs in static systems. Another challenge is to ex-
tend the periodic driving from an insulator to semimetals with
the emphasis on capturing the gapless nature of the energy
spectra of the static counterpart [33–40]. These considerations
motivate the search for the novel scenarios of periodically
driven topological Weyl semimetals.
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In this work we uncover and analyze two different types of
nonequilibrium Weyl semimetals, i.e., Floquet and anomalous
Floquet Weyl semimetals, which do not exhibit analogs in
equilibrium. The former is referred to as the case of period-
ically driven systems, which are designed to be Floquet Weyl
semimetals with the nontrivial topological phases, although
the equilibrium counterpart is topologically trivial. In the
latter case, we demonstrate the topological appearance in the
stroboscopic dynamics of a periodically driven system.

We stress that the nonequilibrium Weyl semimetal induced
in the intermediate-frequency limit as realized in this work
relies on the unique topology of Floquet operators in the time-
frequency domain and cannot appear in static systems. Our
approach goes conceptually beyond the strength of the effec-
tive Hamiltonian based on high-frequency driving models by
considering the full quasienergy spectrum without involving
adiabatic projections and is an alternative way to demonstrate
nontrivial topological phases without static analogs. Further-
more, we propose that it is highly possible to realize our
results in the context of ultracold atoms in optical lattices.
Hence our work is in contrast to those in Refs. [37–39]. There
the focus is on how to use Floquet driving to induce a de-
sired Floquet Hamiltonian describing Weyl semimetals whose
topological characterizations are analogous to static systems.
More specifically, Ref. [37] demonstrated how femtosecond
laser pulses with circularly polarized light can be used to
induce, from a prototypical three-dimensional Dirac material,
a Floquet Hamiltonian that represents a Weyl semimetal,
Dirac semimetal, or topological insulator. Reference [38]
presented a study of the circularly polarized light-induced
Floquet states in type-II line-node semimetals, while Ref. [39]
proposed that a Floquet Weyl semimetal can be induced in
three-dimensional topological insulators. Finally, Ref. [40]
presented a classification of different types of photoinduced
Weyl points characterized by the Chern number. Instead,
along the lines of Ref. [5], our work focuses on topological
phases unique to Floquet driving systems.
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The structure of the paper is as follows. In Sec. II we
present our theoretical model, based on which we solve for
the topological phases without analogs in static systems. We
identify two kinds of nonequilibrium quantum phases, i.e.,
Floquet and anomalous Floquet Weyl semimetals. In Sec. III
we present a comprehensive study of both nonequilibrium
topological Weyl phases using numerical methods, providing
an understanding in terms of the Chern number. In Sec. IV we
discuss how to experimentally prepare the Hamiltonian sup-
porting the Weyl phases predicted in this work and conclude
with a summary.

II. FLOQUET AND ANOMALOUS
FLOQUET-WEYL SEMIMETALS

As the paradigmatic example of the two-band Hamiltonian
on a square lattice hosting the topological Weyl semimetals
[41] (WSMs) we consider its time-dependent lattice version

H (k) = d(k) · σ + �0σz cos ωt, (1)

where d = (2ts sin kx, 2ts sin ky, m − 2t0(cos kx + cos ky +
cos kz )) and σ = (σx, σy, σz ) are the 2 × 2 Pauli matrices. The
ts and t0 of the Hamiltonian (1) denote the hopping amplitudes
of spin-flipping hopping in the x-y plane and spin-preserving
hopping along all three dimensions, respectively, and m
represents the Zeeman field for tuning WSM states. The last
term in Hamiltonian (1) denotes the periodically driven term.

Without the periodically driven term, i.e., �0 = 0 in
Hamiltonian (1), two Weyl points (WPs) exist, which are
located at the points (0, 0,± arccos[(m − 4t0)/2t0]) for 2t0 <

m < 6t0. To characterize the topological properties of WSMs,
treating kz as an effective parameter and reducing the origi-
nal three-dimensional system to kz-dependent effective two-
dimensional subsystems is necessary. For a given kz �= kc,
the bulk bands are fully gapped and the slice Chern num-
ber can be well defined with n = (dx, dy, dz )/|d(k)| as
C(kz ) = (1/4π )

∫
d2k n · ∂kx n × ∂ky n = 1 for 2t0 < m < 6t0

[see Figs. 1(b) and 1(d)] while C(kz ) = 0 [see Figs. 1(a) and
1(c)]. The hybrid Wannier center is defined as 〈nx(ky, kz )〉 =∑

ix
ixρ(ix, ky, kz )/

∑
ix

ρ(ix, ky, kz ), where ix is the index for
lattice sites and ρ(ix, ky, kz ) is the occupied density of states.
The Chern number is related to the hybrid Wannier center
by C = δ〈nx(ky, kz )〉. Therefore, the WSM appears as a tran-
sitional state between a trivial insulator and a topological
insulator as shown in Fig. 1(d), which can recover the previous
results in Ref. [42] as expected.

With periodic driving [i.e., �0 �= 0 in the Hamiltonian (1)]
the dynamics of the model system are governed by the time-
periodic Hamiltonian of H (t + T ) = H (t ). Our goal is to find
the unique topological characteristics of periodically driven
systems without analogs in equilibrium.

To illustrate the analogies to and differences from the
static counterpart and in particular to further the construction
of unique topological characteristics without the analogies
of the static system, our strategy is to obtain the effective
Hamiltonian of our model system within the rotating-wave ap-
proximation by making the unitary transformation U (k, t ) =
P+ + P−eiωt . Here P+ and P− are the projectors on the upper
and lower bands of the Hamiltonian (1) with �0 = 0. Thus,

FIG. 1. Energy spectrum of the static Hamiltonian H0(kx =
0, y, kz ) in cylindrical geometry with edges along the y direction and
periodic in the x and z directions; t0 = ts = 1.0. We choose t0 as
the energy unit. The spectrum for m = 4.0t0 < mc in (b) shows that
kz = ± π

2 is the z component for the position of Weyl points, while
there are no Weyl points for m = 7.0t0 > mc in (a). Correspondingly,
the position of the hybrid Wannier center, directly related to the
Chern number, is shown in (c) and (d) with the lattice being periodic
in the y and z directions and finite in the x direction. (d) There is a
shift in one lattice site if kz is between kc = ± π

2 with m = 7.0t0, with
a shift smaller than one for m = 4.0t0.

the effective Hamiltonian is

Heff =
(

|d| − ω

2
− 1

2
�0d̂z

)
d · σ + 1

2
�0σz. (2)

Specifically, the Hamiltonian (2) can be simplified as Heff =
(m − ω/2) − 2t0(2 + cos kz )σz when kx = ky = 0. It is clear
that with respect to the Hamiltonian (1), the key physics
underlying the Hamiltonian (2) is the renormalization of
the effective parameter meff = m − ω/2, which induces the
unique nonequilibrium topological phenomena [e.g., 2t0 <

meff < 6t0; see Figs. 2(a)] from otherwise trivial static systems
(e.g., m > 6t0). We note that a similar version of Floquet
topological Weyl semimetals is given by Floquet topological
insulators in Ref. [4].

We are interested in the emergence of Floquet Weyl
semimetals as counterparts of Floquet topological insulators
[4]. Starting with the topologically trivial phase (m = 8), we
study the effects of the periodic modulation of the Hamilto-
nian (1) (the last term), which is supposed to create transitions
between the valence and conduction bands at resonance and
this typically opens gaps at the crossing points. The resulting
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FIG. 2. Truncated Floquet Hamiltonian spectrum with the layer
kx = 0 in the cylindrical geometry of a good quantum number kz and
an open boundary in the y direction. The horizontal axis denotes the
crystal momentum kz and the vertical one denotes quasienergy in
units of driving frequency ω. The parameters are chosen as � = 1.5,
t0 = ts = 1.0, ω = 9, and (a) m = 7.0t0 and (b) m = 4.0t0. According
to the static topologically trivial case, the top and bottom bands
should contribute zero Chern numbers. However, we localized edge
modes that connected two Weyl points in different m-index bands.

bands exhibit nonzero Chern numbers, which correspond to
Floquet Weyl semimetals, as shown in Fig. 2(a).

The above-mentioned intuitive understanding of the emer-
gent Floquet Weyl semimetal is limited to the analytical
results of the high-frequency limit, i.e., the driving frequency
ω is much larger than the other energy scale of the model
system. In the most general case, the exact time evolution
operator of the Hamiltonian can be computed as

U (k, t ) = T exp

{
−i

∫ t

0
H (k, t ′)dt ′

}
, (3)

where T is the time-ordering operator. Note that U is periodic
in kx, ky, and t . Motivated by Ref. [5], we can use U to
characterize the nonequilibrium topological properties of the
time-dependent Hamiltonian (1) by defining a slice winding
number

WF (kz ) = 1

8π2

∫
dt dk Tr

(
U −1∂tU

[
U −1∂kxU,U −1∂kyU

])
.

(4)
On the basis of Eq. (4), we emphasize that the underlying
physical mechanism is that the micromotion that takes place
within each driving period is crucial for the topological classi-
fication of periodically driven systems, which differs from the
Chern number invariant in nondriven systems, which depend
only on projectors onto the band of Floquet states.

Different types of nonequilibrium phases may emerge
owing to the difference between the winding number and
the Chern numbers of Floquet bands. By examining the gap
centered at quasienergy −π/T , as shown in Fig. 2(b), we
expect to determine chiral edge modes spanning this gap
on the basis of the effective Hamiltonian (2). The further
analytical calculation to the lowest order in �0 shows that

the Chern number at quasienergy −π/T is equal to zero.
However, WPs between the bands of l = 0 and l = −1 exist.
We refer to this type of nonequilibrium Weyl semimetal as an
anomalous Floquet Weyl semimetal, where the topology can
only be explained by the winding number of Eq. (4).

III. NUMERICAL RESULTS

Above we developed the intuitive physical pictures of Flo-
quet Weyl semimetals and anomalous Floquet Weyl semimet-
als. Below we justify the existence of Floquet Weyl semimet-
als and anomalous Floquet Weyl semimetals by solving the
Hamiltonian (1) with exact numerical methods.

The general Floquet states corresponding to the
Hamiltonian (1) obey [H (t ) − i∂t ]|ψn(t )〉 = En |ψn(t )〉,
with |ψn(t )〉 = |ψn(t + T )〉, and generate the quasienergy
En (hereafter h̄ = 1). We evolve Floquet states at any
initial time t = 0 by a time-evolution operator over one
period. Thus, U (T ) |ψn(0)〉 = e−iEnT |ψn(0)〉 becomes an
eigenvalue equation, where e−iEnT is invariant under En + lω
(l ∈ N). Hence, the quasienergy En possesses periodicity and
U (T ) = e−iHF T .

The first Brillouin zone −ω � En � ω in quasienergy
contains all of the information that we are interested in and
U (T ) becomes U (k, T ), with k the crystal momentum. More
generally, the nondegenerate Floquet-Bloch time-evolution
operator at t is

U (k, t ) =
N∑

n=1

|εn(k, t )〉 〈εn(k, t )| e−iφn (k,t ), (5)

with the nth nondegenerate eigenstate |εn(k, t )〉 of U (k, t ).
Here φn(k, t ) is the pivot of quasienergy winding. In the
meantime, we derive the Floquet Hamiltonian matrix as

Hl,l ′
α,α′ (k) = lωδα,α′δl,l ′ + 1

T

∫ T

0
dt e−i(l−l ′ )ωt Hα,α′ (k, t ), (6)

where l and l ′ are the sector indices of quasienergy and α

and α′ are the dummy indices of the eigenbasis that depend
on system size L. The extended Hilbert space of the effective
Hamiltonian is (L × S)2 (sector number S). The block diago-
nal of Hl,l ′

α,α′ is dominated by the static Hamiltonian by adding

lω. Other block off-diagonal elements of Hl,l ′
α,α′ are the driving

contribution.
First we consider how Floquet Weyl semimetals, as shown

in Fig. 2, can be generated when periodic driving is turned
on. Specifically, the static Hamiltonian is chosen to be topo-
logically trivial with the parameters m = 7t0 and ts = t0 = 1.
The band structure centered at quasienergy 0 is shown in
Fig. 2(a). Then the periodic driving is turned on to the strength
�0 = 1.5. We can numerically solve the Floquet spectrum
of the Hamiltonian (1) for a cylindrical geometry with the
periodic boundary conditions in the z direction and open
boundary conditions in the y direction. By examining the band
centered at quasienergy 0.5, we see the appearance of the edge
states, which suggests the existence of WPs. These Floquet
Weyl semimetals can be explained in terms of the effective
meff = m − ω/2. Note that the static Hamiltonian (1) is only
topologically nontrivial in the parameter regime (2t0 < m <

6t0). The initial value of m = 7t0 is out of the topological
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FIG. 3. Chern number for the lowest LS/2 − 2, LS/2 − 1, and LS/2 bands and the corresponding quasienergy spectrum with S = 5 in our
calculation. A change in the Chern number reveals the position of the number of Weyl points. The parameters in left and right panels are the
same as the corresponding ones in Fig. 2.

parameter regime. However, the effective meff = m − ω/2 =
2.5t0 is reduced by periodic driving, so the resulting effective
Hamiltonian becomes topologically nontrivial.

Next we show how anomalous Floquet Weyl semimetals
can be generated. Initially, the static Hamiltonian is chosen
to be topologically nontrivial with two Weyl points with the
parameters m = 4t0 and ts = t0 = 1 [as shown in Fig. 1(d)] or
topological trivial without Weyl points [Fig. 1(c)]. Whether
Weyl points in the band structure exist depends on the change

in the value of C(kz ), i.e., the Chern number of all bands below
the gap. Following Ref. [4], we can calculate C(kz ) for the
chosen gap. Then the integer change in the Chern number
indicates that the Weyl point can be detected with changing kz.
Indeed, as shown below, Fig. 2(b) demonstrates the existence
of anomalous Floquet Weyl semimetals.

Now we provide a deeper understanding in terms of the
Chern number to show how the phenomenology discussed in
Eq. (4) can arise in the microscopic lattice model without
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relying on adiabatic projections. As pointed out in Ref. [5],
the key observation is that a straightforward way to calculate
the Chern numbers of bands for the truncated Floquet Hamil-
tonian actually exists. Essentially, one can interpret the trun-
cated Floquet Hamiltonian as the static Hamiltonian of some
new N-band system. With a change in the Chern number, we
can demonstrate the position and number of the Weyl points.
We use Figs. 3(c i) and 3(c ii) as examples to explain the main
points. When m = 8.0t0, no Weyl points exist in the static
Hamiltonian [Fig. 1(c)]. Remarkably, with periodical driving,
we see that in Fig. 3(c i), four new Weyl points show up at
(π, 0, kz ≈ ±0.67π ) and (0, π, kz ≈ ±0.67π ). The jump in
the Chern number is 2, which shows that two Weyl points
appear simultaneously by tuning kz. For m = 4.0t0, the Weyl
points in Fig. 3(c ii) at (0, 0, kz ≈ ±0.48π ) and (π, π, kz ≈
±0.67π ) are responsible for the jumps in the change in the
Chern number. The number is doubled compared to that of
the static case. For the former, the mechanism is described
in Eq. (2), where periodic driving can effectively change m.
For the latter, the periodic driving can dramatically change
the band structure to create new Weyl points. Therefore,
periodic driving offers a way to manipulate Weyl points in
the system that we explore. It can be a generic way to change
the topological properties of quantum systems.

IV. EXPERIMENTAL REALIZATION AND SUMMARY

Owing to the recent progress in the simulation of topolog-
ical quantum matter with ultracold gases in optical lattices,

the Hamiltonian (1) can be simulated experimentally with ul-
tracold fermionic atoms in three-dimensional optical lattices.
The spin degree of freedom can be encoded by two atomic
internal states or sublattices. Then the required spin-flipping
hopping can be realized by synthetic spin-orbit coupling or
a magnetic field in the xy plane; finally, the σz term can be
generated by similar external laser-atom dressing. The com-
ponents that allow us to realize the Hamiltonian (1) in optical
lattices are well within the experimental reach with an exten-
sion. In a broader context, the tunable Weyl-semimetal bands
can be simulated using superconducting quantum circuits. By
driving the superconducting quantum circuits with microwave
fields, Ref. [30] mapped the momentum space of a lattice to
the parameter space, which realized the Hamiltonian of the
Weyl semimetal. At the same time, the topological winding
numbers were further determined from the Berry curvature
measurement. In summary, we hope that the predicted Floquet
and anomalous Floquet Weyl semimetals in this work can be
observed in the above-mentioned physical systems.
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