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Probing ultrafast electron correlations in high harmonic generation
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We show here that electron-electron (e-e) interactions that evolve dynamically on ultrafast timescales can
be imprinted onto the high harmonic generation (HHG) spectrum driven by intense laser fields, even far from
any resonant multielectronic behavior of the medium and over a wide energy range. Specifically, we find that
in bi-elliptical HHG, the ellipticities of the bichromatic pumps that maximize/minimize the HHG yield are
sensitive to the level of theory describing the process, and considerably shift upon inclusion of e-e interactions.
We explore this phenomenon by performing ab initio calculations with varying levels of theory on noble gas
(Ar, Kr, and Xe) and molecular (carbon monoxide) systems. Interestingly, the sensitivity to e-e interactions
in atomic systems arises due to mean-field Coulomb repulsion, while in molecules the strong laser field also
excites ultrafast dynamical correlations. Our approach can be used to benchmark theories for multielectron
systems interacting with strong fields. For instance, it can be used to determine the validity of various
approximations, such as, the adiabatic exchange-correlation approximation in time-dependent density functional
theory.
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I. INTRODUCTION

Many-body interactions play a significant role in the be-
havior of many atomic, molecular, and solid systems. This is
especially true in strongly correlated systems, e.g., supercon-
ductors and Mott insulators [1,2]. But even in simpler systems,
contributions due to exchange or correlation interactions tend
to manifest as large variations in binding energies, excita-
tions, linear-response, and many other chemical and physical
properties [2–4]. Conversely, many-body interactions do not
necessarily play a major role in systems interacting with
strong electromagnetic fields—when applied field strengths
are comparable in magnitude to the binding forces in the sys-
tem, electron-electron (e-e) interactions are often negligible
and don’t directly affect the dynamical response. For instance,
over the years, theoretical works have shown that in a wide
range of systems, e-e interactions weakly influence the strong-
field process of high harmonic generation (HHG) [5–11]. In-
deed, HHG is standardly described theoretically by neglecting
e-e interactions altogether [12–15], which regularly describes
experiments both in gas [16–25] and solid phases [26–30] (the
references represent a few select cases out of the majority
of HHG studies). In fact, e-e interactions have been shown
to play a major role only near Cooper minima [31–38] or
resonant multielectron behavior [39–44]. Multielectron cal-
culations are thus often used for: (i) precise quantitative pre-
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dictions (e.g., obtaining exact ionization dynamics [45–53])
or (ii) when a particular system exhibits resonant behavior.
However, they have not been used to describe generic effects
in HHG spectra. Similarly, there has not been a prediction
for a scheme that allows to directly and robustly probe e-e
interactions from HHG spectra.

Here we show that HHG in a bichromatic, bielliptical,
driving pulse geometry [19,54] can be effectively utilized to
probe ultrafast (dynamical) many-body interactions. In this
approach, the HHG spectrum is measured vs the driving field’s
ellipticities and/or relative phases, yielding spectrograms that
carry unique spectral signatures of the target medium. We find
that the structure of the spectrograms is sensitive to the level
of theory used in calculations, and even though corrections
due to e-e interactions are generally small, they are qualitative
and systematic, i.e., causing generic effects such as shifting
of spectrogram peaks and changing their relative intensities.
Importantly, these spectral signatures arise over wide energy
ranges and in systems far from exhibiting multielectronic res-
onances. We demonstrate this phenomenon by performing ab
initio calculations on several atomic (Ar, Kr, Xe) and molec-
ular (carbon monoxide, CO) systems with varying levels of
theory, showing that the spectrogram structure changes with
different choices of exchange-correlation (XC) functionals
in time-dependent density functional theory (TDDFT), and
with the inclusion/exclusion of dynamical e-e interactions.
The source of this sensitivity is investigated and found to be
electrostatic e-e repulsion in atoms, while in molecules it also
arises from laser excitations of ultrafast correlations.

II. THEORETICAL MODEL

We begin by outlining the details of the bielliptical HHG
scheme. Here a target medium is irradiated by intense
collinearly propagating, ω-2ω bichromatic laser pulses. The
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FIG. 1. Bielliptical HHG spectrograms from atomic Ar, Kr, and Xe, calculated with and without dynamical e-e interactions. (a) Illustration
of the driving electric field’s time-dependent polarization: by tuning ε, the polarizations of both beams are controlled, resulting in the presented
Lissajou curves, where arrows indicate the direction of time. (b) Integrated intensity per harmonic order vs ε from Ar, with a full TDDFT model
[using the local density approximation (LDA) and a self-interaction correction (SIC)] [65], compared to the corresponding noninteracting
electrons model and the corresponding calculation where the XC potential is frozen. The intensity of each harmonic is normalized to its
maximum along the ε axis for clarity. Selected harmonics are shown. (c), (d) Same as (b), but for atomic Kr and Xe, respectively. Calculations
correspond to a laser power of 1014 W/cm2, and �2 = 1/3, φ = 0 (see Appendix 1–3 for details).

pulses are transversely elliptically polarized with an equal
ellipticity (ε), and opposite handedness, resulting in the fol-
lowing electric field:

E(t ) = A(t )E0√
1 + ε2

· Re{eiωt (x̂ + iεŷ) +� · e2iωt+φ (ŷ − iεx̂)},
(1)

where E0 is the amplitude corresponding to the laser power
(I0), � is the beam’s amplitude ratios, φ is a relative phase, ω

is the fundamental frequency corresponding to a wavelength
of 800 nm, and A(t ) is an envelope function. A bielliptical
spectrogram is generated by measuring the harmonic spec-
trum emitted from the medium as it interacts with E(t ) in
Eq. (1) while scanning ε in the driving field from −1 to 1
[see Fig. 1(a) for an illustration]. This type of approach was
shown to be selective towards chirality [23] and atomic orbital
sizes [55]. Here we show that it can also be used to probe
dynamical e-e interactions that evolve upon interaction with
ultrashort driving pulses.

The interaction of the medium with E(t ) is described
within the fixed-nuclei and electric-dipole approximations by
the following Hamiltonian (atomic units are used throughout):

H (t ) = −1

2

∑
j

∇2
j + 1

2

∑
i �= j

1

|ri − r j |

−
∑
I, j

ZI

|RI − r j | +
∑

j

E(t ) · r j, (2)

where r j is the coordinate of the jth electron, ∇2
j is the Lapla-

cian operator with respect to r j , RI is the position of the Ith
nuclei with charge ZI , and we neglect spin-orbit interactions
for simplicity. The HHG response can be conceptually found
by solving the many-body time-dependent Schrödinger equa-
tion defined by H (t ) and Fourier-transforming the induced
nonlinear polarization in the medium:

P(t ) =
∫

d3rrρ(r, t ), (3)

where ρ(r, t ) is the electron density. Unfortunately, an exact
numerical solution for Eq. (2) is currently feasible for systems
with only few electrons; hence further approximations must
be made. In this article, we utilize Kohn-Sham (KS) TDDFT
to solve for ρ(r, t ) directly using the real-space grid-based
code OCTOPUS [56–58]. Here the electron density itself is
propagated (instead of the full wave function) under an equa-
tion of motion that is formally equivalent to Eq. (2), but where
the e-e interaction term is split to two terms: (i) a Hartree
Coulomb repulsion term and (ii) a quantum-mechanical in-
teraction that is approximated by an XC functional of the
electron density (leading to the potential VXC[ρ]). The equa-
tions are cast into an auxiliary KS system where they reduce
to single-particle equations for the KS orbitals, ϕKS

j (r, t ),
governed by the one-body Hamiltonians:

hKS
j (t ) = − 1

2∇2 + VKS (r, t ) + E(t ) · r, (4)
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where VKS (r, t ) is given by the sum of interactions of each
electron with the nuclei, the Hartree term, and the XC poten-
tial, respectively:

VKS (r, t ) = −
∑

I

ZI

|RI − r| +
∫

d3r′ ρ(r′, t )

|r − r′| + VXC[ρ(r, t )],

(5)

and we have used the adiabatic approximation for the XC
functional. Note that since hKS

j (t ) itself depends on ρ(r, t ), the
KS orbitals are propagated in tandem to construct the time-
dependent density – ρ(r, t ) = ∑

j |ϕKS
j (r, t )|2, from which

the HHG emission can be recovered.
On the other hand, it is common practice in HHG calcu-

lations to simply neglect e-e interactions altogether. In this
approximation, the Hamiltonian in Eq. (2) reduces to one-
body terms:

hj (t ) = − 1
2∇2 + Veff (r) + E(t ) · r, (6)

where Veff (r) is an effective potential describing the inter-
action of electrons with the nuclei and may also contain
some information about e-e interactions and screening in the
field-free system (i.e., prior to the laser being turned on). Veff

can be determined empirically in order to fit some physical
property of the ground-state system (e.g., ionization poten-
tial), or it may be obtained by other physical considerations.
In this work, we set Veff for a noninteracting electrons system
using the latter approach—we use ab initio density-functional
(DFT) calculations to find the ground-state electron density of
the system, ρ0(r) = ρ(r, t = 0), and set Veff as equal to the
KS potential that is associated with ρ0, such that Veff (r) =
VKS(r, t = 0) (see the Appendix for details). Following this
process, the individual orbitals ϕ j (r, t ) are propagated sepa-
rately to yield the HHG response in the noninteracting elec-
trons system.

The numerical approach described above allows us to
consistently compare the HHG response from an interacting
electron system (using TDDFT where interactions evolve
dynamically) to a noninteracting one (where e-e interactions
are frozen at the ground-state configuration). We emphasize
that the initial orbitals and potentials are identical in both
approaches and so are their energy eigenvalues corresponding
to the ionization potentials; therefore, any deviation in the
HHG response between calculations is directly associated
with dynamically evolving many-body interactions (and not
due to interference of emission from multiple orbitals, as
was explored for instance in Ref. [59]). It is worthwhile to
point out that one intuitively expects the differential response
from both systems to be small, because even in strong fields
the electron density is only weakly modulated (ρ(t )-ρ0 �
ρ0), meaning that the variation in the dynamically evolving
KS potential should be accordingly small. Nonetheless, even
small changes in the potential energy may turn out to largely
impact the HHG response, as it is an extremely nonlinear
process.

III. RESULTS IN ATOMIC MEDIA

Having introduced the theoretical model, we first explore
bielliptical HHG from noble gas atoms, where Fig. 1(b)

presents the calculated bielliptical HHG spectrogram from
atomic Ar (total intensity). It is instructive to discuss the
general structure of the spectrogram prior to addressing the
role of e-e interactions. As seen in Fig. 1(a), the driving laser
field’s time-dependent polarization rapidly changes with ε,
which is the physical cause for the modulation in the HHG
yield in Fig. 1(b). At the edges of the spectrogram, both
components of the field are circularly polarized such that
E(t ) exhibits a threefold rotational dynamical symmetry [see
Fig. 1(a)]. In this geometry the emission is determined by
the interference of three recollision events per optical cycle
[60], and the emission of 3n harmonics (for integer n) is
symmetry forbidden [see Fig. 1(b)] [19,61]. On the other
hand, at the center of the spectrogram E(t ) is cross-linearly
polarized and exhibits a reflection dynamical symmetry [62].
In this geometry the emission is dominated by two rec-
ollision events per optical cycle [63,64], and all harmonic
orders are symmetry allowed. In between, the spectral yield
oscillates as the dominating HHG trajectories are modified
[54,55].

We now analyze the effects of e-e interactions in the HHG
bielliptical spectrograms from Ar. Figure 1(b) presents cal-
culations using TDDFT and a corresponding noninteracting
electrons model [with Eqs. (1)–(6), see Appendix 1–3 for
numerical details]. While both models qualitatively capture
the same features, clear deviations between them arise over a
wide energy range. This is despite the fact that the presented
spectra is well below argon’s Cooper minima at 50 eV [32,36].
In particular, we note that the maximizing/minimizing el-
lipticities (the position of peaks/valleys in the spectrogram)
largely vary with the inclusion of e-e interactions for some
harmonics (up to �ε≈ 0.1). For example, the peak of the 13th
harmonic at ε = 0.42 in the TDDFT calculation is shifted to
ε = 0.34 for the noninteracting electrons calculation. Sim-
ilarly, the intensity ratios between different peaks are also
highly sensitive to the level of theory. We further note that at
ε = 0, the harmonic yield must either be at a local maxima or
a local minimum, since the spectrogram is symmetric about
its center (because the medium is reflection invariant). This
constraint can be efficient for separating different levels of
theory, because in a few cases, the noninteracting electrons
model predicts a minima at ε = 0 while the TDDFT calcula-
tions predict a maxima, or vice versa [e.g., see harmonic 25 in
Fig. 1(b)]. Notably, these discrepancies between the models
tend to vanish with increasing laser power (see Appendix 5).
This result can be intuitively interpreted as a generalized
form of the strong-field approximation (SFA)—under intense
enough illumination, both the atomic potential and the e-e
interaction terms become negligible compared to the light-
matter interaction term. We further note that this enhanced
sensitivity to e-e interactions results from the bielliptical HHG
scheme that allows measuring robust experimental features
(in the spectrograms) rather than measuring absolute HHG
intensities. This is very advantageous, since it allows probing
even small effects that arise from correlations.

In order to shed further light on the effects of e-e in-
teractions on bielliptical HHG spectrograms, we utilize the
factorization picture [14], where P(t ) decouples to

P(t ) ≈
∑

aion(t )aprop(t )arec(t ), (7)
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where aion, aprop, and arec denote the ionization, propaga-
tion, and recombination contributions to the HHG emission
from a specific channel, respectively, and the summation
is performed over all contributing channels that are calcu-
lated separately (e.g., different trajectories, different electrons,
etc.). Even though Eq. (7) is formally correct only when
applying the saddle-point method to solve the response of
the noninteracting electrons system, it can still provide an
intuitive interpretation for the response that does include e-e
interactions (because corrections are small) [53]. Within this
picture, e-e interactions can be thought of as inducing slight
perturbations to the electron trajectories that contribute to
the HHG emission (i.e., changing their duration, physical
trajectory, etc.), which translates to variations in phases and
probabilities of different channels that comprise P(t ). Since
P(t ) results from the interference of all channels, phase shifts
can lead to shifting of spectrogram peak/valley positions,
and changes to channel probabilities lead to spectrogram
intensity variations. In particular, we note one mechanism
that affects the probability coefficients of different channels,
which is changes induced to aion over time—in the TDDFT
calculations, the Ar atoms ionize during their interaction with
the laser field such that the overall positive charge on the
ion increases between optical cycles. This in turn reduces the
ionization probability from cycle to cycle, attenuating the pho-
toelectron yield (see Appendix 5 and Fig. 3) and reregulating
the aion term for subsequent channels. This effect vanishes
when neglecting dynamical e-e interactions. The discrepancy
in ionization yields between the models suggests a breakdown
of the factorization picture, as the contribution from different
channels can no longer be fully separated (the ionization of
one channel influences the propagation of another). We note
that this effect could depend on the level of theory being used
(e.g., choice of XC functional in TDDFT). Most importantly,
the bielliptical HHG spectrogram probes all three processes in
Eq. (7). That is, not only are the ionization and recombination
processes probed at a variety of angles and intensities, but so
is the propagation of multielectron wave packets in the con-
tinuum, including correlations between the ionized fragments
and the ionic core. Consequently, the spectrograms are highly
suitable for benchmarking theoretical approaches.

We also perform similar calculations on Kr and Xe atoms
[Figs. 1(c) and 1(d)]. We find that each spectrogram contains
fingerprints unique to the target medium. That is, even though
Ar, Kr, and Xe have relatively similar valence electronic struc-
ture, the maximizing/minimizing ellipticities for each atom
are slightly different. Additionally, in all of these systems
distinct discrepancies between the TDDFT and the noninter-
acting electron calculations arise, even though we are well be-
low the energies of Cooper minima or the giant multielectron
resonance in Xe [39–41], further indicating the generality of
the technique. We also note that Ref. [55] already contains
experimental data from atomic Ar that can be compared to in
order to test our results; however, the experiment in this case
was too noisy to benchmark the theory.

Next we wish to investigate which term in the KS potential
is responsible for the deviation between the TDDFT and
noninteracting calculations, i.e., is it the mean-field Coulomb
e-e repulsion term, the XC term, or both? Thus we recalcu-
lated the bielliptical HHG spectrograms within the TDDFT

approach [Eqs. (3)–(5)] but where the XC potential in Eq. (5)
was kept frozen during propagation (while the Hartree term
was evolved in time). The results of this calculation are
very close to the full TDDFT calculation for all three tested
atomic systems [Ar, Kr, and Xe in Figs. 1(b)–1(d)]. Hence
we conclude that for atomic noble gases, the dynamical
evolution of the XC potential is mostly negligible, whereas
mean-field e-e repulsion is the dominant source of deviations
between the levels of theory. This result indicates that it’s
possible to model e-e interactions in HHG as perturbations
to noninteracting electron models of noble gases (since the
deviation due to e-e interaction does not originate from a
quantum entanglement).

IV. RESULTS IN CARBON MONOXIDE

We next move to explore molecular systems.
Figure 2 presents bielliptical HHG spectra from x-aligned
CO molecules showing similar peak/valley structures but
somewhat more complex behavior. Specifically, the HHG
intensity oscillates more rapidly and nonuniformly compared
to the atomic systems (e.g., most harmonics in Fig. 2 show
an abrupt cusp at ε = 0). We attribute this to the angularly
dependent molecular ionization rates that are effectively
scanned as ε is varied (the field’s peak intensity changes
its spatial orientation with ε with respect to the molecular
axis). Remarkably, the inclusion of dynamically evolving e-e
interactions leads to deviations in the HHG spectrograms
that are even more pronounced than in the atomic case. We
verify that the deviations are observed using different XC
functionals [Figs. 2(a) and 2(b)]. Interestingly, Figs. 2(a) and
2(b) show that in the case of CO, the dynamical evolution of
both the Hartree term and the XC term is significant (unlike
in atoms where the Hartree term played the dominant role).
This means that in the molecular case, quantum XC evolves
dynamically on ultrafast timescales with the laser excitation,
reminiscent of recent results in strongly correlated solids [66].
Figure 2(c) further presents the calculated HHG spectrograms
from aligned CO using different approximations for the
XC functional, showing a different structure—these present
exemplary theoretical predictions for experiments that can
determine which functional is more well behaved, i.e.,
benchmark the theory (see Appendix 5 for similar results
from Ar). Notably, local density approximation (LDA) and
Perdew-Burke-Ernzerhof (PBE) XC functionals lead to very
different HHG spectra from aligned CO, suggesting that
there might be a breakdown of the LDA in strongly driven
CO. This should be examined in future work, along with a
systematic study of different XC functionals and molecules,
and comparisons to available experiments.

V. EXTENSIONS TO MULTIDIMENSIONAL
SPECTROSCOPY

Lastly, we discuss the possibility to extend this technique
in two main avenues: (i) rather than scanning only ε in E(t ),
one could scan other degrees of freedom such as phases,
intensities, etc. to generate multidimensional spectrograms;
(ii) rather than observing the harmonic yield, one may focus
on the HHG emission ellipticity. In the Appendix we present
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FIG. 2. Bielliptical HHG spectrograms from aligned CO calculated with and without dynamical e-e interactions. (a) Integrated intensity
per harmonic order vs ε with a full TDDFT model (using the LDA and a SIC) [65], compared to the corresponding noninteracting electrons
model, and the corresponding calculation where the XC potential is frozen. The intensity of each harmonic is normalized to its maximum along
the ε axis for clarity. Selected harmonics are shown. (b) Same as (a), but where PBE [67] XC is used with a SIC [65]. (c) Comparison between
the full TDDFT calculated spectra in (a) and (b). Calculations correspond to a laser power of 1014 W/cm2 and using �2 = 1/3, φ = 0 (see
Appendix 1–3 for details).

data that addresses both of these extensions: (i) in Appendix 6
we show that the maximizing phase in the cross-linear HHG
geometry is indeed sensitive to the level of theory in an
analogous fashion to the laser ellipticities (though showing
a much reduced sensitivity). This result conceptually proves
that extensions to multidimensional spectroscopy might en-
hance sensitivity to probing correlations. (ii) In Appendix 7
we find that for aligned CO, the ellipticity response of biel-
liptical HHG is as useful for probing correlations as the
intensity-based response, which can be further utilized for
ultrafast spectroscopy. For atomic media on the other hand,
we observe a peculiar result—the HHG emission ellipticity
is largely insensitive to the level of theory (see Fig. 6). In
fact, we find that the emitted harmonics’ ellipticities are also
insensitive to the target atomic species and to whether or not
the harmonics are generated perturbatively (below the ion-
ization threshold) or nonperturbatively (above the ionization
threshold). This suggests that the ellipticity response in biel-
liptical HHG from atoms depends mainly on the driving laser
parameters and not on the medium properties. The physical
origin of this result is still not known (see further discussion in
Appendix 7).

VI. CONCLUSIONS

In summary, we explored bielliptical HHG from atomic
(Ar, Kr, Xe) and molecular (CO) systems using ab initio
TDDFT calculations. We found that in this geometry, the
spectral response of the system is affected by dynamically
evolving e-e interactions that are imprinted onto the HHG
emission. This occurs over a wide energy range and far
from any multielectronic resonant behavior. The sensitivity

is expressed as qualitative and systematic (easy to measure)
modifications to the harmonic yield vs the driving field ellip-
ticity, such as shifting the maximizing/minimizing ellipticities
for the yield of a given harmonic order. We analyzed the origin
of these effects in terms of Coulombic and quantum contribu-
tions, and found that in noble gases the mean-field Coulomb
repulsion term dominates the total role of e-e interactions,
while in molecules, mean-field effects and ultrafast quantum
correlations are both important. Lastly, we demonstrated that
the sensitivity to the level of theory can be used to benchmark
time-dependent multielectron theories robustly and effectively
(by comparing experimental results to predictions), including
TDDFT [3], density matrix approaches [7], Green’s func-
tion approaches [68,69], and wave-function-based methods
[43,45,53]. Extensions of this approach to multidimensional
spectroscopy of electron correlation are also possible. We
note that we have neglected here phase-matching and focal
averaging effects, corresponding to experimental conditions
of thin nonlinear media (e.g., as in Refs. [19,20,23]). Look-
ing forward, our work paves the way for robust methods
of testing theoretical approaches in strong-field physics us-
ing HHG, e.g., perturbative corrections to standardly used
models [14,49], the adiabatic XC functional approximation
in TDDFT [3], testing new XC functionals [70,71], or new
theories. We also believe that the presented results will be
useful for the development of future ultrafast spectroscopy
techniques.
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APPENDIX

1. Ground-State DFT Calculations

All DFT calculations were carried out using the real-space
grid-based code OCTOPUS [56–58]. The equations were dis-
cretized on a cylindrical grid of radius 25.2 bohr (xy plane)
and length 32.8 bohr (z axis). Atomic species were centered
to the grid origin, and the CO molecule was aligned along
the x axis, with both atoms symmetrically positioned with
respect to the origin. Calculations were performed using two
XC functionals: (i) the LDA with an added self-interaction
correction (SIC) [65], implemented in an optimized effective
potential (OEP) method (within the Krieger-Li-Iafrate (KLI)
approximation [72]); (ii) using a PBE [67] XC functional
with the same SIC [65]. The frozen core approximation was
used for inner orbitals, which were treated with appropriate
norm-conserving pseudopotentials [73]. The [He] inner shells
of Ar, C, and O, the [Ar]3d10 inner shell of Kr, and the
[Kr]4d10 inner shells of Xe were replaced with pseudopoten-
tials. The Kohn-Sham (KS) equations were solved to self-
consistency with a tolerance <5 × 10−7 Hartree, and the
grid spacing was converged to �x = �y = �z = 0.4 bohr,
such that the total energy per electron was converged <10−3

Hartree.
The molecular structure of CO was relaxed to <10−4

Hartree/bohr in forces within the LDA, leading to a bond
length of 1.136 Å, compared to the experimental value of
1.128 Å (0.7% error). For atomic species we found that the
LDA with a SIC correctly reproduced the ionization potential
of the valence p states, yielding 0.569, 0.507, and 0.443
Hartree for Ar, Kr, and Xe, respectively, comparable with
the experimental values of 0.579, 0.514, and 0.445 Hartree,
respectively (errors for each species are 1.7%, 1.4%, and
0.4%, respectively). In Ar, using PBE XC with a SIC lead to
relatively similar results of 0.552 Hartree ionization potential
(4.7% error from experimental value). For CO we found
that the LDA with a SIC led to an ionization potential of
0.585 Hartree, comparable to the experimental value of 0.514
Hartree (13.8% error), while PBE XC with a SIC leads to
better results of 0.524 Hartree (1.9% error).

For the noninteracting electron models, the exact same KS
orbitals as found in the ground-state calculations were used as
the initial states, and the effective potential was taken to be
the KS potential of the ground-state DFT calculation (i.e., the
potential of which the KS orbitals are eigenstates of).

2. TDDFT HHG Calculations

The time-dependent KS equations were propagated with a
time step �t = 0.05 a.u. and by adding an imaginary absorb-
ing boundary potential of width 7.2 bohr. The initial state was
taken to be the ground state of the system. The propagator
was represented by a fourth-order Taylor expansion and was
explicitly time-reversal symmetric. The grid size, absorbing

potential, and time step were tested for convergence. The
envelope function A(t ) was taken as a flat-top envelope with
two-optical-cycle–long rise and drop sections and a four-
optical-cycle–long flat top (where the optical cycle is T =
2π/ω). The dipole acceleration [calculated from Eq. (3) in
the main text] was filtered with a super-Gaussian mask.
The HHG spectra were calculated by Fourier transforming
the second derivative of P(t ), calculated numerically with
an eighth-order finite-difference method. For each calcu-
lated HHG spectra, the integrated harmonic yield was cal-
culated by integrating over each harmonic order from �ω ∈
[nω − 0.5ω, nω + 0.5ω], where n is the harmonic order. The
calculations were only performed for positive values of ε,
since due to the reflection symmetry of all species along the
x axis, the HHG response is fully symmetric for ε → −ε. In
the spectrograms, steps of �ε = 0.02 were used, and plots
are presented with parabolic interpolation. For phase scans
presented in Appendix 6 of this Appendix, a step of �φ =
0.025π was used. Appendix 7 shows the ellipticity data of the
HHG emission, calculated directly for each harmonic order at
its peak using Stokes parameters.

For the frozen XC potential calculations, exactly the same
procedure as described above was utilized except that the XC
part in the time-dependent KS equations was kept frozen to its
ground-state value during propagation.

3. Noninteracting Electron HHG Calculations

For calculations in the noninteracting electron models,
exactly the same procedure as described above for TDDFT
was used. The only difference is that both the Hartree term
and the XC term in the KS potential were kept frozen to their
ground-state value during propagation. In this case, the KS
equations are fully decoupled as described in the main text,
leading to a noninteracting electron model with an effective
potential that is equal to the ground-state KS potential.

4. SFA Calculations

In later sections of this Appendix, SFA calculations of the
bielliptical HHG response from Ar are presented for a few
cases in order to compare to other methods. These calculations
were performed following the technical approach presented in
Refs. [74,75] and using transmission-matrix dipole elements
of hydrogenic 1s orbitals (even though Ar has a valence p
shell).

5. Additional Results From Argon

We present here complementary results for the bielliptical
HHG spectrograms from atomic Ar. First we present the total
ionization yield vs time in the HHG response of atomic Ar for
two different levels of theory—TDDFT using the LDA with
a SIC, and a corresponding noninteracting electrons model.
This is shown in Figs. 3(a) and 3(b) for two values of pump
ellipticities, ε = 0, 1. In the TDDFT calculations, the ioniza-
tion rate is much lower than in the noninteracting electrons
calculation. This is a result of the increasing positive charge
on the ionized system, which effectively raises the ionization
potential for the valence states as the calculation progresses
(since both calculations use the same initial orbitals and initial

033037-6



PROBING ULTRAFAST ELECTRON CORRELATIONS … PHYSICAL REVIEW RESEARCH 2, 033037 (2020)

FIG. 3. (a), (b) Total electron ionization yield vs time from Ar in similar settings to Fig. 1(b) in the main text for two values of pump
ellipticities, respectively, and comparing TDDFT calculations (using the LDA with a SIC) to a noninteracting electrons model.

ionization energies). Figures 3(a) and 3(b) show that early in
the calculation the total ionized yields in both models match.
At the point in time where roughly 0.01e charge has been
ionized, the ionization rates depart. Even though the total ion-
ization yields are small (less than 0.2e units of charge are ion-
ized in all cases, which corresponds to less than 3.5% of each
orbital), there are still discrepancies between the calculations
since there is exponential sensitivity in the ionization step to
the effective potential felt by the electrons. The magnitude
of this effect likely depends on the level of theory used in
calculations.

Next we consider the bielliptical HHG spectrograms calcu-
lated from atomic Ar at a higher intensity of 4 × 1014 W/cm2

compared to results presented in the main text [which are
presented for a power of 1014 W/cm2 in Fig. 1(b)] using sev-
eral levels of theory. Figure 4(a) shows results from TDDFT
calculations (using the LDA with a SIC) compared to a
corresponding SFA calculation. (The noninteracting electrons
calculations are not presented, since at this laser power the

degree of ionization is too high, causing numerical artifacts
in our limited size grid.) Notably, at this intensity the SFA
calculations match very well with the full TDDFT calcula-
tion. Very small deviations between the levels of theory are
observed in terms of the maximizing/minimizing ellipticities
(smaller than �ε = ±0.04), while some larger differences are
seen in the relative peak intensities (mostly for higher pump
ellipticities). The extremely good correspondence between
SFA and TDDFT calculations in this case can be attributed
to a type of generalized SFA, where for high enough laser
powers the e-e interaction term becomes negligible during
propagation compared to the laser-matter term, and thus does
not affect the dynamical response. This effect is even more
pronounced for higher harmonics, as expected. We note that
SFA calculations performed at the lower laser power, on the
other hand, produce results that are indeed slightly offset
from the full TDDFT calculations, with the same order of
deviations as seen from the noninteracting electrons model
[see Fig. 4(b)].

FIG. 4. (a) Same as Fig. 1(b) in the main text but for higher laser power of 4 × 1014 W/cm2 and comparing TDDFT calculations within the
LDA with an added SIC to SFA calculations. (b) Same as (a) but for lower laser power of 1014 W/cm2, and also comparing to the corresponding
noninteracting electrons model. (c) Same as Fig. 2(c) in the main text but from atomic Ar—comparison of the bielliptical HHG spectrograms
calculated with TDDFT using either LDA or PBE XC with an added SIC.
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FIG. 5. Same as Fig. 1(b) in the main text but for a cross-linear
HHG response (at ε = 0) where the relative two-color phase is
scanned to produce an HHG spectrogram. Calculated using TDDFT
(within the LDA with a SIC) and a corresponding noninteracting
electrons model.

We further present bielliptical HHG responses from atomic
Ar under the same conditions as in the main text Fig. 1(a)
but using two different XC functionals: LDA and PBE [see
Fig. 4(c)]. We note that the long-range asymptotic part in
both cases is corrected by the same SIC; hence any difference
in the response is likely a result of the XC descriptions of
the bound part of the electronic density. In this case the
response is almost identical using the two XC functionals,
even though there is a slight difference in the ground-state
ionization potential in each case (8.3% difference in ionization
potential). In fact, the only noticeable differences are seen in
harmonics 20 and 22 in Fig. 4(a), showing slight variations
in relative spectrogram peak intensities. These in turn can

be used in comparison with experiments to determine which
functional is more appropriate.

6. Phase-Resolved HHG Spectrograms

In this section we present results in a similar nature to those
shown in Fig. 1(b) in the main text but where rather than
scanning the ellipticity in the pump fields, we scan the relative
two-color phase (φ) in order to produce spectrograms (for
the cross-linear geometry, where ε = 0). Results are shown
in Fig. 5 for Ar, comparing the TDDFT calculation to the
noninteracting electrons model. As seen, a similar type of
sensitivity to e-e interactions is observed (i.e., the maximizing
phase is sensitive to the inclusion of e-e interactions in the
calculation). However, in this case the sensitivity is reduced
compared to the bielliptical spectrogram. Practically, the re-
duced sensitivity can be attributed to the simpler structure of
the phase-resolved spectrogram that has only one dominant
peak per each harmonic order. Physically, it originates from
the fact that the phase scan alone does not cover a wide range
of HHG responses as in the bielliptical case (e.g., for any value
of phase there are only two interfering electron trajectories per
optical cycle). Nonetheless, the fact that there is a sensitivity
to the level of theory in this spectrogram indicates that the
approach in the main text can be extended to multidimensional
spectroscopy, where other parameters of the laser can be
scanned: total laser power, relative power between the beams,
relative ellipticities of the beams, elliptical major axes of the
beams, and their relative phase.

7. Bielliptical HHG Ellipticity Spectrograms

We present here results for the bielliptical HHG spec-
trograms from both atomic and molecular media but where
the emission ellipticity is analyzed rather than the intensity.
Results are shown for several different species and using
various level of theory. First, Fig. 6(a) presents calculated
HHG ellipticity spectrograms from atomic Ar, Kr, and Xe at

FIG. 6. Bielliptical HHG ellipticity spectrograms from noble gases. (a) Ellipticity-resolved HHG response from several atomic species
using TDDFT calculations (within the LDA with a SIC). (b) Same as (a) but from atomic Ar and using various levels of theory. Calculations in
(a), (b) are performed under similar conditions to Fig. 1 in the main text. (c) Same as (a) but from atomic Ar compared to He at a higher laser
power of 4 × 1014 W/cm2. The ellipticity is directly plotted on a scale of −1 to 1 for each harmonic order (i.e., including helicity).
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the same level of theory (using full TDDFT within the LDA,
with a SIC). As seen in Fig. 6(a), practically the same response
is seen in all atomic species, except for a few small deviations.
This is despite the fact that the atoms have slightly different
ionization potentials. Similarly, Fig. 6(b) presents results for
Ar using different levels of theory (TDDFT, noninteracting
electrons, and SFA), showing that typically the same response
is observed in all cases, though slight variations can be seen
in higher harmonics. Results of the same nature are obtained
from Kr and Xe (not presented).

We further investigate this behavior by performing sim-
ilar calculations on atomic helium that has a much larger
ionization potential (at 0.903 Hartree). In this case, again
the same ellipticity response is observed for all harmonic
orders of both He and Ar [see Fig. 6(c)]. Remarkably, this
result is independent of the fact that many of the harmonics
which are above the ionization potential for Ar (nonpertur-
bative HHG, above the 11th harmonic) are below the ion-
ization potential of He (perturbative regime, below the 15th
harmonic).

We conclude that in atomic media, the ellipticity response
from bielliptical HHG is apparently a quite pure function of
the laser parameters and is largely independent of the atomic
species and the level of theory (for the explored laser param-
eters, species, and theory levels). We note on the other hand,
that the intensity of the HHG emission does show a relatively
large dependence on these degrees of freedom, as presented
throughout the main text and the Appendix. Furthermore, the
ellipticity response itself is much more sensitive to changes
in the pump ellipticities than the intensity response—the
ellipticity spectrograms in Fig. 6 oscillate very rapidly along
the ε axis. Therefore, it is overall a very peculiar result that
on one hand the intensity of the emission can be used to
probe a great deal of properties of the interacting medium,
while the ellipticity of the emission cannot. This result is
even more confusing considering that both the intensity and
the ellipticity of the HHG emission arise from the same
fundamental quantities—the emitted HHG field components
polarized along the x and y axes. We do not yet understand

FIG. 7. Bielliptical HHG ellipticity spectrograms from aligned
CO with varying levels of theory (full TDDFT using the LDA with
an added SIC and a corresponding noninteracting electrons model).
Calculation is performed under similar conditions to that in Fig. 2 in
the main text. The ellipticity is directly plotted on a scale of −1 to 1
for each harmonic order (i.e., including helicity).

the physical source of this behavior, but hypothesize that it
has to do with the phase picked up by the electrons as they are
accelerated in the continuum.

Lastly, Fig. 7 presents bielliptical HHG ellipticity spec-
trograms from aligned CO, showing that in the molecular
case the ellipticity response can indeed be utilized to probe
e-e interactions. Here, the ellipticity shows sensitivity on the
same scale as the total intensity spectrograms, where in the
noninteracting electrons model the ellipticity oscillates much
more rapidly vs ε compared to the full TDDFT calculation.
Thus, the response is highly sensitive to the inclusion of
e-e interactions, especially in the sign of the helicity as ε is
tuned away from zero, which may be positive for the TDDFT
calculation but negative in the noninteracting electrons model
(see harmonics 11–21 in Fig. 7).
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