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Self-driven oscillation in Coulomb blockaded suspended carbon nanotubes
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Suspended carbon nanotubes are known to support self-driven oscillations due to electromechanical feedback
under certain conditions, including low temperatures and high mechanical quality factors. Prior reports identified
signatures of such oscillations in Kondo or high-bias transport regimes. Here, we observe self-driven oscillations
that give rise to significant conduction in normally Coulomb blockaded low-bias transport. Using a master
equation model, the self-driving is shown to result from strongly energy-dependent electron tunneling, and the
dependencies of transport features on bias, gate voltage, and temperature are well reproduced.
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I. INTRODUCTION

Nanoscale electromechanical resonators based on sus-
pended carbon nanotubes (CNTs) have achieved state-of-
the-art sensitivity in mass and force detection [1,2], owing
to the small mass and high quality (Q) factors of CNTs.
Under certain conditions, a positive feedback between the
tunneling of charge carriers on/off the CNT and mechanical
motion can lead to self-driven oscillations [3]. The study of
self-driving phenomena is itself fundamentally interesting,
with implications for mass/force sensing, and the underlying
carrier-motion coupling has potential application for mechan-
ical cooling [4]. Self-driven oscillations were first observed
in the electronic transport of suspended CNT transistors with
high mechanical Q factors [5]. Further studies verified the
mechanical nature of these transport signatures [6,7]. Similar
features were recently observed in Kondo [4] and high-bias
tunneling transport [8], where advanced readout techniques
confirmed the large amplitude and bistability of self-driven
states. In these prior studies, the transport signatures of self-
driven oscillations appeared as instabilities in the current-
carrying transport regime. In this paper, we report the ex-
perimental observation at subkelvin temperatures of self-
driven oscillations that produce significant nonzero current in
the otherwise Coulomb blockaded, zero-current regime. The
feedback system is modeled using a master equation approach
that includes energy-dependent tunneling, and excellent qual-
itative agreement between theory and experiment is obtained.
It is concluded that energy-dependent tunneling leading to
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negative damping of the mechanical motion is a necessary
condition for producing these oscillation states.

II. EXPERIMENT

The suspended nanotube devices were fabricated by a
process in which the CNT is grown separately from the
device wafer, then transferred onto predefined contacts by
stamping [9,10]. The device consists of 400-nm-thick Ti/Au
source/drain electrodes on a SiO2/Si substrate. A single 60-
nm-thick Ni gate electrode is placed within the gap between
the contacts. Figure 1(a) is a schematic of the device design,
and Fig. 1(b) shows a scanning electron microscope (SEM)
image of a device similar to those used in experiments. Exper-
iments were performed at 1.4 K in a pumped He4 cryostat and
at 30 and 800 mK in an Oxford Instruments DR200 dilution
refrigerator. Two devices were measured on the same chip
during the same cooldowns, and were found to have similar
characteristics and to exhibit qualitatively similar self-driven
oscillations. We focus on device 1 in this paper, and provide
data from device 2 in Appendix C.

The mechanical resonance frequency was measured as
a function of gate voltage using a Coulomb rectification
technique [11]. The experimental resonance frequencies are
shown by the points in Fig. 1(c), fit by an Euler-Bernoulli
beam model (solid line) of the gate voltage dependence, which
gives an estimate of the CNT diameter (1.9 nm), suspended
length (2.2 μm), and residual compression (35 pN) [12]. The
linewidths of the resonance peaks at fixed gate voltage provide
a lower bound for the mechanical quality factor of Q > 104.
Axial field magnetospectroscopy supports the CNT diameter
estimate of approximately 2 nm (see Appendix A).

The self-driven oscillation features are apparent in mea-
surements of the CNT conductance at 30 mK. Figure 2(a)
shows differential conductance versus bias voltage and gate
voltage, for a region of electron transport that includes sev-
eral Coulomb blockade diamonds. Overlaid on the Coulomb
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FIG. 1. (a) Schematic of the suspended CNT transistor device.
The CNT is contacted by Ti/Au source and drain contacts, and
suspended over a Ni gate electrode. The CNT/gate separation is
approximately 340 nm, with a nominal suspended length of 2 μm.
(b) SEM image of a device similar to the one measured. The arrow
highlights the CNT location. (c) Mechanical resonance frequency as
a function of applied DC gate voltage, measured at 30 mK. The
red markers indicate experimental values, and the blue line is a
theoretical fit using an Euler-Bernoulli beam model. Fit parameters
include a CNT diameter of 1.9 nm, suspended length of 2.2 μm,
and residual compression of T0 = 35 pN. The inset shows a reso-
nance peak measured by the Coulomb rectification technique. The
peak width gives a lower bound on the mechanical quality factor,
Q > 104.

diamond structure are finite conduction features that occur
within the normally fixed-occupation, zero-conductance re-
gion. These features do not depend on the measurement
sweep direction, and are stable in time. Similar features were
observed at other gate voltage ranges (see Appendix B).

For comparison, Fig. 2(b) shows a similar measurement
performed on the same device at 1.4 K, for which these
additional finite conduction features inside the diamonds are
absent. These features were absent in all Coulomb diamonds
at 1.4 K, but were seen in a significant fraction of the
electron transport diamonds at subkelvin temperatures. These
features were not observed in the hole transport for either of
the two devices investigated. In Fig. 2(b) at 1.4 K, several
sharp, high-conductance “ridges” can be seen in the high-bias
tunneling current regime, similar to self-driven oscillation
features reported in the literature [8]. The device capacitances
and approximate resonant tunnel rates were determined by
analysis of the diamond edges. Values obtained for device 1
were Cg = 12.3 aF, Cs = 5.6 aF, Cd = 8.4 aF, �s = 3 GHz,
and �d = 8 GHz (subscripts g, s, and d refer to gate, source,
and drain, respectively).

The finite current features within the diamonds observed
in Fig. 2(a) share the sharp, rough edges of the high-bias self-
driven features of Fig. 2(b). The stretching of these features
into the Coulomb diamond regions in Fig. 2(a) is reminiscent
of the widening of the Coulomb peak width under strong
resonant mechanical driving, i.e., Coulomb rectification [11].
The self-driven features are typically asymmetric with respect

FIG. 2. (a) Differential conductance, ∂I
∂Vsd

, as a function of DC
gate voltage and bias for a suspended CNT device at T = 30 mK.
Large intrusions of finite conductance are observed within several
nominally zero-conductance Coulomb diamonds. A linescan shown
at right gives the current, I , measured at bias Vsd = −1 mV, in
which these conductance features appear as extended side lobes
on the normal Coulomb peaks. (b) Differential conductance and
current linescan of the same device measured at T = 1.4 K, in
which the normal Coulomb diamonds and peaks are observed. Sharp
conductance ridges are seen at high bias outside of the diamonds (two
examples highlighted by blue circles). This indicates that self-driven
oscillations are present at 1.4 K, but do not produce current inside
the diamonds at that temperature.

to the gate voltage and indicate a large amplitude of mo-
tion. For example, using the device parameters determined
above to estimate ∂Cg/∂x, the finite current observed near
Vg = 1.82 V, Vsd = −1 mV corresponds to an approximate
oscillation amplitude of 5 nm.

III. MODEL

To simulate the dot-mechanical system, we consider an
extension of the model which first predicted such self-driven
oscillations [3]. The extension presented here considers two
electron occupation transitions (n → n + 1 and n → n − 1),
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and specifically focuses on the region within the Coulomb
diamond. The model system is a quantum dot capacitively
coupled to a fixed gate and tunnel-coupled to two leads. The
dot position relative to the gate is free to vary, with x being the
displacement of the position from an initial separation h.

For x � h, the chemical potential of the dot as
a function of position is given by [13] μdot (x) =

e
Ctot

[Cg(0)Vg + CsVs + CdVd ] + e
Ctot

∂Cg

∂x Vgx, where Ctot = Cg +
Cs + Cd . Also, the electric force between the gate and the dot
is given by Fdot ≈ 1

2
∂Cg

∂x V 2
g − ∂Cg

∂x
Vg

Ctot
(CgVg + CsVs + CdVd ) +

e
Ctot

∂Cg

∂x Vg〈N〉, where 〈N〉 is the average electron occupation
of the dot. Therefore, the electromechanical coupling is
parametrized by the coupling energy F = e

Ctot

∂Cg

∂x Vg.
For the CNT system considered here, several simplifying

assumptions based on the relevant energy scales are made.
First, the mechanical motion of the dot is taken to be in the
classical regime (h̄ω0 � kbT ), so it is well described by a
classical position and velocity (x, v). Second, the tunnel rates
into the dot are much faster than the timescales of mechanical
motion (� � ω0), so that individual tunneling events occur
at approximately fixed CNT positions, with only small dis-
placements between successive tunneling events. Finally, the
mechanical resonance is only weakly damped (Q � 1) so
that the mechanical state changes little between successive
oscillation periods.

The state of the system can be described by joint prob-
ability distributions, Pn(x, v, t ), where Pn is the probability
distribution of variables (x, v, t ) for electron occupation n.
Consider an initial state within the Coulomb diamond so that
the average electron occupation is an integer, 〈N〉 = n. Then
the probability distribution obeys the coupled equations [3,14]

L Pn−1 − F

M

∂Pn−1

∂v
= −�n−1→nPn−1 + �n→n−1Pn,

L Pn = �n−1→nPn−1 − (�n→n−1 + �n→n+1)Pn

+�n+1→nPn+1,

L Pn+1 + F

M

∂Pn+1

∂v
= �n→n+1Pn − �n+1→nPn+1, (1)

where �a→b = �s
a→b + �d

a→b is the tunnel rate from state a
to b, and L describes the mean-coordinate evolution of an
oscillator with frequency ω0 and quality factor Q [14],

L Pn = ∂Pn

∂t
+ v

∂Pn

∂x
− ω2

0x
∂Pn

∂v
− ω0

Q

∂vPn

∂v
. (2)

Under the assumptions � � ω0 and eVs,d < e2/Ctot , the
tunneling events for n ↔ n + 1 and n ↔ n − 1 are well sep-
arated in time, so that one of Pn−1 or Pn+1 will be zero when
evaluating the above expressions for any (x, v, t ). We make
the further assumption that the instantaneous occupation of
the quantum dot is a small perturbation from the occupation
which would occur with v = 0. That is, the probabilities can
be written Pn = Na↔bP + δP where δP is small and Na↔b =
�a→b
�a↔b

with �a↔b = �a→b + �b→a.
Following a similar analysis to that presented in the lit-

erature [3,15], and additionally noting the phase-averaged
contribution of terms of the form f [A sin(φ)] cos(φ) will be
zero, the probability distribution for the oscillator to have

mechanical energy E satisfies

∂P

∂t
= ∂

∂E

(
2E〈γ (x) cos2(φ)〉P+2EM〈D(x) cos2(φ)〉 ∂P

∂E

)
,

(3)

where φ is the mechanical phase, 〈∗〉 = 1
2π

∫ 2π

0 ∗ dφ is the
average over one oscillation period, and the damping (γ ) and
diffusion (D) terms are

γ (x) = F 2

M

(
1

�n−1↔n

∂Nn−1↔n

∂μ
+ 1

�n↔n+1

∂Nn↔n+1

∂μ

)
+ ω0

Q
,

D(x) = F 2

M2

(
�n−1→n�n→n−1

(�n−1↔n)2
+ �n→n+1�n+1→n

(�n↔n+1)2

)
.

The steady-state solutions to Eq. (3) are

P(E ) ∝ exp

⎛
⎜⎜⎝−

∫ E

0

〈
γ

[√
2E ′
k sin(φ)

]
cos2(φ)

〉

M

〈
D

[√
2E ′
k sin(φ)

]
cos2(φ)

〉dE ′

⎞
⎟⎟⎠.

(4)

For the Coulomb blockade region of interest, Eq. (4) will
always permit a nonzero peak at E = 0, which corresponds to
zero motion. Thus, the regime of interest for self-driven oscil-
lation is when a second probability peak exists at nonzero E .
In this case, the oscillator/dot system can sustain self-driving
at a finite amplitude. The experimental observation of stable
current within diamonds in Fig. 2(a) indicates occupation
of these higher energy states. In the following simulations
we consider the case in which the higher energy state is

FIG. 3. Energy-dependent tunneling across a charge-state tran-
sition at finite bias, in which sequential tunneling occurs when the
dot chemical potential is within the bias window (μ1 < μ < μ2).
(a) For energy-dependent tunneling, the average occupation (N0↔1)
is not fixed within this transition. (b) This can result in negative
damping of the mechanical motion, γ . In the negative damping
regime, oscillations will increase in amplitude until reaching a stable
oscillation state. The gray illustration in (a) depicts a dot-mechanical
system near the μ2 edge entering into this negative damping region
and increasing in amplitude until γ switches sign near μ1.
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FIG. 4. (a) Experimental differential conductance measured at
T = 30 mK, showing finite conductance due to self-driven oscil-
lations in the Coulomb diamond region between two charge-state
transitions. (b) Simulated differential conductance using the master
equation model described in text, with best-fit energy-dependent
tunneling parameters b+

L = b−
R = 6 meV−1, b+

R = b−
L = 0.2 meV−1.

(c) Differential conductance over the same range as (a) measured at
T = 800 mK. (d) Simulated conductance using the same parameters
as (b) but with T = 800 mK.

occupied whenever it has a nonzero probability. This could
be driven by thermal fluctuations exciting the resonator to a
regime of negative damping, which is then rapidly driven to a
large amplitude stable oscillation by the mechanism discussed
below.

For a peak in P(E ) to exist at nonzero energy, the inte-
grand in Eq. (4) must take negative values for some range.
As D(x) > 0 for all x, a necessary condition for self-driven
oscillations is then that γ (x) < 0 for some x, which implies

∂Na↔b

∂μ
< −M�a↔b

F 2

ω0

Q
. (5)

This requires a high-Q mechanical resonator and some energy
dependence of the tunnel barrier. An example of the average

electron occupation (Na↔b) across a finite bias Coulomb peak
with energy-dependent tunneling is shown in Fig. 3, along
with the resultant damping term γ . Self-driven oscillations
are possible when the motion-averaged damping becomes
negative. For initial configurations within Coulomb blockade,
this occurs when there is a region of negative damping within
an adjacent charge-state transition, and only small positive
damping contributions at the transition edges.

Several mechanisms could be responsible for tunnel energy
dependence, such as low-wide tunnel barriers [16], finite
density of states in the leads [17], and nonuniform profile of
the CNT potential above the contacts [18–20]. Here we take
a phenomenological model of the tunnel rates similar to that
previously applied to suspended CNTs [21],

�s,d = �s,d
0 eb±

s,d 	μs,d fF (	μs,d ), (6)

where 	μs,d = (μdot − μs,d ), μs,d is the energy level of
the source/drain contact, �s,d

0 is the resonant tunnel rate
at 	μs,d = 0, and b±

s,d are fitting parameters describing the
energy dependence of the rate from the source/drain contact
at negative/positive bias, respectively. As a final step in the
simulation, the current is evaluated using

I = 〈I (x)〉 = e

〈
�s

a→b(x)�d
b→a(x) − �s

b→a(x)�d
a→b(x)

�a↔b(x)

〉
,

where {a, b} = {n − 1, n}, {n, n + 1}.

IV. RESULTS

Figure 4(a) focuses on one dot occupation level of the
differential conductance experiment previously shown in
Fig. 2(a). Figure 4(b) shows the simulated differential conduc-
tance using the model, over an equivalent gate voltage range,
with the device parameters determined previously and b±

s,d pa-
rameters determined by fitting. For the parameters shown, the
simulation qualitatively reproduces many of the features ob-
served within the Coulomb diamond in the experiments. Cur-
rent is supported within the Coulomb diamond by self-driven
oscillations of sufficient amplitude to modulate μdot past the
diamond edge. The self-driven features are absent at low bias,
and abruptly terminate at the nearly horizontal midline of the

−2 −1 0 1 2 3
Vg (V)

10−3

10−2

10−1

100

101

I
(n

A
)

FIG. 5. Current as a function of applied gate voltage for the
device discussed in the main text, measured at bias Vsd = 1 mV.
Large currents for Vg < 0 and Coulomb blockaded conductance for
Vg > 0.5 V are indicative of p-biased contacts to a single CNT.
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FIG. 6. Measured current through the CNT as a function of gate
voltage and applied axial magnetic field, B‖, at Vsd = 0.5 mV. The
conductance peak positions change with applied field due to orbital
magnetic moments. Fitting the slope of the peak position change
allows for a CNT diameter estimate. Using the slope indicated with
the green dashed line, d ≈ 2 nm.

Coulomb diamond. At this midline, the mechanical oscilla-
tions begin to interact with both the n → n − 1 and n → n +
1 transitions simultaneously, leading to large positive damp-
ing. The gap at low bias is a result of the thermal broadening
of the shoulders (at μ1 and μ2 in Fig. 3) overtaking the
negative slope region of 〈N〉 as bias is decreased. Also note the
appearance of the bright conductance line at negative bias that
runs parallel to the opposite Coulomb diamond edge. Here,

FIG. 7. Differential conductance measurements in hole-transport
regime. (a) A wide area measurement showing fourfold shell filling
over many charge occupations. (b) Focused measurement showing
one set of four-shell filling, in which Kondo-enhanced transport at
zero bias occurs for odd carrier occupation. (c) At T = 800 mK, the
transport is above the Kondo critical temperature, and the enhanced
zero-bias transport is suppressed.

FIG. 8. Differential conductance measurements as a function of
gate voltage and applied bias, measured in device 1 at 30 mK. In
each gate voltage range shown, finite conductance features similar to
those discussed in the main text are observed. The location of these
features within the Coulomb diamonds differs for each gate voltage
range, indicating a change in the tunneling energy dependence. All
color scales are given in μS.

the self-oscillation due to energy dependence in n → n − 1
tunneling has sufficient amplitude to allow transport through
the n + 1 energy level for a portion of the oscillation period,
resulting in a sharp increase in conductance. Some features
not captured by the simulations, such as the multiple switch-
ing features at positive Vsd in Fig. 4(a), may be attributable
to higher order mechanical modes or additional electronic
transitions that are not considered in the present model.

Figures 4(c) and 4(d) show experimental and simulated
differential conductance for the same parameter space, at
elevated temperature T = 800 mK. As temperature increases,
the self-oscillation conductance feature decreases in extent
and requires larger bias voltages. The temperature dependence
of the simulated self-oscillation is qualitatively similar, but
weaker than in experiment, likely because the simulation
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FIG. 9. (a) Current as a function of applied gate voltage for
device 2. Similar to device 1, this shows large currents for Vg < 0
and Coulomb blockaded conductance for Vg > 1 V. (b) Conductance
peak positions as a function of applied axial magnetic field, at
Vsd = 0.5 mV. The peak slopes give an orbital magnetic moment
of ≈0.58 meV/T, corresponding to a CNT diameter of 2.9 nm.
(c) Resonance frequency as a function of gate voltage, and an Euler-
Bernoulli beam model fit using CNT diameter of 2.9 nm, suspended
length of 2.3 μm, and residual compression of T0 = 0.4 nN.

does not take into account a temperature dependence of the
tunneling parameters, �0 and b±

s,d .
The presence of self-driven oscillation features within

Coulomb diamonds indicates a strong energy dependence
of tunneling at the adjacent diamond edge. Reducing the
energy-dependence parameters, b±

s,d , decreases the negative
damping strength and increases the threshold of bias needed
to observe these features. When this threshold exceeds the
charging energy, finite current features are no longer observed
within the diamond. For the simulation shown in Fig. 4(b),
decreasing b±

s,d by a factor of 10 completely suppresses the
self-oscillation features.

V. CONCLUSIONS

The stable, large-amplitude oscillations discussed above
may interfere with the usual operation of these devices as
nanomechanical force or mass sensors at subkelvin tem-
peratures. However, these oscillations may exhibit narrower
linewidths than the intrinsic resonator linewidth [22], and
a properly tailored electromechanical coupling can provide
a pathway to active cooling of the mechanical state [4].
Additionally, with sensitive frequency-resolved readout [9],
self-driven oscillations may be useful for sensitive mass/force
detection without the need for high-frequency external excita-
tion at the device [23]. These self-driving devices could also

FIG. 10. Differential conductance measured in device 2. Self-
driven oscillation features of finite conductance, qualitatively similar
to those in device 1, are observed within the nominally Coulomb
blockaded diamond regions.

see use for cryogenic compatible rf components. In particular,
as conductance can be suppressed by Coulomb blockade for
large portions of the mechanical oscillation, these devices can
act as voltage-tunable rf timing bases with very low intrinsic
power dissipation (<1 pW).
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APPENDIX A: ADDITIONAL CHARACTERIZATION
OF DEVICE 1

Figure 5 shows the current measured through device 1 as
a function of gate voltage at applied bias of Vsd = 1 mV. The
band-gap region of suppressed current around Vg = 0.4 V and
high conductance at Vg < 0 suggests hole biased metal-CNT
interfaces and a band gap of Egap ≈ 80 meV. For Vg > 0.5 V,
the conductance is governed by Coulomb blockade.

To estimate the CNT diameter, the axial field magnetospec-
troscopy of three Coulomb peaks was measured, as shown in
Fig. 6. The orbital magnetic moment is determined from the
straight sections of these peak shifts, μorb = α

dVg,peak

dB‖
, where
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α ≈ 0.45 is the gate lever arm obtained from Coulomb dia-
monds. From the data in Fig. 6, an orbital magnetic moment
of μorb = 0.4 meV/T is calculated, which corresponds to a
CNT diameter of approximately 2 nm [24].

Figure 7(a) shows the differential conductance measured
for a region of hole conduction (Vg < 0), which demonstrates
fourfold shell filling and Kondo-enhanced transport [25].
Figure 7(b) shows a focus on one region of that data which
demonstrates the Kondo-mediated transport, in which states
with odd carrier occupation have enhanced zero-bias conduc-
tion below the critical Kondo temperature. Figure 7(c) shows
the same measurement taken at temperature T = 800 mK,
where the Kondo-enhanced transport has been suppressed.
No self-driven oscillation features were observed in the hole
transport at any gate voltage/bias.

APPENDIX B: SELF-DRIVEN OSCILLATION FEATURES
AT OTHER GATE VOLTAGES

The main text focused on the gate voltage range around
Vg = 1.8 V. Self-driven oscillation conductance features were
also observed in the same device for other gate voltages in
the electron conduction regime. Figure 8 shows differential

conductance measurements at several gate voltage ranges,
each of which showed self-driving oscillation features within
the nominally Coulomb blockaded diamond regions. Variation
is observed in which Coulomb diamond edges are adjacent to
the self-driven conductance features, indicating changes in the
energy-dependent tunneling versus gate voltage.

APPENDIX C: SELF-DRIVEN OSCILLATIONS IN
DEVICE 2

In-diamond self-driven oscillations were also observed in
a second suspended CNT device fabricated on the same chip,
referred to as device 2. Figure 9 shows electrical and me-
chanical characterization of this device. Similar to device 1,
device 2 shows p-biased metal-CNT interfaces and Coulomb
blockade for Vg > 0.5 V. From the mechanical resonance
frequency fitting shown in Fig. 9(c), the device is estimated
to be a CNT of diameter 2.9 nm, suspended length of 2.3 μm,
and a residual compression of T0 = 0.4 nN. Resonance peak
linewidth gives Q > 5 × 103.

Figure 10 shows differential conductance measurements
at two different gate voltages in device 2, in which finite
conductance self-driven oscillation features were observed in
the Coulomb blockade region.
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