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Linear-response functions of molecules on a quantum computer:
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We propose a scheme for the construction of linear-response functions of an interacting electronic system via
quantum phase estimation and statistical sampling on a quantum computer. By using the unitary decomposition
of electronic operators for avoiding the difficulty due to their nonunitarity, we provide the circuits equipped with
ancillae for probabilistic preparation of qubit states on which the necessary nonunitary operators have acted. We
perform simulations of such construction of the charge and spin response functions and photoabsorption cross
sections for C2 and N2 molecules by comparing with the results from full configuration-interaction calculations.
It is found that the accurate detection of subtle structures coming from the weak poles in the response functions
requires a large number of measurements.
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I. INTRODUCTION

Since the information carrier of a programmable quantum
computer is a set of qubits that exploits the principle of su-
perposition, essentially parallel algorithms can exist and per-
form computation for classically formidable problems [1,2].
Quantum chemistry [3] is believed to be one of the most
suitable research fields for quantum computation since its
problem setting is quantum mechanical by definition. Indeed,
a quantum computer can treat a many-electron state composed
of lots of Slater determinants as it is in a sense that the
electronic state is encoded as a superposition of qubit states
via an appropriately chosen map such as the Jordan–Wigner
(JW) [4] and Bravyi–Kitaev (BK) [5] transformations.

The quantity which a quantum chemistry calculation is
asked to first provide is the total energy of a target sys-
tem [6]. One of the most widespread methods for obtain-
ing the total energy is the variational quantum eigensolver
(VQE), in which a trial many-electron state is prepared via a
parametrized quantum circuit. The parameters are optimized
iteratively with the aid of a classical computer aiming at the
ground state. This approach was first realized [7] by using
a quantum photonic device, after which the realizations by
superconducting [8,9] and ion trap [10] quantum computers
have been reported. There exist algorithms for obtaining the
energy spectra of excited states [11–16].

Not only academic interest but also industrial demands for
accurate explanations and predictions of material properties
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make it an urgent task to develop methodologies on quantum
computers for various electronic properties other than energy
levels. The one-particle Green’s functions (GFs) are important
in correlated electronic systems [17,18] since they are often
used in explanation of spectra measured in photoemission and
its inverse experiments. Recently we proposed [19] a method
for the GFs [20,21] via statistical sampling by employing
quantum phase estimation (QPE) [1]. Endo et al. [22], on the
other hand, proposed a method for the GFs by focusing on
noisy intermediate-scale quantum (NISQ) devices.

The charge and spin response functions, formulated in the
linear-response theory [23,24], describe the leading contribu-
tions to the electric and magnetic excitations when perturba-
tion fields are applied to a target system. Since the response
functions are the fundamental building blocks in constructing
the elaborated methods for correlated electrons such as GW
theory [23,25], the accurate calculation of them is needed.
In addition, there exist response functions directly related
to measurable quantities such as dielectric constants, electric
conductivities, and magnetic susceptibilities.

Given the recent rapid development of fabrication tech-
niques for quantum hardware and the growing demands for
quantum computation in material science, it is worth mak-
ing tools for analyses on correlation effects. In this study,
we propose a scheme for the construction of the response
functions of an interacting electronic system via statistical
sampling on a quantum computer. We track the changes in the
state of qubits analytically when they undergo gate operations
and measurements to derive the exact probability distributions
of the outcomes. For examining the validity of our scheme,
we perform the full configuration-interaction (FCI) calcula-
tions for diatomic molecules, from which we simulate the
measurements on qubits to get the response functions by
generating random numbers based on the exact probability
distributions.
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FIG. 1. Circuit CO for the probabilistic preparation of a state on
which a linear combination O of 2n unitaries has acted. H in the
circuit represents the Hadamard gate. The desired state is prepared
according to a measurement outcome of n ancillary qubits. This
circuit contains C (n) as a partial circuit defined in Fig. 2.

This paper is organized as follows. In Sec. II, we explain
the basic ideas and our scheme in detail by providing the
quantum circuits for obtaining the response functions via
statistical sampling. In Sec. III, we describe the computational
details for our simulations on a classical computer. In Sec. IV,
we show the simulation results for C2 and N2 molecules. In
Sec. V, we provide the conclusions.

II. METHODS

A. Circuit for a linear combination of unitaries

The calculation of a physical quantities of interest quite
often involves the evaluation of matrix elements of vari-
ous electronic operators. Such an operator is, however, not
necessarily unitary and it prohibits one from implementing
it straightforwardly as logic gates for qubits. We describe
a workaround for this difficulty by providing a circuit for
probabilistic state preparation.

For 2n unitaries Uk , where k is a bit string of length n, we
want to apply an arbitrary linear combination of them,

O = c0···00U0···00 + c0···01U0···01 + · · · + c1···11U1···11, (1)

to an input register |ψ〉. ck ≡ |ck| exp(iφk ) is the complex co-
efficient. We construct a circuit CO equipped with n ancillary
qubits, as depicted in Fig. 1, containing a partial circuit C (n)

defined recursively in Fig. 2. If the measurement outcome for

/ C(j=0)
λ

≡ / exp(iφλ) Uλ

(a) For j = 0

C(j>0)
λ

• Ry −2θ
(j)
λ

⊗(j − 1)
/ ≡ /

C(j−1)
λ0 C(j−1)

λ1
/ /

(b) For j > 0

FIG. 2. Recursive definitions of circuits C ( j)
λ for (a) j = 0 and

(b) j > 0. λ is empty or a bit string. exp(iφλ) is an identity operator
multiplied by the phase factor. Ry(θ ) = e−iθσy/2 is a rotation for an
angle θ . These circuits are used in Fig. 1.

the ancillae is |0〉⊗n, the state of the whole system collapses
to |0〉⊗n ⊗ O|ψ〉 up to a normalization constant. The proof of
this fact is provided in Appendix A.

The state preparation techniques for the response functions
described below are special cases of the one introduced above
with some target-specific modifications.

B. Definitions for linear responses

1. Linear-response functions

We work with the norbs orthonormalized spatial one-
electron orbitals for each spin direction in a target N-electron
system, which we assume is in the many-electron ground state
|�gs〉 at zero temperature. The formalism described below can
be easily extended to a system with multiple ground states
and/or a nonzero temperature.

The response functions in terms of Hermitian operators O
and O′ in time domain is defined as [23]

χOO′ (t, t ′) ≡ −iθ (t − t ′)〈[O(t ),O′(t ′)]〉, (2)

where O(t ) is the operator in the Heisenberg picture and the
expectation value is for the ground state. We assume that the
system has been in the equilibrium when the perturbation
is turned on. Since the response function defined in Eq. (2)
depends on time only via t − t ′ in this case, its expression in
frequency domain is written as

χOO′ (ω) = ROO′ (ω + iδ) + RO′O(−ω − iδ), (3)

for a real frequency ω.

ROO′ (z) ≡
∑

λ

LλOO′

z − (
Eλ − EN

gs

) (4)

is the Lehmann summation over the energy eigenstates for a
complex frequency z. EN

gs is the ground-state energy and Eλ is
the energy eigenvalue of the λth excited state |�λ〉.

LλOO′ ≡ 〈�gs|O|�λ〉〈�λ|O′|�gs〉 (5)

is the transition matrix element, which satisfies clearly
LλOO′ = (LλO′O )∗. The positive infinitesimal constant δ ap-
pears in Eq. (3) due to the retarded nature of the response
function, rendering all the poles immediately below the real
axis. It is clear that the real part of χOO′ (ω) is even with
respect to ω, while the imaginary part is odd.

2. Charge and spin responses

By using the creation a†
pσ and annihilation apσ operators for

the pth spatial orbital of σ spin |φpσ 〉 (σ = α, β ), the electron
number operator is given by npσ = a†

pσ apσ . The spin operator
is given by sp = ∑

σ,σ ′ a†
pσ (σel

σσ ′/2)apσ ′ , where σel is the Pauli
matrix for the electronic state.

The orbital-wise response functions involving the charge
and spin of the individual spin orbitals are obtained by putting
Opn ≡ ∑

σ npσ and Op j ≡ sp j ( j = x, y, z), respectively, into
Eq. (4). To rewrite the expression for transition matrix ele-
ments in Eq. (5) into a more tractable form, we define the
charge-charge transition matrix element,

Nλpσ,p′σ ′ ≡ 〈�gs|npσ |�λ〉〈�λ|np′σ ′ |�gs〉, (6)
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for the λth energy eigenstate |�λ〉 of the N-electron states. We
define similarly the spin-spin one,

Sλp j,p′ j′ ≡ 〈�gs|sp j |�λ〉〈�λ|sp′ j′ |�gs〉, (7)

for j, j′ = x, y, z and the spin-charge one,

Mλp j,p′σ ′ ≡ 〈�gs|sp j |�λ〉〈�λ|np′σ ′ |�gs〉 ≡ M∗
λp′σ ′,p j . (8)

From these matrix elements, we define the following Hermi-
tian matrices Lλ:

Lλpn,p′n ≡
∑
σ,σ ′

Nλpσ,p′σ ′ , (9)

Lλp j,p′ j′ ≡ Sλp j,p′ j′ , (10)

Lλp j,p′n ≡
∑

σ

Mλp j,p′σ , (11)

which are used for Eq. (5).

3. Generic one-body operators

A generic one-body operator is given in the form,

O =
∑
m,m′

Omm′a†
mam′ , (12)

where m and m′ are the composite indices of spatial orbitals
and spins. Omm′ is the matrix element between the one-
electron orbitals. Our scheme is actually applicable to such
a generic case for O and O′, for which we have to obtain the
transition matrix elements,

Bλm1m2,m3m4 ≡ 〈�gs|a†
m1

am2 |�λ〉〈�λ|a†
m3

am4 |�gs〉, (13)

which satisfy clearly Bλm1m2,m3m4 = (Bλm4m3,m2m1 )∗. From
them, we sum up the contributions to Eq. (5) as

LλOO′ =
∑

m1,m2,m3,m4

Om1m2O′
m3m4

Bλm1m2,m3m4 . (14)

We calculate the electric polarizabilities of molecules in the
present study as examples for the generic scheme. The con-
tribution from electrons to the electric dipole of a molecule is
d = −∑

m,m′ dmm′a†
mam′ , where the negative sign on the right-

hand side comes from the electron charge. dmm′ ≡ 〈φm|r|φm′ 〉
is the matrix element of position operator. The linear electric
polarizability tensor α j j′ ( j, j′ = x, y, z) [26,27] is defined as
the first derivative of the expected electric dipole with respect
to an external electric field, obtained via the response func-
tion as α j j′ (ω) = −χd j d j′ (ω), from which the photoabsorption
cross section [28] is given by

σ (ω) = 4π

c
ωImTr α(ω). (15)

This cross section is a measurable quantity in optical absorp-
tion experiments.

4. Unitary decomposition of electronic operators

Although there are alternatives for mapping the electronic
operators of a target system to the qubit ones such as JW [4]
and BK [5] transformations, we do not distinguish between an
electronic operator and its corresponding qubit representation
in what follows since no confusion will occur for the readers.

FIG. 3. Charge-charge diagonal circuit Cpσ (σ = α, β ) for prob-
abilistic preparation of npσ |ψ〉 and ñpσ |ψ〉 from an arbitrary input
state |ψ〉 and two ancillary qubits. We define the partial circuit U (p)

σ

by enclosing it with dashed lines.

For each combination of a spatial orbital p and a spin σ , we
perform the Majorana fermion-like [29] transformation for the
qubits [19]:

U0pσ = apσ + a†
pσ , (16)

and

U1pσ = apσ − a†
pσ , (17)

which are unitary regardless of the adopted qubit represen-
tation thanks to the anticommutation relation between the
electronic operators and can thus be implemented as logic
gates in the quantum computer. This means that we can
prepare at least probabilistically an electronic state on which
an arbitrary product of the creation and annihilation operators
has acted, similarly to the case for GFs [19].

In what follows, we assume that the many-electron ground
state |�gs〉 is already known and can be prepared on a quantum
computer.

C. Charge-charge responses

Let us first consider the determination of the charge-charge
transition matrices Nλ.

1. Circuits for diagonal components

From the unitary operators in Eqs. (16) and (17) for a
combination of a spatial orbital p and a spin σ , we define
U (p)

κκ ′σ ≡ Uκ pσUκ ′ pσ for κ, κ ′ = 0, 1, which are also unitary.
With them, the electron number operator is written as

npσ = U (p)
00σ + U (p)

01σ − U (p)
10σ − U (p)

11σ

4
, (18)

while the whole number operator is written as

ñpσ ≡ 1 − npσ = U (p)
00σ − U (p)

01σ + U (p)
10σ − U (p)

11σ

4
. (19)

We construct a circuit Cpσ equipped with two ancillary
qubits |qA

0 〉 and |qA
1 〉 by implementing the controlled opera-

tions of U (p)
κκ ′σ , as depicted in Fig. 3. The whole system consists

of the ancillae and an arbitrary input register |ψ〉. Its state
changes by undergoing the circuit as∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |0〉 ⊗ |1〉 ⊗ ñpσ |ψ〉 + |1〉 ⊗ |0〉 ⊗ npσ |ψ〉 ≡ |�pσ 〉,
(20)
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FIG. 4. Charge-charge off-diagonal circuit Cpσ,p′σ ′ (σ, σ ′ =
α, β ) for probabilistic preparation of n±

pσ,p′σ ′ |ψ〉 and ñ±
pσ,p′σ ′ |ψ〉

from an arbitrary input state |ψ〉 and three ancillary qubits.
Z (±π/4) = diag(1, e±iπ/4) is a phase gate. The partial circuits
defined in Fig. 3 are contained as the controlled subroutines.

since (a†
pσ )2 and a2

pσ vanish due to the Fermi statistics. The
projective measurement [1] on |qA

0 〉 is represented by the
two operators Pq = I ⊗ |q〉〈q| ⊗ I (q = 0, 1). The state of the
whole system collapses immediately after the measurement as
follows:

|�pσ 〉 |0〉 observed�−→ |1〉 ⊗ |0〉 ⊗ npσ√
Ppσ

|ψ〉,

prob. ‖npσ |ψ〉‖2 ≡ Ppσ , (21)

|�pσ 〉 |1〉 observed�−→ |0〉 ⊗ |1〉 ⊗ ñpσ√
P̃pσ

|ψ〉,

prob. ‖̃npσ |ψ〉‖2 ≡ P̃pσ . (22)

2. Circuits for off-diagonal components

For mutually different combinations (p, σ ) and (p′, σ ′) of
spatial orbitals and spins, we define the four non-Hermitian
auxiliary operators,

n±
pσ,p′σ ′ ≡ npσ ± eiπ/4np′σ ′

2
, (23)

and

ñ±
pσ,p′σ ′ ≡ ñpσ ± eiπ/4ñp′σ ′

2
. (24)

Un-normalized auxiliary states |�±
pσ,p′σ ′ 〉 ≡ n±

pσ,p′σ ′ |�gs〉 can
have overlaps T ±

λpσ,p′σ ′ ≡ |〈�λ|�±
pσ,p′σ ′ 〉|2 with the energy

eigenstates, from which the charge-charge transition matrix
elements in Eq. (6) can be calculated as

Nλpσ,p′σ ′ = e−iπ/4(T +
λpσ,p′σ ′ − T −

λpσ,p′σ ′ )

+ eiπ/4(T +
λp′σ ′,pσ − T −

λp′σ ′,pσ ). (25)

We construct a circuit Cpσ,p′σ ′ equipped with three ancillary
qubits by using the controlled operations of the partial circuits
U (p)

σ and U (p′ )
σ ′ , defined in Fig. 3, as depicted in Fig. 4. The

whole system consists of the ancillae and an arbitrary input
register |ψ〉. Its state changes by undergoing the circuit as∣∣qA

2 = 0
〉 ⊗ ∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |0〉 ⊗ |0〉 ⊗ |1〉 ⊗ ñ+
pσ,p′σ ′ |ψ〉

+ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ n+
pσ,p′σ ′ |ψ〉

+ |1〉 ⊗ |0〉 ⊗ |1〉 ⊗ ñ−
pσ,p′σ ′ |ψ〉

+ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ n−
pσ,p′σ ′ |ψ〉

≡ |�pσ,p′σ ′ 〉. (26)

The projective measurement on |qA
2 〉 and |qA

1 〉 is represented
by the four operators Pqq′ = |q〉〈q| ⊗ |q′〉〈q′| ⊗ I ⊗ I (q, q′ =
0, 1). The two outcomes among the possible four are of our
interest, immediately after which the whole system collapses
as follows:

|�pσ,p′σ ′ 〉 |0〉⊗|1〉 observed�−→ |0〉 ⊗|1〉 ⊗ |0〉 ⊗ n+
pσ,p′σ ′√
P+

pσ,p′σ ′

|ψ〉,

prob. ‖n+
pσ,p′σ ′ |ψ〉‖2 ≡ P+

pσ,p′σ ′ , (27)

|�pσ,p′σ ′ 〉 |1〉⊗|1〉 observed�−→ |1〉 ⊗|1〉 ⊗ |0〉 ⊗ n−
pσ,p′σ ′√
P−

pσ,p′σ ′

|ψ〉,

prob. ‖n−
pσ,p′σ ′ |ψ〉‖2 ≡ P−

pσ,p′σ ′ . (28)

3. Transition matrices via statistical sampling

Given the result of a measurement on the ancillary bits
for a diagonal or an off-diagonal component, we have the
register |ψ̃〉 different from the input N-electron state. Then we
perform QPE for the Hamiltonian H by inputting |ψ̃〉 to obtain
one of the energy eigenvalues in the Hilbert subspace for the
N-electron states. A QPE experiment inevitably suffers from
probabilistic errors that depend on the number of qubits and
the various parameters for the Suzuki-Trotter decomposition
of H. We assume for simplicity, however, that the QPE proce-
dure is realized on a quantum computer with ideal precision
as well as in our previous study [19]. We will thus find the
estimated value to be EN

λ with a probability |〈�λ|ψ̃〉|2 [1].
Since the probabilistic state preparation and obtaining the
transition matrix elements are dominated mathematically by
multinomial distributions, the errors in the response function
scale as N−1/2

meas for Nmeas repeated measurements.
If we input |�gs〉 to the diagonal circuit Cpσ in Fig. 3 and

observe the ancillary bit |qA
0 = 0〉 for QPE, the energy eigen-

value EN
λ will be obtained with a probability [see Eq. (21)],∣∣∣∣∣〈�λ| npσ√

Ppσ
|�gs〉

∣∣∣∣∣
2

Ppσ = Nλpσ,pσ . (29)

This means that we can get the diagonal components of
transition matrices Nλ via statistical sampling for a fixed
combination of p and σ .

If we input |�gs〉 to the off-diagonal circuit Cpσ,p′m′ in
Fig. 4 and observe the ancillary bits |qA

2 = 0〉 ⊗ |qA
1 = 1〉 or

|qA
2 = 1〉 ⊗ |qA

1 = 1〉 for QPE, the energy eigenvalue EN
λ will

be obtained with probabilities [see Eqs. (27) and (28)],∣∣∣∣∣∣〈�λ|
n±

pσ,p′σ ′√
P±

pσ,p′σ ′

|�gs〉
∣∣∣∣∣∣
2

P±
pσ,p′σ ′ = T ±

λpσ,p′σ ′ . (30)

This means that we can get the off-diagonal components of Nλ

from Eq. (25) via statistical sampling for a fixed combination
of p, p′, σ , and σ ′.
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U (p)
j

|qA = 0 H • H

|ψ / U
(p)
0j U

(p)
1j |ψ

FIG. 5. Spin-spin diagonal circuit Cp j ( j = x, y) for probabilistic
preparation of sp j |ψ〉 and s̃p j |ψ〉 from an arbitrary input state |ψ〉
and an ancillary qubit. We define the partial circuit U (p)

j by enclosing
it with dashed lines.

D. Spin-spin responses

Let us next consider the determination of the spin-spin
transition matrix elements Sλp j,p′ j′ for j, j′ = x, y. Since the
operators of the z component of spin and the electron num-
ber are related via spz = (npα − npβ )/2, the matrix elements
Sλpz,p′z can be calculated from the diagonal and off-diagonal
components of Nλ, already obtained in Sec. II C. Sλp j,p′z can
be calculated from Mλ which will be explained in Sec. II E.

1. Circuits for diagonal components

From the unitary operators in Eqs. (16) and (17)
for a combination of a spatial orbital p and a spin
σ , we define the following four unitary operators:
U (p)

0x ≡ U0pαU1pβ, U (p)
1x ≡ −U1pαU0pβ, U (p)

0y ≡ −iU0pαU0pβ,

and U (p)
1y ≡ iU1pαU1pβ. With them, the spin operators for the

x and y directions are written as

sp j = U (p)
0 j + U (p)

1 j

4
(31)

for j = x, y. We define

s̃p j ≡ U (p)
0 j − U (p)

1 j

4
(32)

for later convenience.
We construct a circuit Cp j equipped with an ancillary qubit

by implementing the controlled operations of U (p)
0 j and U (p)

1 j ,
as depicted in Fig. 5. The whole system consists of the
ancilla and an arbitrary input register |ψ〉. Its state changes
by undergoing the circuit as

|qA = 0〉 ⊗ |ψ〉 �−→ |0〉 ⊗ 2sp j |ψ〉 + |1〉 ⊗ 2̃sp j |ψ〉
≡ |�p j〉. (33)

The projective measurement on |qA〉 is represented by the
two operators Pq = |q〉〈q| ⊗ I (q = 0, 1). The state of the
whole system collapses immediately after the measurement
as follows:

|�p j〉 |0〉 observed�−→ |0〉 ⊗ 2sp j√
Pp j

|ψ〉,

prob. ‖2sp j |ψ〉‖2 ≡ Pp j, (34)

|�p j〉 |1〉 observed�−→ |1〉 ⊗ 2̃sp j√
P̃p j

|ψ〉,

prob. ‖2̃sp j |ψ〉‖2 ≡ P̃p j . (35)

|qA
1 = 0 H • Z π

4 H

|qA
0 = 0 H

U (p)
j U (p )

j

H

|ψ / |ψ

FIG. 6. Spin-spin off-diagonal circuit Cp j,p′ j′ ( j, j ′ = x, y) for
probabilistic preparation of s±

p j,p′ j′ |ψ〉 and s̃±
p j,p′ j′ |ψ〉 from an arbi-

trary input state |ψ〉 and two ancillary qubits. The partial circuits
defined in Fig. 5 are contained as the controlled subroutines.

2. Circuits for off-diagonal components

For mutually different combinations (p, j) and (p′, j′) of
spatial orbitals and spin components j, j′ = x, y, we define
the four non-Hermitian auxiliary operators,

s±
p j,p′ j′ ≡ sp j ± eiπ/4sp′ j′

2
, (36)

and

s̃±
p j,p′ j′ ≡ s̃p j ± eiπ/4̃sp′ j′

2
. (37)

Un-normalized auxiliary states |�±
p j,p′ j′ 〉 ≡ s±

p j,p′ j′ |�gs〉 can
have overlaps T ±

λp j,p′ j′ ≡ |〈�λ|�±
p j,p′ j′ 〉|2 with the energy

eigenstates, from which the spin-spin transition matrix ele-
ments in Eq. (7) can be calculated as

Sλp j,p′ j′ = e−iπ/4(T +
λp j,p′ j′ − T −

λp j,p′ j′ )

+ eiπ/4(T +
λp′ j′,p j − T −

λp′ j′,p j ). (38)

We construct a circuit Cp j,p′ j′ equipped with two ancillary
qubits by using the controlled operations of the partial circuits
U (p)

j and U (p′ )
j′ , defined in Fig. 5, as depicted in Fig. 6. The

whole system consists of the ancillae and an arbitrary input
register |ψ〉. Its state changes by undergoing the circuit as∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |0〉 ⊗ |0〉 ⊗ 2s+
p j,p′ j′ |ψ〉 + |0〉 ⊗ |1〉 ⊗ 2̃s+

p j,p′ j′ |ψ〉
+ |1〉 ⊗ |0〉 ⊗ 2s−

p j,p′ j′ |ψ〉 + |1〉 ⊗ |1〉 ⊗ 2̃s−
p j,p′ j′ |ψ〉

≡ |�p j,p′ j′ 〉. (39)

The projective measurement on |qA
1 〉 and |qA

0 〉 is represented
by the four operators Pqq′ = |q〉〈q| ⊗ |q′〉〈q′| ⊗ I (q, q′ =
0, 1). The two outcomes among the possible four are of our
interest, immediately after which the whole system collapses
as follows:

|�p j,p′ j′ 〉 |0〉⊗|0〉 observed�−→ |0〉 ⊗|0〉 ⊗ 2s+
p j,p′ j′√
P+

p j,p′ j′

|ψ〉,

prob. ‖2s+
p j,p′ j′ |ψ〉‖2 ≡ P+

p j,p′ j′ , (40)

|�p j,p′ j′ 〉 |1〉⊗|0〉 observed�−→ |1〉 ⊗|0〉 ⊗ 2s−
p j,p′ j′√
P−

p j,p′ j′

|ψ〉,

prob. ‖2s−
p j,p′ j′ |ψ〉‖2 ≡ P−

p j,p′ j′ . (41)
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|qA
2 = 0 H • Z ±π

4 • H

|qA
1 = 0 H

U (p )
σ

H X

|qA
0 = 0 H U (p)

j

H

|ψ / |ψ

FIG. 7. Spin-charge off-diagonal circuit C±
p j,p′σ ′ ( j =

x, y and σ ′ = α, β ) for probabilistic preparation of v±
p j,p′σ ′ |ψ〉

and other states from an arbitrary input state |ψ〉 and three ancillary
qubits. The partial circuits defined in Figs. 3 and 5 are contained as
the controlled subroutines.

3. Transition matrices via statistical sampling

We can get the transition matrices Sλ via statistical sam-
pling similarly to the charge-charge ones. If we input |�gs〉 to
the diagonal circuit Cp j in Fig. 5 followed by a measurement
and QPE for H, the energy eigenvalue Eλ will be obtained
with a probability 4Sλp j,p j . [See Eqs. (7) and (34).] If we use
the off-diagonal circuit Cp j,p′ j′ in Fig. 6, on the other hand,
the energy eigenvalue Eλ will be obtained with probabili-
ties 4T ±

λp j,p′ j′ depending on the measurement outcome. [See
Eqs. (40) and (41).] The off-diagonal components of transition
matrices are then calculated from Eq. (38).

E. Spin-charge responses

Having found ways to determine the charge-charge and
spin-spin contributions, let us consider the determination of
the spin-charge transition matrices Mλp j,p′σ ′ for j = x, y and
σ ′ = α, β. Those involving the z component of spin, Mλpz,p′σ ′ ,
can be calculated from the diagonal and off-diagonal compo-
nents of Nλ, already obtained in Sec. II C.

1. Circuits for off-diagonal components

For combinations (p, j) and (p′, σ ′) of spatial orbitals and
spin components j = x, y with σ ′ = α, β, we define the two
non-Hermitian auxiliary operators,

v±
p j,p′σ ′ ≡ sp j + e±iπ/4 np′σ ′

2
. (42)

Un-normalized auxiliary states |�±
p j,p′σ ′ 〉 ≡ v±

p j,p′σ ′ |�gs〉 can
have overlaps T ±

λp j,p′σ ′ ≡ |〈�λ|�±
p j,p′σ ′ 〉|2 with the energy

eigenstates, from which the spin-charge transition matrix ele-
ments in Eq. (8) can be calculated as

Mλp j,p′σ ′ = e−iπ/4T +
λp j,p′σ ′ + eiπ/4T −

λp j,p′σ ′

−
√

2Sλp j,p j − Nλp′σ ′,p′σ ′

2
√

2
. (43)

We construct a circuit C±
p j,p′σ ′ equipped with three ancillary

qubits by using the controlled operations of the partial circuits
U (p)

j in Fig. 5 and U (p′ )
σ ′ in Fig. 3, as depicted in Fig. 7. The

whole system consists of the ancillae and an arbitrary input
register |ψ〉. Its state changes by undergoing the circuit as∣∣qA

2 = 0
〉 ⊗ ∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |0〉 ⊗ |0〉 ⊗ |0〉 ⊗ v±
p j,p′σ ′ |ψ〉

U (m1m2)

|qA
1 = 0 H • • H

|qA
0 = 0 H • • H

|ψ / U
(m1m2)
00 U

(m1m2)
01 U

(m1m2)
10 U

(m1m2)
11 |ψ

FIG. 8. Generic diagonal circuit Cm1m2 for probabilistic prepara-
tion of a†

m1
am2 |ψ〉 and other states from an arbitrary input state |ψ〉

and two ancillary qubits. We define the partial circuit U (m1m2 ) by
enclosing it with dashed lines.

+ (|0〉 ⊗ |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 ⊗ |1〉) ⊗ s̃p j |ψ〉
+ (|0〉 ⊗ |1〉 ⊗ |1〉 − |1〉 ⊗ |1〉 ⊗ |1〉)

⊗ e±iπ/4ñp′σ ′

2
|ψ〉

+ |1〉 ⊗ |0〉 ⊗ |0〉 ⊗ (sp j − e±iπ/4np′σ ′ )|ψ〉
≡ |�±

p j,p′σ ′ 〉. (44)

The projective measurement on |qA
2 〉 and |qA

0 〉 is represented
by the four operators Pqq′ = |q〉〈q| ⊗ I ⊗ |q′〉〈q′| ⊗ I (q, q′ =
0, 1). Only one of the four possible outcomes is of our
interest, immediately after which the whole system collapses
as follows:

|�±
p j,p′σ ′ 〉 |0〉⊗|0〉 observed�−→ |0〉 ⊗|0〉 ⊗ |0〉 ⊗ v±

p j,p′σ ′√
P±

p j,p′σ ′

|ψ〉,

prob. ‖v±
p j,p′σ ′ |ψ〉‖2 ≡ P±

p j,p′σ ′ . (45)

2. Transition matrices via statistical sampling

We can get the transition matrices Mλ via statistical sam-
pling similarly to the charge-charge and spin-spin ones. If
we input |�gs〉 to the off-diagonal circuit C±

p j,p′σ ′ in Fig. 7
followed by a measurement and QPE for H, the energy
eigenvalue Eλ will be obtained with a probability T ±

λp j,p′σ ′ .
[See Eq. (45).] The off-diagonal components of transition
matrices are then calculated from Eq. (43).

We provide the pseudocodes in Appendix B for the calcu-
lation procedures of response functions explained above.

F. Generic cases

Here we describe briefly the scheme for the response func-
tion involving generic one-body operators given as Eq. (12).

1. Circuits for diagonal components

For a combination of spin orbitals m1 and m2, we define the
four unitary operators U (m1m2 )

κκ ′ ≡ Uκm1Uκ ′m2 (κ, κ ′ = 0, 1). We
construct a circuit Cm1m2 equipped with two ancillary qubits by
implementing the controlled operations for an arbitrary input
register |ψ〉, as depicted in Fig. 8. It is easily confirmed that
the whole state changes by undergoing the circuit as∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |1〉 ⊗ |0〉 ⊗ a†
m1

am2 |ψ〉 + (other terms). (46)

When the target ground state is input, the projective measure-
ment on the two ancillae leads to the probabilistic preparation

033043-6
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|qA
2 = 0 H • Z π

4 H

|qA
1 = 0 H

U (m2m1) U (m3m4)

H

|qA
0 = 0 H H

|ψ / |ψ

FIG. 9. Generic off-diagonal circuit Cm2m1,m3m4 for probabilistic
preparation of f ±

m2m1,m3m4
|ψ〉 and other states from an arbitrary input

state |ψ〉 and three ancillary qubits. The partial circuits defined in
Fig. 8 are contained as the controlled subroutines.

of a†
m1

am2 |�gs〉, for which the subsequent QPE process gives
the “diagonal” matrix element Bλm2m1,m1m2 [see Eq. (13)] via
statistical sampling.

The charge-charge diagonal circuit Cpσ in Fig. 3 is a special
case of the generic circuit described here.

2. Circuits for off-diagonal components

For mutually different combinations (m1, m2) and (m3, m4)
of spin orbitals, we define the two non-Hermitian auxiliary
operators,

f ±
m1m2,m3m4

≡ a†
m1

am2 ± eiπ/4a†
m3

am4

2
. (47)

Un-normalized auxiliary states |�±
m1m2,m3m4

〉 ≡
f ±
m1m2,m3m4

|�gs〉 can have overlaps T ±
λm1m2,m3m4

≡
|〈�λ|�±

m1m2,m3m4
〉|2 with the energy eigenstates, from which

the “off-diagonal” matrix element is calculated as

Bλm1m2,m3m4 = e−iπ/4(T +
λm2m1,m3m4

− T −
λm2m1,m3m4

)
+ eiπ/4(T +

λm3m4,m2m1
− T −

λm3m4,m2m1

)
. (48)

We construct a circuit Cm2m1,m3m4 equipped with three an-
cillary qubits by using the controlled operations of the partial
circuits defined in Fig. 8, as depicted in Fig. 9, for an arbitrary
input register |ψ〉. It is easily confirmed that the whole state
changes by undergoing the circuit as∣∣qA

2 = 0
〉 ⊗ ∣∣qA

1 = 0
〉 ⊗ ∣∣qA

0 = 0
〉 ⊗ |ψ〉

�−→ |0〉 ⊗ |1〉 ⊗ |0〉 ⊗ f +
m2m1,m3m4

|ψ〉
+ |1〉 ⊗ |1〉 ⊗ |0〉 ⊗ f −

m2m1,m3m4
|ψ〉 + (other terms).

(49)

When the target ground state is input, the projective measure-
ment on the three ancillae leads to the probabilistic prepara-
tion of |�±

m2m1,m3m4
〉. This circuit and the similarly constructed

Cm3m4,m2m1 allows one to calculate Bλm1m2,m3m4 from Eq. (48)
via statistical sampling. After obtaining the necessary matrix
elements, they are put into Eq. (14) to calculate the Lehmann
summation.

The charge-charge off-diagonal circuit Cpσ,p′σ ′ in Fig. 4 is
a special case of the generic circuit described here.

III. COMPUTATIONAL DETAILS

As stated in Introduction, we simulated the measurements
on qubits for obtaining the response functions of molecules by

generating random numbers based on the analytically derived
exact probability distributions. The computational details are
described here.

We adopted STO-6G basis sets as the Cartesian Gaussian-
type basis functions [30] for all the elements in our quantum
chemistry calculations. The two-electron integrals between
the atomic orbitals (AOs) were calculated efficiently [31].
We first performed restricted Hartree-Fock (RHF) calculations
to get the orthonormalized molecular orbitals (MOs) in the
target systems and calculated the two-electron integrals be-
tween them, from which we constructed the second-quantized
electronic Hamiltonians.

In the FCI calculations for the large target Hilbert sub-
spaces, we performed exact diagonalization of the elec-
tronic (not in qubit representation) Hamiltonians by using
the Arnoldi method [32]. We can take the z axis as the
quantization axis for spins without loss of generality since our
calculations are nonrelativistic.

We calculated the FCI response functions simply by substi-
tuting the necessary quantities into Eq. (3). For the simulations
of response functions from statistical sampling, we generated
random numbers according to the matrix elements between
the FCI energy eigenstates to mimic the measurements on
ancillae and the ideal QPE procedures. We set δ in Eq. (3)
to 0.01 atomic unit throughout the present study.

IV. RESULTS AND DISCUSSION

A. C2 molecule

We used the experimental bond length of 1.242 Å [33]
for a C2 molecule in the RHF calculation and obtained the
total energy ERHF = −2045.2939 eV. This system contains
six electrons per spin direction which occupy the lowest six
MOs, as shown in Fig. 10(a). We found via the subsequent
FCI calculation with EFCI = −2052.6918 eV that the major
electronic configuration in the nondegenerate many-electron

(a) C2 molecule

O
rb

ita
l e

ne
rg

y

(b) N2 molecule

↑↓
↑↓

↑↓ ↑↓

2σ

2σ*

1π

1π*

3σ

3σ*

↑↓
↑↓

↑↓ ↑↓
↑↓

FIG. 10. Schematic illustration of RHF orbitals and their elec-
tronic occupancies for (a) a C2 molecule and (b) an N2 molecule. The
descriptions beside the energy levels represent the orbital characters.
Those with asterisks are the antibonding orbitals. The 1σ and 1σ ∗

MOs, coming from the 1s AOs of the constituent atoms, are not
shown. The 1π and 1π∗ MOs come mainly from the π bonding of 2p
AOs, while the 3σ and 3σ ∗ MOs from the σ bonding of 2p AOs. The
nondegenerate many-electron ground state for each system consists
mainly of the same electronic configuration as the RHF one.
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for Nmeas = 10000
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Im χ1πz,3σz

FIG. 11. The response function (a) χFCI
1πn,1πn and (b) χFCI

1πz,3σ z exact
within the FCI solution for a C2 molecule. The simulated ones
χFCI−stat for for the numbers of measurements Nmeas = 10 000 and
40 000 are also shown.

0
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2

3

4

5
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ω (eV)

σFCI

σFCI-stat

for Nmeas=5000

σFCI-stat

for Nmeas=40000

σ (
ω

) (
a.

u.
)

FIG. 12. The photoabsorption cross section σ FCI exact within the
FCI solution for a C2 molecule. The simulated ones σ FCI−stat for the
numbers of measurements Nmeas = 5000 and 40 000 are also shown.

ground state, denoted by X 1�+
g in spectroscopic notation [34],

is the same as in the RHF solution. The ground state was
found via the exact diagonalization of the Hilbert subspace for
nα = nβ = 6, from which we obtained the lowest 2000 among
the 44 100 energy eigenvalues.

We calculated the response functions χFCI exact within
the FCI solution, from which the components χFCI

1πn,1πn and
χFCI

1πz,3σ z are plotted in Fig. 11. We also performed simula-
tions of statistical sampling for the construction of response
function χFCI−stat based on our scheme and plotted those
for Nmeas = 10 000 and 40 000. It is seen that χFCI

1πn,1πn in
Fig. 11(a), which involves only the HOMO, is well repro-
duced by χFCI−stat

1πn,1πn with Nmeas = 10 000. On the other hand,
χFCI

1πz,3σ z in Fig. 11(b) is not accurately reproduced by χFCI−stat
1πn,1πn

with Nmeas = 10 000. These results mean that the response
involving a weak excitation channel requires a large number
of measurements for its accurate reproduction, just like the
situation for the GFs [19].

We calculated the photoabsorption cross section σ FCI from
the FCI solution, as shown in Fig. 12. By simulating the
process for a generic one-body operator to obtain the matrix
elements in Eq. (13), we also calculated the cross section
σ FCI−stat for Nmeas = 5000 and 40 000 and plotted it in the
figure. It is seen that those from sampling can take negative
values despite the original definition in Eq. (15), which is en-
sured to be non-negative. It is due to our naïve implementation
of Eq. (48) by using random numbers without considering any
symmetry. The major peaks in σ FCI were well reproduced by
σ FCI−stat with the smaller Nmeas, while the detailed structure
between them required the larger Nmeas for the accurate repro-
duction. Since symmetry-adapted construction of transition
matrix elements should reduce the necessary total number
of measurements and physically appropriate results, such
techniques will be useful as well as in VQE calculations [35].
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FIG. 13. The response function (a) χFCI
3σn,3σn and (b) χFCI

3σn,1π∗n

exact within the FCI solution for an N2 molecule. The simulated
ones χFCI−stat for the numbers of measurements Nmeas = 10 000 and
40 000 are also shown.
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ω (eV)

σFCI
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for Nmeas=40000

σ(
ω

)  (
eV

)

FIG. 14. The photoabsorption cross section σ FCI exact within the
FCI solution for an N2 molecule. The simulated ones σ FCI−stat for the
numbers of measurements Nmeas = 5000 and 40 000 are also shown.

In a more practical setup where the QPE procedure is
not ideal, the resolution and the reliability of two-qubit gates
in the QPE procedure will have significant impacts on the
results. The adequate number of measurements should thus
be discussed by considering specific setups.

B. N2 molecule

We used the experimental bond length of 1.098 Å [36] for
an N2 molecule in the RHF calculation and obtained the total
energy ERHF = −2953.5952 eV. This system contains seven
electrons per spin direction which occupy the lowest seven
MOs, as shown in Fig. 10(b). We found via the subsequent
FCI calculation with EFCI = −2957.9124 eV that the major
electronic configuration in the nondegenerate many-electron
ground state is X 1�+

g [34], the same as in the RHF solution.
The ground state was found via the exact diagonalization of
the Hilbert subspace for nα = nβ = 7, from which we ob-
tained the lowest 2000 among the 14 400 energy eigenvalues.

We calculated the response functions from the FCI solu-
tion, from which the components χFCI

3σn,3σn and χFCI
3σn,1π∗n are

plotted in Fig. 13. We also performed simulations for the con-
struction of χFCI−stat and plotted those for Nmeas = 10 000 and
40 000. It is seen that χFCI

3σn,3σn in Fig. 13(a), which involves
only the HOMO, is not well reproduced by χFCI−stat

3σn,3σn with
Nmeas = 10 000, in contrast to the C2 molecule case. Since the
strength of χFCI

3σn,1π∗n in Fig. 13(b) is similar to that of χFCI
3σn,3σn,

Nmeas = 10 000 is not sufficient for the accurate reproduction
of correct values as well. We found that χFCI

3σ z,1π∗z (not shown)
is much weaker and even Nmeas = 40 000 is insufficient for
obtaining good χFCI−stat

3σ z,1π∗z.
We calculated the photoabsorption cross section σ FCI from

the FCI solution, as shown in Fig. 14. Those from simulations
of measurements σ FCI−stat for Nmeas = 5000 and 40 000 are
also shown in the figure.
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V. CONCLUSIONS

We proposed a scheme for the construction of linear-
response functions of an interacting electronic system via
QPE and statistical sampling on a quantum computer. By
using the unitary decomposition of electronic operators for
avoiding the difficulty due to their nonunitarity, we provided
the circuits equipped with at most three ancillae for prob-
abilistic preparation of qubit states on which the necessary
nonunitary operators have acted. We performed simulations
of such construction of the response functions for C2 and N2

molecules by comparing with the accurate ones based on the
FCI calculations. It was found that the accurate detection of
subtle structures coming from the weak poles in the response
functions requires a large number of measurements.

Since the unitary decomposition of electronic operators
is applicable regardless of the adopted qubit representation,
an electronic state on which an arbitrary product of the cre-
ation and annihilation operators has acted can be prepared at

least probabilistically. The quality of results for our approach
comes mainly along with that of QPE procedure, implying
that the feasibility of our approach may be promising for small
systems which have been already treated on realized quantum
computers such as an H2 molecule. The approach described
in this study enables one to access not only the response
functions and GFs but also various physical quantities on
a quantum computer. Invention and enrichment of tools for
such properties will enhance the practical use of quantum
computers for material simulations.
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APPENDIX A: PROOF FOR A GENERIC PROBABILISTIC STATE PREPARATION

1. Proof

Here we provide the proof for the validity of circuit CO in Fig. 1 for probabilistic state preparation. CO is characterized
by the 2n − 1 parameters, θ (n), θ

(n−1)
0 , θ

(n−1)
1 , θ

(n−2)
00 , θ

(n−2)
01 , θ

(n−2)
10 , θ

(n−2)
11 , . . . , θ

(1)
1···1. For an arbitrary input state |ψ〉 and the

linear combination O of unitaries in Eq. (1), O|ψ〉 up to a normalization constant can be prepared by setting the parameters to
appropriate values, as demonstrated below. We can assume that the coefficients in Eq. (1) are positive real values without loss of
generality since each of the phase factors can be absorbed into the unitary coupled to it.

We use the notation |�n〉 ≡ |0〉⊗n ⊗ |ψ〉, Hn ≡ H⊗n ⊗ I , and Ry(−2θ )|q〉 ≡ |q, θ〉 for q = 0, 1. The action of circuit on the
initial state |�n〉 can be tracked by referring to the recursive definition in Fig. 2. Specifically, we find

C (n)Hn|�n〉 = |0, θ (n)〉√
2

⊗ C (n−1)
0 Hn−1|�n−1〉 + |1, θ (n)〉√

2
⊗ C (n−1)

1 Hn−1|�n−1〉

= |0, θ (n)〉√
2

⊗
[∣∣0, θ

(n−1)
0

〉
√

2
⊗ C (n−2)

00 Hn−2|�n−2〉 +
∣∣1, θ

(n−1)
0

〉
√

2
⊗ C (n−2)

01 Hn−2|�n−2〉
]

+ |1, θ (n)〉√
2

⊗
[∣∣0, θ

(n−1)
1

〉
√

2
⊗ C (n−2)

10 Hn−2|�n−2〉 +
∣∣1, θ

(n−1)
1

〉
√

2
⊗ C (n−2)

11 Hn−2|�n−2〉
]

= · · ·

= 1

2n/2
|0, θ (n)〉 ⊗ ∣∣0, θ

(n−1)
0

〉 ⊗ ∣∣0, θ
(n−2)
00

〉 ⊗ · · · ⊗ ∣∣0, θ
(1)
0···0

〉 ⊗ U0···0|ψ〉 + · · ·

+ 1

2n/2
|1, θ (n)〉 ⊗ ∣∣1, θ

(n−1)
1

〉 ⊗ ∣∣1, θ
(n−2)
11

〉 ⊗ · · · ⊗ ∣∣1, θ
(1)
1···1

〉 ⊗ U1···1|ψ〉. (A1)

For each bit string k of length n, Uk appears only once on the right-hand side of Eq. (A1). If the outcome of a projective
measurement on the n ancillae is |0〉⊗n, the whole state collapses immediately after the measurement as follows:

C (n)Hn|�n〉 |0〉⊗n observed�−→ |0〉⊗n ⊗ 1

2n/2

×
[

cos θ (n) cos θ
(n−1)
0 cos θ

(n−2)
00 · · · cos θ

(2)
0···0 cos θ

(1)
0···00U0···000

+ cos θ (n) cos θ
(n−1)
0 cos θ

(n−2)
00 · · · cos θ

(2)
0···0 sin θ

(1)
0···00U0···001

...

+ sin θ (n) sin θ
(n−1)
1 sin θ

(n−2)
11 · · · sin θ

(2)
1···1 cos θ

(1)
1···11U1···110

+ sin θ (n) sin θ
(n−1)
1 sin θ

(n−2)
11 · · · sin θ

(2)
1···1 sin θ

(1)
1···11U1···111

]
|ψ〉. (A2)
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|qA
1 = 0 H • • • Ry −2θ(2)

|qA
0 = 0 H • Ry −2θ(1)

0 • Ry −2θ
(1)
1

|ψ / U00 U01 U10 U11

FIG. 15. Circuit CO for n = 2 as a special case of that in Fig. 1.

We derived the expression above by using |0, θ〉 = cos θ |0〉 − sin θ |1〉 and |1, θ〉 = sin θ |0〉 + cos θ |1〉.
In order for the resultant state to be proportional to O|ψ〉, we first determine the 2n−1 parameters θ

(1)
0···00, . . . , θ

(1)
1···11 (each

having a bit string of length n − 1) such that

tan θ
(1)
0···00 = c0···001

c0···000
, tan θ

(1)
0···01 = c0···011

c0···010
, . . . , tan θ

(1)
1···11 = c1···111

c1···110
. (A3)

Next we determine the 2n−2 parameters θ
(2)
0···00, . . . , θ

(2)
1···11 (each having a bit string of length n − 2) such that

cos θ
(1)
0···001

cos θ
(1)
0···000

tan θ
(2)
0···00 = c0···0010

c0···0000
,

cos θ
(1)
0···011

cos θ
(1)
0···010

tan θ
(2)
0···01 = c0···0110

c0···0100
, . . . ,

cos θ
(1)
1···111

cos θ
(1)
1···110

tan θ
(2)
1···11 = c1···1110

c1···1100
. (A4)

All the remaining parameters can also be determined in this way, so that the circuit CO allows one to prepare the desired state
O|ψ〉 probabilistically. It is noted that the probability 〈ψ |O†O|ψ〉 is determined not by the artifact (the number n of ancillae the
user has introduced), but by the physics (the quantum state O|ψ〉 itself) regardless of n. This fact also means that the probability
of “success” in the state preparation gives the information about the normalization constant, which can be as important as the
desired state. In this sense, measurement results other than |0〉⊗n are neither failures nor waste of time.

The construction procedure described above should be understood as a starting point for a generic nonunitary operator. There
can be room for making the circuit more efficient by considering the characteristics of the operator and/or the states you want.
For example, the circuit in Fig. 3 does not contain a rotation gate and only one of the two ancillae needs to be measured. It works
thanks to the Fermi statistics. Another interesting point is seen in the circuit in Fig. 4, which can prepare the two important states
n+

pσ,p′σ ′ |ψ〉 and n−
pσ,p′σ ′ |ψ〉. [See Eqs. (27) and (28).]

2. Example for n = 2

An example for the determination of parameters for CO with n = 2 is provided here. The circuit is parametrized by θ
(1)
0 , θ

(1)
1 ,

and θ (2), as depicted in Fig. 15. The whole state immediately before a measurement is

C (2)H2|�2〉 = |0〉⊗2 ⊗ 1
2

[
cos θ (2) cos θ

(1)
0 U00 + cos θ (2) sin θ

(1)
0 U01 + sin θ (2) cos θ

(1)
1 U10 + sin θ (2) sin θ

(1)
1 U11

]|ψ〉
+ (terms involving other ancillary states). (A5)

The probabilistic state preparation is possible by setting the three parameters in the manner described above. θ
(1)
0 and θ

(1)
1 are

determined by the conditions,

tan θ
(1)
0 = c01

c00
, tan θ

(1)
1 = c11

c10
, (A6)

from which θ (2) is determined by the condition,

cos θ
(1)
1

cos θ
(1)
0

tan θ (2) = c10

c00
. (A7)
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APPENDIX B: PSEUDOCODES

Here we provide the pseudocodes for the calculation of response functions proposed in the present study. We assume that all
the energy eigenvalues of N-electron states have been obtained before entering the main procedure given just below.

1. Main procedure

Here is the main procedure. It calls directly or indirectly all the other procedures provided in this Appendix.

Procedure 1 Calculation of charge and spin response functions via statistical sampling.

Input:
Hamiltonian H, number of spatial orbitals norbs, N-electron ground state |�gs〉 with its energy EN

gs, energy eigenvalues EN
λ ,

real frequency ω, small positive constant δ, number of measurements Nmeas for each component
Output:

Response functions χ (ω)
1: function CALCRESPFUNCS (H, norbs, |�gs〉, EN

gs, EN , ω, δ, Nmeas)
2: for λ

3: dλ± := ±(ω + iδ) − (EN
λ − EN

gs )
4: χ tmp := 0
5: for p = 1, . . . , norbs � Diagonal components
6: for σ = α, β � Charge-charge contributions
7: Npσ,pσ := AMPLSCHARGEDIAG (H, |�gs〉, EN , p, σ, Nmeas)
8: for λ

9: χ tmp
pσ,pσ + = Nλpσ,pσ /dλ+ + Nλpσ,pσ /dλ−

10: for j = x, y � Spin-spin contributions
11: Spj,p j := AMPLSSPINDIAG (H, |�gs〉, EN , p, j, Nmeas)
12: for λ

13: χ
tmp
p j,p j+ = Sλp j,p j/dλ+ + Sλp j,p j/dλ−

14: for p, p′ = 1, . . . , norbs (p � p′) � Off-Diagonal components
15: for σ, σ ′ = α, β � Charge-charge contributions
16: if p > p′ or (p == p′ and σ == β and σ ′ == α) then
17: Npσ,p′σ ′ := AMPLSCHARGEOFFDIAG (H, |�gs〉, EN , p, p′, σ, σ ′, Nmeas)
18: for λ

19: χ
tmp
pσ,p′σ ′+ = Nλpσ,p′σ ′/dλ+ + N∗

λpσ,p′σ ′/dλ−, χ
tmp
p′σ ′,pσ + = N∗

λpσ,p′σ ′/dλ+ + Nλpσ,p′σ ′/dλ−
20: for j, j ′ = x, y � Spin-spin contributions
21: if p > p′ or (p == p′ and j == y and j′ == x) then
22: Spj,p′ j′ := AMPLSSPINOFFDIAG (H, |�gs〉, EN , p, p′, j, j ′, Nmeas)
23: for λ

24: χ
tmp
p j,p′ j′+ = Sλp j,p′ j′/dλ+ + S∗

λp j,p′ j′/dλ−, χ
tmp
p′ j′,p j+ = S∗

λp j,p′ j′/dλ+ + Sλp j,p′ j′/dλ−
25: for j = x, y, σ ′ = α, β � Spin-charge contributions
26: Mpj,p′σ ′ := AMPLSSPINCHARGEOFFDIAG (H, |�gs〉, EN , p, p′, j, σ ′, Spj,p j, Np′σ ′,p′σ ′ , Nmeas)
27: for λ

28: χ
tmp
p j,p′σ ′+ = Mλp j,p′σ ′/dλ+ + M∗

λp j,p′σ ′/dλ−, χ
tmp
p′σ ′,p j+ = M∗

λp j,p′σ ′/dλ+ + Mλp j,p′σ ′/dλ−
29: for p, p′ = 1, . . . , norbs � Representation for (n, x, y, z) from (α, β, x, y)
30: χpn,p′n := χ

tmp
pα,p′α + χ

tmp
pα,p′β + χ

tmp
pβ,p′α + χ

tmp
pβ,p′β, χpn,p′z := (

χ
tmp
pα,p′α − χ

tmp
pα,p′β + χ

tmp
pβ,p′α − χ

tmp
pβ,p′β

)
/2

31: χpz,p′n := (
χ

tmp
pα,p′α + χ

tmp
pα,p′β − χ

tmp
pβ,p′α − χ

tmp
pβ,p′β

)
/2, χpz,p′z := (

χ
tmp
pα,p′α − χ

tmp
pα,p′β − χ

tmp
pβ,p′α + χ

tmp
pβ,p′β

)
/4

32: for j = x, y
33: χpn,p′ j := χ

tmp
pα,p′ j + χ

tmp
pβ,p′ j, χpz,p′ j := (

χ
tmp
pα,p′ j − χ

tmp
pβ,p′ j

)
/2

34: χp j,p′n := χ
tmp
p j,p′α + χ

tmp
p j,p′β, χp j,p′z := (

χ
tmp
p j,p′α − χ

tmp
p j,p′β

)
/2

35: for j, j ′ = x, y
36: χp j,p′ j′ := χ

tmp
p j,p′ j′

37: return χ
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2. Charge-charge contributions

The following procedures calculate the matrix elements in the manner described in Sec. II C.

a. Diagonal components

Procedure 2 Calculation of diagonal components of transition matrices.

1: function AMPLSCHARGEDIAG (H, |�gs〉, EN , p, σ, Nmeas)
2: Npσ,pσ := 0
3: for m = 1, . . . , Nmeas

4: Input |�gs〉 to Cpσ and measure the ancilla |qA
0 〉 � Circuit in Fig. 3

5: if |qA
0 〉 == |0〉 then

6: E := QPE(|�̃〉,H), Find E among {EN
λ }λ � For the register |�̃〉 coming out of the circuit

7: Nλpσ,pσ + = 1
8: Npσ,pσ ∗ = 1/Nmeas

9: return Npσ,pσ

b. Off-diagonal components

Procedure 3 Calculation of off-diagonal components of transition matrices.

1: function AMPLSCHARGEOFFDIAG (H, |�gs〉, EN , p, p′, σ, σ ′, Nmeas)
2: T ±

pσ,p′σ ′ := AMPLSCHARGEAUX (H, |�gs〉, EN , p, p′, σ, σ ′, Nmeas)
3: T ±

p′σ ′,pσ := AMPLSCHARGEAUX (H, |�gs〉, EN , p′, p, σ ′, σ, Nmeas)
4: for λ

5: Nλpσ,p′σ ′ := e−iπ/4(T +
λpσ,p′σ ′ − T −

λpσ,p′σ ′ ) + eiπ/4(T +
λp′σ ′,pσ − T −

λp′σ ′,pσ ) � See eq. (25)
6: return Npσ,p′σ ′

Procedure 4 Calculation of transition amplitudes for auxiliary states.

1: function AMPLSCHARGEAUX (H, |�N
gs〉, EN , p, p′, σ, σ ′, Nmeas)

2: T ±
pσ,p′σ ′ := 0

3: for m = 1, . . . , Nmeas

4: Input |�gs〉 to Cpσ,p′σ ′ and measure the ancillae |qA
2 〉 and |qA

1 〉 � Circuit in Fig. 4
5: if |qA

2 〉 ⊗ |qA
1 〉 == |0〉 ⊗ |1〉 then

6: E := QPE(|�̃〉,H), Find E among {EN
λ }λ � For the register |�̃〉 coming out of the circuit

7: T +
λpσ,p′σ ′+ = 1

8: else if |qA
2 〉 ⊗ |qA

1 〉 == |1〉 ⊗ |1〉 then
9: E := QPE(|�̃〉,H), Find E among {EN

λ }λ � For the register |�̃〉 coming out of the circuit
10: T −

λpσ,p′σ ′+ = 1
11: T ±

pσ,p′σ ′ ∗ = 1/Nmeas

12: return T ±
pσ,p′σ ′
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3. Spin-spin contributions

The following procedures calculate the matrix elements in the manner described in Sec. II D.

a. Diagonal components

Procedure 5 Calculation of diagonal components of transition matrices.

1: function AMPLSSPINDIAG (H, |�gs〉, EN , p, j, Nmeas)
2: Spj,p j := 0
3: for m = 1, . . . , Nmeas

4: Input |�gs〉 to Cp j and measure the ancilla |qA〉 � Circuit in Fig. 5
5: if |qA〉 == |0〉 then
6: E := QPE(|�̃〉,H), Find E among {EN

λ }λ � For the register |�̃〉 coming out of the circuit
7: Sλp j,p j+ = 1
8: Spj,p j∗ = 1/(4Nmeas)
9: return Spj,p j

b. Off-diagonal components

Procedure 6 Calculation of off-diagonal components of transition matrices.

1: function AMPLSSPINOFFDIAG (H, |�gs〉, EN , p, p′, j, j ′, Nmeas)
2: T ±

p j,p′ j′ := AMPLSSPINAUX (H, |�gs〉, EN , p, p′, j, j ′, Nmeas)

3: T ±
p′ j′,p j := AMPLSSPINAUX (H, |�gs〉, EN , p′, p, j ′, j, Nmeas)

4: for λ

5: Sλp j,p′ j′ := e−iπ/4(T +
λp j,p′ j′ − T −

λp j,p′ j′ ) + eiπ/4(T +
λp′ j′,p j − T −

λp′ j′,p j ) � See eq. (38)
6: return Spj,p′ j′

Procedure 7 Calculation of transition amplitudes for auxiliary states.

1: function AMPLSSPINAUX (H, |�gs〉, EN , p, p′, j, j ′, Nmeas)
2: T ±

p j,p′ j′ := 0
3: for m = 1, . . . , Nmeas

4: Input |�gs〉 to Cp j,p′ j′ and measure the ancillae |qA
1 〉 and |qA

0 〉 � Circuit in Fig. 6
5: if |qA

1 〉 ⊗ |qA
0 〉 == |0〉 ⊗ |0〉 then

6: E := QPE(|�̃〉,H), Find E among {EN
λ }λ � For the register |�̃〉 coming out of the circuit

7: T +
λp j,p′ j′+ = 1

8: else if |qA
1 〉 ⊗ |qA

0 〉 == |1〉 ⊗ |0〉 then

9: E := QPE(|�̃〉,H), Find E among {EN
λ }λ � For the register |�̃〉 coming out of the circuit

10: T −
λp j,p′ j′+ = 1

11: T ±
p j,p′ j′ ∗ = 1/(4Nmeas)

12: return T ±
p j,p′ j′

4. Spin-charge contributions

The following procedures calculate the matrix elements in the manner described in Sec. II E.

Procedure 8 Calculation of off-diagonal components of transition matrices.

1: function AMPLSSPINCHARGEOFFDIAG (H, |�gs〉, EN , p, p′, j, σ ′, Spj,p j, Np′σ ′,p′σ ′ , Nmeas)
2: T ±

p j,p′σ ′ := AMPLSSPINCHARGEAUX (H, |�gs〉, EN , ±, p, p′, j, σ ′, Nmeas)
3: for λ

4: Mλp j,p′σ ′ := e−iπ/4T +
λp j,p′σ ′ + eiπ/4T −

λp j,p′σ ′ − √
2Sλp j,p j − Nλp′σ ′,p′σ ′

2
√

2
� See eq. (43)

5: return Mpj,p′σ ′
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Procedure 9 Calculation of transition amplitudes for auxiliary states.

1: function AMPLSSPINCHARGEAUX (H, |�gs〉, EN , ν, p, p′, j, σ ′, Nmeas)
2: T ν

p j,p′σ ′ := 0
3: for m = 1, . . . , Nmeas

4: Input |�gs〉 to Cν
p j,p′σ ′ and measure the ancillae |qA

2 〉 and |qA
0 〉 � Circuit in Fig. 7

5: if |qA
2 〉 ⊗ |qA

0 〉 == |0〉 ⊗ |0〉 then
6: E := QPE(|�̃〉,H), Find E among {EN

λ }λ � For the register |�̃〉 coming out of the circuit
7: T ν

λp j,p′σ ′+ = 1
8: T ν

p j,p′σ ′ ∗ = 1/Nmeas

9: return T ν
p j,p′σ ′
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