
PHYSICAL REVIEW RESEARCH 2, 033042 (2020)

Linear-time maximum likelihood decoding of surface codes over the quantum erasure channel

Nicolas Delfosse1,2,3 and Gilles Zémor 4

1IQIM, California Institute of Technology, Pasadena, California 91125, USA
2Department of Physics and Astronomy, University of California, Riverside, California 92507, USA

3Microsoft Quantum and Microsoft Research, Redmond, Washington 98052, USA
4Mathematical Institute, IMB, UMR 5251, Bordeaux University, France

(Received 6 November 2019; accepted 6 April 2020; published 9 July 2020)

Surface codes are among the best candidates to ensure the fault tolerance of a quantum computer. In order
to avoid the accumulation of errors during a computation, it is crucial to have at our disposal a fast decoding
algorithm to quickly identify and correct errors as soon as they occur. We propose a linear-time maximum
likelihood decoder for surface codes over the quantum erasure channel. This decoding algorithm for dealing
with qubit loss is optimal both in terms of performance and speed.

DOI: 10.1103/PhysRevResearch.2.033042

I. INTRODUCTION

Surface codes [1–3] are one of the leading candidates
to ensure the fault tolerance of a quantum computer. Error
correction is based on the measurement of local operators
on a lattice of qubits. The measurement outcome, called the
syndrome, is then processed by the decoding algorithm which
uses this information to infer the error which occurred. In
order to avoid the accumulation of errors during computation,
it is essential for the decoder to be fast.

The quantum erasure channel [4,5] is the noise model that
represents loss or leakage outside the computational space
in multilevel systems. Erasures are ubiquitous in various
quantum hardware due to photon loss in optical elements or
long-distance quantum communication [6–8], atom loss [9],
or leakage in trapped ions [10,11].

The quantum erasure channel also provides a theoretical
framework in high-energy physics to explore the ADS-CFT
correspondence between anti-de Sitter (ADS) spaces and con-
formal field theories (CFT) which allows one to reconstruct
an erased region on the boundary of the model [12]. Finally,
the performance of quantum error correcting codes against
erasures relates to the ability to perform fault-tolerant gates
on encoded qubits [13,14].

The loss of a qubit is equivalent to applying a random Pauli
error to this qubit, while giving, as additional data, the position
of the error. For stabilizer codes, this extra information re-
duces the decoding problem to solving a linear system, which
can be done with cubic complexity. In the particular case of
surface codes, the syndrome of an error is a set of vertices
of a lattice and decoding amounts to finding a set of paths
connecting these vertices by pairs or to the boundary. One
could pick two vertices and connect them by a path and repeat

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

until all the syndrome vertices are matched. This would lead to
a quadratic complexity. This strategy was adopted by Dennis
et al. to decode Pauli errors [2] or by Barrett and Stace in the
case of a combination of Pauli errors and erasures [15].

In the present work, we propose a linear-time maximum
likelihood decoder for erasures over surface codes. This is
optimal both in terms of performance and in terms of com-
plexity. Our algorithm can be used with any surface code, with
arbitrary genus, and any type of boundary [16–18], including
hyperbolic codes [19–21]. In the case of Pauli errors the
efficient maximum likelihood decoder obtained by Bravyi
et al. [22], only applies to a restricted set of surfaces.

In the rest of the paper, we describe our decoding algorithm
and we prove that it is a maximum likelihood decoder and that
its complexity is linear. We first consider Kitaev’s codes. Then
we generalize the approach to surfaces with boundaries, more
relevant for practical purposes [3].

II. KITAEV’S CODES

Kitaev’s codes [1] are obtained by imposing local con-
straints on qubits placed on a closed surface. Since only the
combinatorial structure of the surface matters, we denote by
(V, E , F) such a surface with vertex set V , edge set E , and
face set F . These three sets are assumed to be finite. An edge
e ∈ E is a pair of distinct vertices e = {u, v}. A face is a region
of the surface homeomorphic to a disk and delimited by a
set of edges. We represent a face by the set of edges lying
on its boundary. We assume that the graph (V, E) has neither
loops nor multiple edges. We also suppose that its dual is well
defined and satisfies the same properties.

Consider the Hilbert space H = (C2)⊗E . Each qubit is
indexed by an edge e, and the Pauli operator acting on this
qubit as the matrix X, Y , or Z and acting trivially elsewhere is
denoted respectively by Xe, Ye, or Ze. Kitaev’s code is defined
to be the ground space of the Hamiltonian

−
∑

v∈V

X (v) −
∑

f ∈F

Z (f),

2643-1564/2020/2(3)/033042(5) 033042-1 Published by the American Physical Society

https://orcid.org/0000-0002-6041-9554
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033042&domain=pdf&date_stamp=2020-07-09
https://doi.org/10.1103/PhysRevResearch.2.033042
https://creativecommons.org/licenses/by/4.0/

NICOLAS DELFOSSE AND GILLES ZÉMOR PHYSICAL REVIEW RESEARCH 2, 033042 (2020)

where X (v) = ∏
v∈e Xe and Z (f) = ∏

e∈ f Ze. The operators
X (v) and Z (f) generate a group S, the stabilizer group, which
fixes the code space. Elements of S are called stabilizers. The
Z stabilizers, which are products of face operators Z (f), are
the operators of {I, Z}⊗E whose support is a trivial cycle of
G. By cycle, we mean here a subset of edges of G which
meets every vertex an even number of times. A cycle is said
to be trivial if it lies on the boundary of a set of faces. In
the same way, X stabilizers correspond to trivial cycles of
the dual graph. The correction of Pauli errors is based on
the measurement of the generators X (v) and Z (f) which tells
us whether or not the error commutes with these operators.
The outcome of this measurement is called the syndrome of
the error. Errors with a trivial syndrome, meaning that they
commute with all the stabilizers, can be seen as operators
acting on the code space and are called logical operators. For
instance, stabilizers are trivial logical operators. Nontrivial
logical operators correspond to nontrivial cycles in the graph
G or its dual.

III. MAXIMUM LIKELIHOOD DECODER
FOR QUBIT LOSS

The quantum erasure channel is one of the most simple
noise models. Each qubit is lost, or erased, independently
with probability p. Such a loss can be detected and the
missing qubit is then replaced by a totally mixed state I/2.
Writing I/2 = 1

4 (ρ + XρX + Y ρY + ZρZ), we see that this
new qubit can be interpreted as the original state which
suffers from a Pauli error I, X, Y , or Z chosen uniformly
at random. The set of lost qubits is denoted by E. The
encoded state is subjected to a random uniform Pauli error
P whose support is included in E. Denote this condition
by P ⊂ E.

Just like when dealing with Pauli noise, one can then
measure the stabilizer generators X (v) and Z (f) and try to
recover the error P from its syndrome. The main difference
with Pauli channels is the additional knowledge of the erasure
pattern E. Since operators of S act trivially on the code space,
the goal of the decoder is to identify the coset PS of the error,
knowing the set E and the syndrome σ of P. The optimal
strategy, called maximum likelihood decoding (MLD), is to
maximize the conditional probability P (PS|E, σ).

To illustrate how the knowledge of the erasure E simpli-
fies the decoding problem, assume that we found an error
P̃ ⊂ E whose syndrome matches σ . Both errors P and P̃
have the same syndrome, hence P̃ and P differ in a logical
operator L ⊂ E, trivial or not. Due to the fact that errors
Q ⊂ E are uniformly distributed, P (QS|E, σ) is proportional
to the number |(QS) ∩ E| of Pauli errors of that coset that
are included in E. This number depends only on the number
|S ∩ E| of stabilizers having support inside E, which shows
that all the cosets are equiprobable. Therefore, MLD con-
sists simply of returning an error coset P̃S such that P̃ ⊂ E
and the syndrome of P̃ is equal to a given σ . This proves
the following.

Lemma 1. Given an erasure E ⊂ E for a surface code and
a measured syndrome σ , any coset P̃S of a Pauli error P̃ ⊂ E
of syndrome σ is a most likely coset.

The same argument applies for any stabilizer code.

Algorithm 1. MLD for surface codes.

Require: A surface G = (V, E , F), an erasure E ⊂ E and the
syndrome σ ⊂ V of a Z error.

Ensure: A Z error P such that P ⊂ E and σ (P) = σ .
1: Construct a spanning forest FE of E.
2: Initialize A by A = ∅.
3: While FE �= ∅, pick a leaf edge e = {u, v} with pendant

vertex u, remove e from FE and apply the two rules:
4: (R1) If u ∈ σ , add e to A, remove u from σ and flip v in σ .
5: (R2) If u /∈ σ do nothing.
6: Return P = ∏

e∈A Ze.

IV. LINEAR-TIME MAXIMUM LIKELIHOOD DECODER

We now propose a fast algorithm that returns such a most
likely coset for Kitaev’s codes. We detail the construction
of the Z part of the error with Algorithm 1, illustrated n
Fig. 1. The same algorithm will be applied to the dual graph
to recover the X part of the error.

Only measurements of operators X (v) can detect a Z error.
The syndrome of a Z error P is thus the subset σ (P) ⊂ V
of vertices v such that X (v) anticommutes with this error.
Equivalently, it is the set of vertices surrounded by an odd
number of qubits supporting an error Z . In order to translate
our decoding problem into a graphical language, denote by
∂ (A) the set of vertices that a subset A ⊂ E encounters an odd
number of times and call it the boundary of A. The syndrome
of the Z-error pattern supported on A is exactly ∂ (A). Given
E ⊂ E and σ ⊂ V , we are looking for a subset of edges A ⊂ E
such that ∂ (A) = σ .

Paradoxically, an obstacle to a linear-time complexity is the
presence of cycles in E. Although cycles increase the number
of paths from a vertex to another and potentially make it
easier to find one, they also make it easier to make suboptimal
choices. Our basic idea is not to try to sequentially find paths
that pair the syndrome vertices together but instead to shrink
recursively the set of edges on which we have yet to make
a decision. To this end we select a spanning forest FE inside
E, that is, a maximal subset of edges of E that contains no
cycle and spans all the vertices of E. If E is a connected graph,

(a)

Z

Z

Z

Z

Z

Z

(b)

Z

Z Z

Z

Z

Z

Z

Z

FIG. 1. (a) A square lattice of the torus. Red thick edges mark
the set E of erased qubits which support some Z error. Its syndrome
is indicated by large red nodes. (b) A spanning forest FE [thick red
lines in (b)] is constructed. Then, starting from the leaves, an error
included in the FE is constructed using the syndrome. This provides
a correct estimation of the error up to a stabilizer.

033042-2

LINEAR-TIME MAXIMUM LIKELIHOOD DECODING OF … PHYSICAL REVIEW RESEARCH 2, 033042 (2020)

then FE is also connected and is called a spanning tree. Such
a forest can be found in linear time [23].

Equipped with the forest FE that contains all the syn-
drome vertices, we can now find the required subset A very
efficiently. Starting with the empty set, we construct A, by
applying recursively the following rules.

(R1) Pick a leaf, that is, an edge e = {u, v} connected to
the forest through only one of its two endpoints, say v. The
vertex u is called a pendant vertex. Assume first that u ∈ σ ,
then we add the edge e to the set A and we flip the vertex v.
By flipping, we mean that v is added to the set σ if v /∈ σ and
it is removed from σ in the case v ∈ σ . Then, e is removed
from the forest FE.

(R2) In the case when u /∈ σ , this edge is simply removed
from FE and A is kept unchanged.

Through these two steps, we peel the forest FE until only
an empty set remains. The construction of the set A is then
complete. This procedure relies on the following obvious
remark, stated as a lemma to emphasize the role of the two
rules applied in Algorithm 1.

Lemma 2 (leaf alternative). Let A be a subset of edges of a
tree T . If e = {u, v} is a leaf with pendant vertex u, then (R1)
either u ∈ ∂ (A) and e ∈ A, or (R2) u /∈ ∂ (A) and e /∈ A.

This strategy is guaranteed to end after a finite number of
steps. It remains to show that it returns a set A such that A ⊂ E
and ∂ (A) = σ . We must verify that such a set A exists and that
the peeling process does not depend on the order in which
leaves of the forest are removed. This is done in the proof of
Theorem 1.

Theorem 1. For surface codes with bounded degree and
faces of bounded size, applying Algorithm 1 to the graph
and to its dual produces a linear-time maximum likelihood
decoder.

During step 3 of the algorithm, a naive approach would be
to look for a leaf by running over the forest at each round but
this strategy would lead to a superlinear complexity. However,
we can ensure linear complexity by running over the whole
forest and precomputing a list of leaves. For a bounded degree
graph, this list can then be updated in constant time at each
round when an edge is removed from the forest.

Proof. Finding a spanning forest has a linear cost, then
our algorithm runs over each edge of the forest only once,
leading to a linear-time complexity overall. We have to prove
that the set A, constructed by this algorithm, satisfies the
claimed properties. The fact that A ⊂ E is immediate. Only
the condition ∂ (A) = σ deserves some attention. First, we will
show that, for any choice of FE, there exists a set A ⊂ FE such
that ∂ (A) = σ and that this set is unique. Then we will see
that applying (R1) and (R2), starting from the leaves, indeed
constructs this set A.

Existence: There exists a subset B such that B ⊂ E and
∂ (B) = σ since σ is the syndrome of an error. We will reroute
the paths contained in B to squeeze this subset inside FE

without changing its boundary. Let x1, . . . , xm be the edges of
B\FE. By maximality of the forest FE, adding any extra edge
xi to FE creates a cycle γi ⊂ FE ∪ {xi}. In order to remove x1

from the set B, replace B by B1 = B�γ1 where � denotes
the symmetric difference of these two sets of edges. Then,
x1 /∈ B1, only edges of FE are added to B and x2, . . . , xm are
untouched. By repeating this transformation, one creates a

sequence Bi+1 = Bi�γi such that Bi+1 ⊂ TE ∪ {xi, . . . , xm}
for i = 1, . . . , m. The last set, Bm, is included in FE. Taking
the symmetric difference with a cycle γi preserves the bound-
ary, i.e., ∂ (Bi) = ∂ (B) for all i. This proves that the set Bm

satisfies both conditions Bm ⊂ FE and ∂ (Bm) = σ . This is our
set A.

Uniqueness: If there exist two such subsets A and A′, their
symmetric difference A�A′ is a subset of the forest which has
a trivial boundary ∂ (A�A′) = ∅ meaning that A�A′ is a cycle.
Since this cycle is in a forest, it can only be the empty set,
proving that A = A′.

Now that existence and uniqueness of A are established, we
see that the alternative offered by Lemma 2 can only end with
the set A. The result of our algorithm is independent of the
order in which we pick the leaves in step 3 by uniqueness of
A. The existence of A guarantees that our algorithm finds this
set after peeling the whole forest. �

V. SURFACES WITH BOUNDARIES

Kitaev’s surface codes were generalized to surfaces with
boundaries [16,17], leading to a key simplification for
the experimental realization of topological codes. Adapting
Algorithm 1 to these codes presents two difficulties. First, the
syndrome depends on the type of boundary and second, the
spanning forest has to be grown in a way that depends on the
boundary type. In what follows, we present a generalization
of Algorithm 1 to the case of surface with boundaries.

We use the formalism of [18] that encompasses both gen-
eralizations of Kitaev’s codes [16,17]. We consider a surface
G = (V, E , F) with boundary, which means that some edges
belong to a unique face. On the boundary, some edges and
their endpoints are declared to be open. We denoted by Ĕ
(respectively, V̆) these open sets and by V̊ = V \V̆ and E̊ =
E\Ĕ the nonopen sets. Qubits are placed on nonopen edges
and the generalized surface code is defined as the ground
space of the Hamiltonian

−
∑

v∈V̊

X (v) −
∑

f ∈F

Z (f),

where X (v) = ∏
v∈e,e∈E̊ Xe and Z (f) = ∏

e∈ f ,e∈E̊ Ze. No qubit
is placed on an open edge and open vertices do not support any
operator X (v).

Consider an erasure E ⊂ E̊ which comes with a Pauli error
affecting erased qubits. Again, we focus on the correction of
Z-type errors. Open vertices do not support any measurement
X (v). Hence, the syndrome of a Z error of support A ⊂ E̊ is
given by the restriction of ∂ (A) to nonopen vertices. Denote by
∂̊ (A) ⊂ V̊ this restricted boundary. The missing information
on open vertices makes it impossible to reconstruct the error
starting from those vertices. We must find a way to peel the
whole forest using only nonopen vertices. In order to be sure
that the peeling algorithm is not stuck before removing all
the edges of the forest, we will grow the forest starting from
open vertices and peel it the other way around as depicted
in Fig. 2.

In Algorithm 2, we adapt the construction of the span-
ning forest. First, let us explain a simple strategy to find
a spanning tree of a connected graph H = (V, E). For a

033042-3

NICOLAS DELFOSSE AND GILLES ZÉMOR PHYSICAL REVIEW RESEARCH 2, 033042 (2020)

(a) (b)
Z Z

Z Z

Z

Z

Z

Z

Z

(c) (d)

Z

Z

Z

Z

Z

Z

Z

Z

Z

FIG. 2. (a) Surface code with boundaries. White nodes and
dashed lines represent open vertices and open edges. (b) Red thick
lines indicate an erasure E with a Z error and its syndrome given by
the large red vertices. (c) A spanning forest FE , with open vertices
as a seed. Arrows show the way the forest is grown. (d) The error is
estimated by reversing the arrows.

general graph, applying this method to all the connected
components produces a spanning forest. Our starting point
is a tree T that contains only a single arbitrary vertex v of
H and no edge. We grow T by adding edges incident to
the tree that connect T with a vertex of H that does not
already belong to T . After adding |V | − 1 edges, one gets our
spanning tree.

In Algorithm 2, we will grow a spanning forest of a
graph H = (V, E) equipped with a marked subset of ver-
tices O ⊂ V that we call the seed. The spanning tree of a
connected component containing a vertex vO ∈ O is con-
structed starting with this vertex vO. Then, just as before
we add edges that reach new vertices but we also require
that these newly reached vertices do not belong to O. Based
on this strategy, the spanning tree obtained is connected to
the boundary in at most one open vertex. If the connected

Algorithm 2. MLD for surfaces with boundaries.

Require: A surface G = (V, E , F) with boundaries, an erasure
E ⊂ E̊ , and the syndrome σ ⊂ V̊ of a Z error.

Ensure: A Z error P such that P ⊂ E and σ (P) = σ .
1: Construct a spanning forest FE of E with seed V̆ ∩ V (E)

where V (E) is the set of vertices incident to E.
2: Initialize A by A = ∅.
3: While FE �= ∅, pick a leaf edge e = {u, v} with pendant

vertex u ∈ V̊ , remove e from FE , and apply the two rules:
4: (R1) If u ∈ σ , add e to A, remove u from σ , and flip v in σ .
5: (R2) If u /∈ σ do nothing.
6: Return P = ∏

e∈A Ze.

FIG. 3. Monte Carlo simulation of the peeling decoder for (a) the
2D toric code and (b) the 3D toric code. Each data point is obtained
from 105 decoding trials.

component does not contain any seed vertex, the previous
method applies.

Theorem 2. For generalized surface codes with bounded
degree and faces of bounded size, applying Algorithm 2 to
the graph and to its dual produces a linear-time maximum
likelihood decoder.

Proof. Existence and uniqueness of the set A follow from
the same argument as in the proof of Theorem 1 after replac-
ing cycles by relative cycles. Recall that a relative cycle is
a subset of edges that meets each nonopen vertex an even
number of times. The space of relative cycles of graph is
studied for instance in Sec. 4.1 of [18].

Then, Lemma 2, which provides the recursive construction
of the error, is used in an identical way. We only need to
make sure that the pendant vertices u picked in step 3 are
not open. Our algorithm picks these vertices by reversing the
construction of the forest with open vertices as a seed. This
guarantees that one can peel the whole forest. �

Figure 3 shows the results of our numerical simulation of
the Peeling decoder for the two-dimensional (2D) toric code
and the three-dimensional (3D) toric code with erasure on
edges. For these two codes, we observed a threshold of 50%
and 24.9%, which matches the optimal threshold predicted by
bond percolation theory [24].

033042-4

LINEAR-TIME MAXIMUM LIKELIHOOD DECODING OF … PHYSICAL REVIEW RESEARCH 2, 033042 (2020)

VI. CONCLUSION

Despite the presence of inconvenient short cycles, we man-
aged to design an optimal decoding algorithm for correction
of erasures for arbitrary surface codes. In the case of classical
error correction, studying erasure decoding paved the way for
better and better decoders in the case of more complicated
channels. We may hope that in the quantum setting, solving
the decoding problem for the erasure channel may similarly
lead towards improved decoders for more complicated noise
models and other families of codes.

A serious obstacle to decoding quantum Low Density
Parity Check (LDPC) codes is also the presence of short
cycles in their Tanner graph. How to deal with them in general
remains widely open [25–28]. It is crucial to consider such
generalizations that may allow for fault-tolerant universal

quantum computation with a considerably reduced overhead
[29–32].

One could also consider the correction of losses assuming
imperfect gates and measurements [33,34] or in the context of
linear optical quantum computing where photon losses are a
major obstacle [6,35–37].

ACKNOWLEDGMENTS

N.D. thanks Jonas Anderson for his comments on a prelim-
inary version of this work. N.D. acknowledges funding pro-
vided by the Institute for Quantum Information and Matter, an
NSF Physics Frontiers Center (NSF Grant No. PHY-1125565)
with the support of the Gordon and Betty Moore Foundation
(GBMF-2644).

[1] A. Y. Kitaev, Ann. Phys. 303, 27 (2003).
[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, J. Math. Phys.

43, 4452 (2002).
[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland,

Phys. Rev. A 86, 032324 (2012).
[4] M. Grassl, T. Beth, and T. Pellizzari, Phys. Rev. A 56, 33 (1997).
[5] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, Phys. Rev.

Lett. 78, 3217 (1997).
[6] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,

46 (2001).
[7] B. Bell, D. Herrera-Martí, M. Tame, D. Markham, W.

Wadsworth, and J. Rarity, Nat. Commun. 5, 5480 (2014).
[8] F. Ewert, M. Bergmann, and P. van Loock, Phys. Rev. Lett. 117,

210501 (2016).
[9] J. Vala, K. B. Whaley, and D. S. Weiss, Phys. Rev. A 72, 052318

(2005).
[10] R. Fazio, G. M. Palma, and J. Siewert, Phys. Rev. Lett. 83, 5385

(1999).
[11] L.-A. Wu, M. S. Byrd, and D. A. Lidar, Phys. Rev. Lett. 89,

127901 (2002).
[12] F. Pastawski, B. Yoshida, D. Harlow, and J. Preskill, J. High

Energy Phys. 06 (2015) 149.
[13] S. Bravyi, D. Poulin, and B. Terhal, Phys. Rev. Lett. 104,

050503 (2010).
[14] F. Pastawski and B. Yoshida, Phys. Rev. A 91, 012305 (2015).
[15] S. D. Barrett and T. M. Stace, Phys. Rev. Lett. 105, 200502

(2010).
[16] M. H. Freedman and D. A. Meyer, Found. Comput. Math. 1,

325 (2001).
[17] S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052.
[18] N. Delfosse, P. Iyer, and D. Poulin, arXiv:1606.07116.
[19] M. H. Freedman, D. A. Meyer, and F. Luo, Mathematics of

quantum computation (Chapman and Hall, London, 2002),
pp. 287–320.

[20] G. Zémor, in Proceedings of the Second International Workshop
on Coding and Cryptology (IWCC 2009) (Springer-Verlag,
Berlin, 2009), pp. 259–273.

[21] N. P. Breuckmann and B. M. Terhal, IEEE Trans. Inf. Theory
62, 3731 (2016).

[22] S. Bravyi, M. Suchara, and A. Vargo, Phys. Rev. A 90, 032326
(2014).

[23] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms (MIT, Cambridge, MA, 2009).

[24] T. M. Stace, S. D. Barrett, and A. C. Doherty, Phys. Rev. Lett.
102, 200501 (2009).

[25] D. J. C. MacKay, G. Mitchison, and P. L. McFadden, IEEE
Trans. Inf. Theory 50, 2315 (2004).

[26] D. Poulin and Y. Chung, Quantum Inf. Comput. 8, 987 (2008).
[27] N. Delfosse and G. Zémor, Quantum Information & Comput.

13, 793 (2013).
[28] J.-P. Tillich and G. Zémor, IEEE Trans. Inf. Theory 60, 1193

(2013).
[29] D. Gottesman, Quantum Inf. Comput. 14, 1338 (2014).
[30] O. Fawzi, A. Grospellier, and A. Leverrier, in 2018 IEEE

59th Annual Symposium on Foundations of Computer Science
(FOCS) (IEEE, New York, 2018), pp. 743–754.

[31] E. Campbell, Quant. Sci. Technol. (2019).
[32] N. P. Breuckmann and V. Londe, arXiv:2001.03568.
[33] A. C. Whiteside and A. G. Fowler, Phys. Rev. A 90, 052316

(2014).
[34] M. Suchara, A. W. Cross, and J. M. Gambetta, in 2015 IEEE

International Symposium on Information Theory (ISIT) (IEEE,
New York, 2015), pp. 1119–1123.

[35] M. A. Nielsen, Phys. Rev. Lett. 93, 040503 (2004).
[36] D. E. Browne and T. Rudolph, Phys. Rev. Lett. 95, 010501

(2005).
[37] K. Kieling, T. Rudolph, and J. Eisert, Phys. Rev. Lett. 99,

130501 (2007).

033042-5

https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevA.56.33
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1103/PhysRevLett.78.3217
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/35051009
https://doi.org/10.1038/ncomms6480
https://doi.org/10.1038/ncomms6480
https://doi.org/10.1038/ncomms6480
https://doi.org/10.1038/ncomms6480
https://doi.org/10.1103/PhysRevLett.117.210501
https://doi.org/10.1103/PhysRevLett.117.210501
https://doi.org/10.1103/PhysRevLett.117.210501
https://doi.org/10.1103/PhysRevLett.117.210501
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevA.72.052318
https://doi.org/10.1103/PhysRevLett.83.5385
https://doi.org/10.1103/PhysRevLett.83.5385
https://doi.org/10.1103/PhysRevLett.83.5385
https://doi.org/10.1103/PhysRevLett.83.5385
https://doi.org/10.1103/PhysRevLett.89.127901
https://doi.org/10.1103/PhysRevLett.89.127901
https://doi.org/10.1103/PhysRevLett.89.127901
https://doi.org/10.1103/PhysRevLett.89.127901
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1007/JHEP06(2015)149
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevLett.104.050503
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevA.91.012305
https://doi.org/10.1103/PhysRevLett.105.200502
https://doi.org/10.1103/PhysRevLett.105.200502
https://doi.org/10.1103/PhysRevLett.105.200502
https://doi.org/10.1103/PhysRevLett.105.200502
https://doi.org/10.1007/s102080010013
https://doi.org/10.1007/s102080010013
https://doi.org/10.1007/s102080010013
https://doi.org/10.1007/s102080010013
http://arxiv.org/abs/arXiv:quant-ph/9811052
http://arxiv.org/abs/arXiv:1606.07116
https://doi.org/10.1109/TIT.2016.2555700
https://doi.org/10.1109/TIT.2016.2555700
https://doi.org/10.1109/TIT.2016.2555700
https://doi.org/10.1109/TIT.2016.2555700
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevA.90.032326
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1103/PhysRevLett.102.200501
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://doi.org/10.1109/TIT.2004.834737
https://dblp.org/db/journals/qic/qic8.html
https://dblp.org/db/journals/qic/qic13.html
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://doi.org/10.1109/TIT.2013.2292061
https://dblp.org/db/journals/qic/qic14.html
http://arxiv.org/abs/arXiv:2001.03568
https://doi.org/10.1103/PhysRevA.90.052316
https://doi.org/10.1103/PhysRevA.90.052316
https://doi.org/10.1103/PhysRevA.90.052316
https://doi.org/10.1103/PhysRevA.90.052316
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1103/PhysRevLett.93.040503
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.95.010501
https://doi.org/10.1103/PhysRevLett.99.130501
https://doi.org/10.1103/PhysRevLett.99.130501
https://doi.org/10.1103/PhysRevLett.99.130501
https://doi.org/10.1103/PhysRevLett.99.130501

