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We consider the long-time limit of out-of-time-order correlators (OTOCs) in two classes of quantum lattice
models with time evolution governed by local unitary quantum circuits and maximal butterfly velocity vB = 1.
Using a transfer matrix approach, we present analytic results for the long-time value of the OTOC on and inside
the light cone. First, we consider “dual-unitary” circuits with various levels of ergodicity, including the integrable
and nonintegrable kicked Ising model, where we show exponential decay away from the light cone and relate
both the decay rate and the long-time value to those of the correlation functions. Second, we consider a class
of kicked XY models similar to the integrable kicked Ising model, again satisfying vB = 1, highlighting that
maximal butterfly velocity is not exclusive to dual-unitary circuits.
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I. INTRODUCTION

All physical systems are characterized by a maximum
velocity for the propagation of influences. While the speed
of light sets the ultimate bound, for many systems other
velocities act as an effective speed limit. In the motion of a
fluid, for example, it is the speed of sound that plays a decisive
role.

In any given nonrelativistic many-body system, however,
it is not obvious that such an effective velocity exists. For
quantum spin systems with finite-range interactions, Lieb and
Robinson [1] showed that the response function giving the
effect on a local observable A(t ) at time t > 0 of another
observable B(0) is characterized by finite velocity vLR that
is particular to the system in question. More precisely, they
showed that the expectation of commutator 〈[A(t ), B(0)]〉
vanishes exponentially when A(t ) lies outside a “light cone”
originating at B(0). This result has since been generalized to
systems where the local Hilbert space dimension is infinite [2]
and interactions are long-ranged [3,4].

In recent years it has been realized that the Lieb-Robinson
result does not capture every aspect of our notion of “prop-
agation of influence.” If we perturb a fluid by displacing a
single molecule, the subsequent trajectories of the surround-
ing molecules will begin to diverge (exponentially, since the
motion is chaotic) from those of the unperturbed system. On
the other hand, this effect is local, and will take time to prop-
agate throughout an extended system. Since the response to
the displacement will vary depending on the initial conditions,
one way to quantify this effect is to look at the expectation
of the square norm of the commutator 〈|[A(t ), B(0)]|2〉, or
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equivalently the out-of-time-order correlator (OTOC) [5],

CAB(t ) = 〈A(t )B(0)A(t )B(0)〉. (1)

The difference between these two notions of propagation can
be starkly illustrated by the following example. Particles in
a static disorder potential will undergo diffusion (ignoring
Anderson localization in the case of quantum dynamics).
Thus the density-density response is purely diffusive at times
exceeding the mean-free time with no notion of a finite ve-
locity of propagation. The OTOC, however, displays ballistic
propagation with a constant velocity [6,7]. The velocity char-
acterizing the growth of the OTOC is known as the “butterfly
velocity” vB [8,9].

Though it may be harder to detect, the butterfly velocity
is arguably the more fundamental measure of the spread
of influence in a many-body system. A basic question is
therefore, how large can vB be, and for what kind of system
is it maximized? The purpose of this paper is to answer
this question for a particular class of many-body dynamical
systems: those described by unitary circuits.

A. Unitary circuits

Consider a quantum system composed of a large num-
ber of spin-1/2 subsystems, or qubits. The Hilbert space
of the system is H = C2 ⊗ C2 · · · ⊗ C2, with one factor for
each qubit. A unitary circuit describes a sequence of unitary
transformations—or gates—each acting on a subset of the
qubits. Originally introduced as a model of quantum compu-
tation [10], such circuits have been widely studied in recent
years as a model for many-body dynamics [11–16]. The “dy-
namics” of a unitary circuit takes place in discrete time, but
can be regarded as arising from continuous-time Hamiltonian
dynamics, with a Hamiltonian that may be fixed, periodically
varying, or random. To impose a notion of locality on the
circuit, we can insist that it consist of gates that act only
on neighboring sites in a lattice. In this work we will be
concerned with “brick wall” circuits of the form shown in
Fig. 1. Note that that similar circuits, but with the qubits
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FIG. 1. A “brick wall” quantum circuit. The qubits are arranged
in a horizontal row with two-qubit gates acting alternately on the
even and odd links between them. Discrete time runs vertically.

arranged in a square array, are the basis of Google’s Sycamore
processor [17]. A basic feature of these circuits is that a
maximum velocity of propagation equal to 1 is intrinsic to
their structure. To see this, consider the (infinite-temperature)
correlation function of Pauli spin operators σα at site x and
time t � 0 (both integer) and σβ at site 0 and time 0,

cαβ (x, t ) = 〈σα (x, t )σβ (0, 0)〉. (2)

When |x| > t , σα (x, t ) and σβ (0, 0) commute, as none
of the unitary transformations performed on σα (x, t ) =
U†(t )σα (x)U (t ) act on the tensor factor corresponding to site
0. Thus cαβ (|x| > t, t ) = 0 by the tracelessness of the Pauli
operators. For similar reasons the OTOC

Cαβ (x, t ) = 〈σα (0, t )σβ (x, 0)σα (0, t )σβ (x, 0)〉 (3)

satisfies Cαβ (|x| > t, t ) = 1 since σα (0, t ) commutes with
σβ (|x| > t, 0). For smaller |x| the OTOC will begin to deviate
from 1. As |x|, t → ∞, the value of |x|/t where this deviation
occurs defines the butterfly velocity vB. Generally, vB < 1.
To illustrate the range of possible behavior we consider some
examples:

(1) If the gates are taken to be random unitary matrices the
butterfly velocity was found to be (on average)

vB = q2 − 1

q2 + 1
, (4)

where q is the local Hilbert space dimension (q = 2 for qubits)
[11]. Thus vB → 1 only as q → ∞.

(2) If the circuit is designed to simulate a Hamiltonian
H = ∑

j h j, j+1 consisting of terms acting on neighboring sites
then the time evolution operator may be approximated for
short times as

e−iH�t ≈ e−iHe�t e−iHo�t , (5)

where He = ∑
j h2 j,2 j+1 and Ho = ∑

j h2 j+1,2 j act on the odd
and even layers of the circuit. As �t → 0 the circuit approxi-
mates the continuous time evolution more accurately, but any
finite velocity implied by the Hamiltonian H corresponds to a
vanishing velocity in “gate time.”

(3) A simple example of a circuit with vB = 1 is one that
consists only of SWAP gates,

USWAP |s1〉1 |s2〉2 = |s2〉1 |s1〉2 . (6)

FIG. 2. Typical behavior of the OTOC in a maximal velocity
circuit (in this case the kicked Ising model) with vB = 1, where a
maximal value is reached on the light cone and the OTOC decays
exponentially away from the light cone.

Of course, such a circuit is not particularly interesting: it
generates no entanglement between the qubits.

In this paper we are concerned with the question of when
vB achieves the maximum velocity 1. We will refer to such
circuits as maximum velocity circuits (MVCs).

In light of the above examples, one may ask whether the
family of MVCs has any members with nontrivial (entangling)
dynamics. In the next section we will describe a class of
circuits which answers this question in the affirmative.

How does the OTOC behave for circuits with vB < 1?
In one dimension (qubits in a row) it was established, first
for random circuits [14,18], and then for continuous-time
models [19], that for |x|/t ∼ vB the OTOC displays diffusive
broadening,

Cαβ (x ∼ vBt, t ) −→
t→∞ C

(
x − vBt

2D
√

t

)
, (7)

where C(x) = 1
2 [1 + erf(x)] is written in terms of the error

function erf(x) and D is a (nonuniversal) diffusion constant.
Since MVCs have the maximal vB = 1, there is no room

for broadening of the front, as this would lead to C 
= 1
outside the light cone. Our results demonstrate this by explicit
calculation (see Fig. 2).

B. Dual-unitary circuits

Analytically tractable models of many-body quantum dy-
namics are scarce. In Refs. [20,21] it was shown that the
kicked Ising model (KIM) at particular values of the coupling
constants was amenable to exact calculation of the spectral
form factor and entanglement entropies (starting from cer-
tain initial conditions in the latter case). In particular, the
entanglement calculation showed that all eigenvalues of the
reduced density matrix are equal. By casting the KIM as
a unitary circuit, Ref. [22] showed that this degeneracy of
the entanglement spectrum was a consequence of a property
of the model now called dual unitarity. As well as being
unitary, dual-unitary gates are also unitary when interpreted
as generating evolution in the spatial direction (see Sec. IV).
Reference [23] explored the full family of dual-unitary gates
for qubits [which turns out to be 14-dimensional, compared
to the 16 dimensions of the group U(4)]. Subsequent work
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on dual-unitary circuits has studied the behavior of operator
entanglement [24], the properties of matrix product state
initial conditions that preserve the solubility of the dynamics
[25], and new realizations of dual unitarity for local dimension
q > 2 [26,27]. The property of dual unitarity is equivalent
to maximal operator entanglement, meaning that the gate
can create maximum entanglement when acting on product
states [26].

As we have already explained, unitarity guarantees that
correlations are nonzero only within the light cone with veloc-
ity 1 [15]. The fundamental observation of Ref. [23] was that
a circuit that is both unitary and dual unitary has correlations
vanishing everywhere but exactly on the light cone, where
correlations may be constant, oscillating, or decaying. This
raises the following natural questions:

(1) Are dual-unitary circuits generally MVCs?
(2) If so, do dual-unitary circuits exhaust the class of

MVCs, or are there MVCs that do not share the other features
of dual-unitary circuits?

C. Summary of results

1. Dual-unitary circuits are MVCs

We show that the answer to the first of our questions is yes:
dual-unitary circuits generically have vB = 1. We demonstrate
this by computation of the OTOC Cαβ (x, t ) inside the light
cone for x + t → ∞ [recall that Cαβ (x, t ) = 1 outside the
light cone]. The maximal velocity is reflected in Cαβ (t, t ) 
= 1
at long times, where the precise value depends on the chosen
class of dual-unitary circuits.

In all cases the OTOC has a strong parity effect, being
independent of x − t for x − t even and x 
= t . For x − t odd
the OTOC may be expressed in terms of the same quantum
channel that determines the correlation functions on the light
cone in dual-unitary circuits [23], and the possible behavior
of the OTOC moving inside the light cone is inherited from
this quantum channel. For example, it may tend to zero
(see Fig. 2), to a nonzero constant, or oscillate. Within the
class of dual-unitary circuits the kicked Ising model (KIM) is
distinguished: in this case we find the action of the quantum
channel explicitly and evaluate the OTOC exactly inside the
light cone at x + t → ∞, where it decays with increasing
t − x. A further specialization is to the KIM at the integrable
point where we evaluate the OTOC exactly for all values of
x + t .

It is natural to conjecture that vB = 1 is a defining feature
of the dual-unitary family that goes hand in hand with their
other properties.

2. MVCs that are not dual unitary

In fact, this is not the case. Our second contribution is to
identify a family of models which is not dual unitary but for
which the calculation of the OTOC at x + t → ∞ is tractable
and yields vB = 1. This is again reflected in the long-time
values of Cαβ (t, t ) 
= 1. This model can be regarded as a
kind of kicked XY model. Unlike the dual-unitary case, the
behavior of the OTOC is decoupled from that of the correla-
tion functions. While the correlation functions are generally

exponentially decaying, the OTOC oscillates with period 4
without decay inside the light cone.

D. Outline

The outline of the remainder of this paper is as follows. In
Sec. II we introduce the formalism that we use for calculations
and, as a warm-up, demonstrate how it may be used to
calculate correlation functions on the light cone for arbitrary
unitary circuits. Section III generalizes the formalism to the
OTOCs and demonstrates that generically vB < 1, identifying
the conditions required for vB = 1. We next calculate the
OTOC for dual-unitary circuits (Sec. IV) and the new family
of circuits with vB = 1, the kicked XY models (Sec. V).
Section VI presents our conclusions.

II. CORRELATION FUNCTIONS

As a warm-up, and to introduce the graphical calculus, we
consider correlation functions of the form

cαβ (x, t ) = 〈σα (x, t )σβ (0, 0)〉, (8)

at infinite temperature, 〈O〉 = tr(O)/ tr(1), and where the set
{σα, α = 0 . . . q2 − 1} presents an orthonormal local opera-
tor basis for a local q-dimensional Hilbert space, satisfying
tr (σασβ )/q = δαβ . It is particularly convenient to choose
σ0 = 1 such that all other operators within this basis are
necessarily traceless, similar to the Pauli matrices for local
qubits with q = 2.

The time evolution is governed by a unitary circuit con-
sisting of two-site operators, where each gate U can be
graphically represented as

(9)

In this notation each leg carries a local q-dimensional Hilbert
space, and the indices of legs connecting two operators are
implicitly summed over (see, e.g., Ref. [28]). With this con-
vention, the full evolution U (t ) at time t consists of the t-times
repeated application of staggered two-site gates,

. (10)

These can extend arbitrarily far in the x direction, such that
all presented results will hold in the thermodynamic limit of
infinite system size. A simple example that will turn out to be
relevant in the context of OTOCs is given by correlators on the
light cone (x = t). Forgetting about constant prefactors for the
time being,

〈σα (t, t )σβ (0, 0)〉 ∝ tr[U†(t )σα (x = t )U (t )σβ (0)], (11)
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which can be graphically expressed as

, (12)

where the circuit has periodic boundary conditions in the x
direction and taking the trace corresponds to connecting the
legs at the top and bottom. Here we also introduced a graphical
notation for the (one-site) operators σα,β [29] as

, (13)

where taking the trace can be graphically represented as

. (14)

The unitarity (U †U )ab,cd = (UU †)ab,cd = δacδbd similarly has
a straightforward graphical representation,

. (15)

Identifying all places where the unitarity of the underlying
circuits can be used in this way, the correlator (12) simplifies
to

. (16)

The missing prefactor can be easily obtained as 1/qt+1 by
noting that this prefactor does not depend on the choice of
σα,β and the correlator simplifies to 〈1〉 = 1 for σα = σβ = 1,
where the above diagram simplifies to qt+1. The diagram
in Eq. (16) can be deformed to a more compact notation,
returning 〈σα (t, t )σβ (0, 0)〉,

, (17)

where we have introduced “folded” representations of the
unitaries U ∗ ⊗ U and U ⊗ U ∗ as

. (18)

The final expression for the correlator can be interpreted as the
t-times repeated action of a linear map M± ∈ Cq2×q2

acting
on either σα or σβ , subsequently traced out with the other
operator, as

〈σα (t, t )σβ (0, 0)〉 = tr[σβMt
−(σα )]/q (19)

= tr[σαMt
+(σβ )]/q, (20)

where M± are Hermitian conjugate and defined as

M+(σ ) = tr1[U (σ ⊗ 1)U †]/q, (21)

M−(σ ) = tr2[U †(1 ⊗ σ )U ]/q. (22)

Defined in this way, M± is a completely positive and trace-
preserving map, such that it acts as a quantum channel. From
the unitarity it also immediately follows that M±(1) = 1,
such that these channels are furthermore unital.

These can also be graphically represented as

, (23)
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FIG. 3. Evolution of 〈σα (t, t )σβ (0, 0)〉 for t > 0, with q = 2 and
σα and σβ Pauli matrices, where the legend denotes α, β. Exponential
decay can be clearly observed after an initial transient regime, where
all correlation functions decay at the same rate. The two-qubit gate
U is parametrized as in Appendix B.

. (24)

This allows for a straightforward evaluation of the corre-
lation functions on the light cone at long times, as illustrated
in Fig. 3, where the long-time behavior will generally exhibit
exponential decay dominated by the eigenoperators of M±
with largest eigenvalue. While this was already pointed out
for dual-unitary circuits in Ref. [23], where all correlators
that do not lie on the light cone vanish, this construction of
correlation functions in terms of quantum channels holds for
general unitary circuits.

III. OUT-OF-TIME-ORDER CORRELATORS

In the following, we will consider out-of-time-order corre-
lators (OTOCs) for unitary quantum circuits [5,13,14,18,30–
33]. These present a natural extension of the correlation
functions (8) and are defined as

Cαβ (x, t ) = 〈σα (0, t )σβ (x, 0)σα (0, t )σβ (x, 0)〉. (25)

Whereas correlation functions are a measure for how exci-
tations in a system relax towards equilibrium, OTOCs are
a measure for chaos and the scrambling of quantum infor-
mation. Their name follows from the fact that they contain
two copies of both U and U†, unlike the correlation functions
where a single copy of each is present.

As shown in Appendix A, explicitly writing out the OTOC
and making use of the unitarity leads to a diagram for the
OTOC that consists only of the gates lying in the intersection
of the light cones of σα and σβ . Again recasting these dia-
grams in a folded version leads to two possible expressions

Cαβ (x, t ) = C±
αβ (x, t ),

(26)

for (x − t ) even, where we define n+ = (t + x)/2 and n− =
(t − x + 2)/2, and

(27)

for (x − t ) odd, with now n+ = (t + x + 1)/2 and n− = (t −
x + 1)/2. At finite times, the numerical evaluation of such
diagrams is typically exponentially hard, and analytic results
for OTOCs generally rely on either randomness in the under-
lying unitaries or cluster expansions in a fixed realization of a
circuit. Here, we will be interested in the profile of the OTOC
at long times and at fixed distances of σβ from the light cone
of σα , where analytic results can be obtained. Considering the
right edge of the light cone (results are similar for the left
edge), this corresponds to taking the limit n+ → ∞ while
keeping n− = n fixed.

With this limit in mind, the expressions C±
αβ (x, t ) can be

reinterpreted as

C+
αβ (x, t ) = (L(σα )|(Tn− )n+|R−(σβ )),

C−
αβ (x, t ) = (L(σα )|(Tn− )(n+−1)|R+(σβ )), (28)

where all information about the long-time behavior of the
OTOC is encoded in the same column transfer matrix Tn ∈
Cq4n×q4n

(which we here rotate by 90 degrees for ease of
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notation),

, (29)

and the left boundary (Ln(σα )| ∈ Cq4n
(similarly rotated) is

given by

. (30)

The right boundary |R±
n (σβ )) ∈ Cq4n

depends explicitly on the
parity of (x − t ), leading to

, (31)

.

(32)

Since the transfer matrix is a contracting operator, all its
eigenvalues λ necessarily satisfy |λ| � 1, and the long-time
behavior of the OTOC at fixed n− = n will be fully deter-
mined by the eigenoperators of Tn with maximal eigenvalue
|λ| = 1. Note that since the transfer matrix is not necessar-
ily Hermitian, there is no guarantee that its left and right
eigenstates/eigenoperators will be identical, and this will
generally not be the case.

This can already be illustrated when we assume “generic”
circuits; i.e., the underlying circuits exhibit no additional
structure apart from their unitarity. In the folded representa-
tion, the conditions for unitarity can be rewritten as

, (33)

which can be used to construct a single right and left eigenop-
erator of the transfer matrix at arbitrary depth

, (34)

,
(35)

satisfying Tn|Rn) = Rn and (Ln|Tn = (Ln|, and normalized
as (Ln|Rn) = 1, such that limm→∞(Tn)m = |Rn)(Ln|. The as-
sumption of generic circuits is here necessary to exclude the
possibility of additional degenerate eigenoperators with unit
eigenvalue. However, using this to evaluate the long-time
value of the OTOC leads to

lim
m→∞(Ln(σα )|(Tn)m|R±(σβ ))

= (Ln(σα )|Rn)(Ln|R±
n (σβ )) = 1, (36)

which is exactly the trivial value the OTOC takes outside the
light cone. This shows that the butterfly velocity satisfies vB <

1 in generic unitary circuits without any additional structure,
but provides no further information about the actual behavior
of the OTOC.

A circuit with maximal butterfly velocity vB = 1 necessi-
tates additional unit-eigenvalue eigenoperators of the column
transfer matrix T1 for x = t , and we will provide exact results
for two classes of unitary circuits where this is the case: dual-
unitary circuits, ranging from maximally chaotic to the kicked
Ising model at both integrable and nonintegrable points, and
kicked XY circuits. While these are not guaranteed to exhaust
all classes of maximal velocity circuits, dual-unitary circuits
satisfy vB = 1 at arbitrary q, and numerical investigations
suggest that all maximal velocity circuits for q = 2 can be
mapped to either dual-unitary circuits or kicked XY models.

For such maximal velocity circuits, our approach consists
of finding the accompanying left and right eigenoperators of
the transfer matrix, constructing a dual basis out of these
eigenoperators, and then calculating the long-time value by
replacing the transfer matrix by the appropriate projector. In
both cases, we calculate the nontrivial value the OTOC takes
on the light cone at long times, and show that, up to parity
effects, the profile of the OTOC either decays exponentially
or remains constant inside the light cone. Dual-unitary circuits
contain both chaotic and nonergodic classes, which is directly
reflected in the behavior of the OTOC inside the light cone.

Notation

In the following, we will make extensive use of different
left and right eigenoperators of these transfer matrices, for
which we introduce the following notation:

, (37)

. (38)

In order to lighten notation, we drop the subscript in I1 and
write 1 = ◦. In this notation, we already have

|Rn) = 1

qn/2
| ◦ ◦ · · · ◦ ◦︸ ︷︷ ︸

2n

), (39)

(Ln| = 1

qn/2
(I1I2 . . . InIn . . . I2I1|, (40)
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and

|R+
n (σβ )) = 1

qn/2
|σβ ◦ ◦ · · · ◦ ◦︸ ︷︷ ︸

2(n−1)

σβ ), (41)

(Ln(σα )| = 1

qn/2
(I1I2 . . . In−1︸ ︷︷ ︸

n−1

Iα
n Iα

n In−1 . . . I2I1︸ ︷︷ ︸
n−1

|. (42)

Overlaps can be evaluated as, e.g., (I1I1|σασβ ) = tr(σασβ ) =
qδαβ [34].

IV. DUAL-UNITARY CIRCUITS

Dual-unitary circuits are a class of unitary circuits that
have recently gained increased attention, since they allow
for exact calculations without the usual need to average over
Haar-random unitary circuits. A unitary circuit U with matrix
elements Uab,cd is said to be dual unitary if its dual Ũab,cd =
Udb,ca is also unitary [22,23]. This has a clear interpretation:
U determines the evolution in time, which is guaranteed to
be unitary, and Ũ determines the evolution in space, which is
generally not unitary. Graphically, this can be represented as

, (43)

or in the folded representation as

. (44)

The resulting duality between space and time guarantees that
all dynamical correlation functions 〈σα (x, t )σβ (0, 0)〉 vanish
unless the operators lie on the edges of a light cone spreading
at speed 1, which can then be expressed in terms of quantum
channels acting on either σα or σβ (see Sec. II and Ref. [23]).
This also allows for the exact calculation of operator entan-
glement, where the entanglement velocities are also maximal,
vE = 1 [22,24]. Note that the evolution of these operator
entanglements is governed by the exact same transfer matrix
as in Eq. (29), albeit with different boundary conditions [24].

Combining Eqs. (33) and (44), an independent set of
n + 1 simultaneous left and right eigenoperators of Tn can be
constructed as

|en,k ) = | ◦ · · · ◦︸ ︷︷ ︸
n−k

I1I2 . . . IkIk . . . I2I1 ◦ · · · ◦︸ ︷︷ ︸
n−k

), (45)

(en,k| = (◦ · · · ◦︸ ︷︷ ︸
n−k

I1I2 . . . IkIk . . . I2I1 ◦ · · · ◦︸ ︷︷ ︸
n−k

|, (46)

for k = 0 . . . n. Their orthonormal counterparts are given by

|ẽn,0) = 1

qn
|en,0), (47)

|ẽn,k 
=0) = 1

qn

1√
q2 − 1

(q|en,k ) − |en,k−1)), (48)

and similarly for (ẽn,k|, leading to (ẽn,i|ẽn, j ) = δi j (again
following [24]). Because of the dual unitarity, the left eigen-
operators are simply the transpose of the right eigenvectors,
which is generally not the case.

A. Maximally chaotic

The class of maximally chaotic dual-unitary models are
defined as those where the set of eigenoperators (45) exhausts
all possible eigenoperators of the transfer matrix with eigen-
value 1 [24]. The long-time value of the OTOC can then be
obtained from the appropriate projector constructed out of the
eigenoperators. We will explicitly distinguish the even and
odd cases, starting from the even case,

lim
m→∞(Ln(σα )|(Tn)m|R±(σβ ))

=
n∑

k=0

(Ln(σα )|ẽn,k )(ẽn,k|R±
n (σβ )), (49)

where the necessary overlaps can easily be evaluated as

(Ln(σα )|ẽn,0) = 1

qn/2
,

(Ln(σα )|ẽn,1) = − 1√
q2 − 1

1

qn/2
,

(Ln(σα )|ẽn,k>1) = 0, (50)

where the overlaps vanish for k > 1 since tr(σα ) = 0, and

(ẽn,n|R+
n (σβ )) = q√

q2 − 1

1

qn/2
,

(ẽn,k<n|R+
n (σβ )) = 0, (51)

again from tr(σβ ) = 0. The only possible nonzero value for
the OTOC at long times is when n = n− = 1 and subsequently
x = t , leading to

lim
(x+t )→∞

C+
αβ (x, t ) =

{− 1
q2−1 , if x = t,

0, if x 
= t .
(52)

The value of the light cone has a simple interpretation by
assuming that, at long times, σα (0, t )σβ (x, 0) is essentially
random and contains all q2 − 1 traceless basis operators with
equal amplitude i/

√
q2 − 1.

This can be contrasted with the expected behavior for Haar-
random unitary circuits, considering n = 1 for simplicity. The
matrix elements of the unfolded transfer matrix T1 can be
represented as

, (53)
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and in the long-time limit T1 can be replaced by the projector
|ẽ1,1)(ẽ1,1| + |ẽ1,0)(ẽ1,0|, where the matrix elements can be
explicitly evaluated as

1

q2 − 1
[δabδcd × δa′b′δc′d ′ + δadδbc × δa′d ′δb′c′

− 1

q
(δabδcd × δa′d ′δb′c′ + δadδbc × δa′b′δc′d ′ )]. (54)

Remarkably, this is exactly the expression that is obtained by
taking the Haar average of random one-site unitary matrices
uaa′u∗

bb′ucc′u∗
dd ′ , u ∈ Uq (see, e.g., Ref. [14]),

, (55)

such that the long-time limit of evolution using two-site dual-
unitary gates is here equivalent to the evolution using Haar-
random one-site unitary gates with the same dimension of
the local Hilbert space. An additional observation is that a
dual-unitary gate where a random one-site unitary is added
to each leg remains dual unitary. Constructing the transfer
matrix for these unitaries returns the usual transfer matrix
with an additional prefactor of the form (55). Averaging over
the additional Haar-random one-site unitaries then returns
as prefactor the projector by Eq. (53), such that taking the
Haar average of the transfer matrix over one-site unitaries
again results in the same projector. Since such unitaries
can give rise to a basis rotation of the local operators, this
provides an alternative argument for why all traceless basis
operators should have equal amplitudes in the final OTOC
value. However, it is worthwhile to note again that the result
for the OTOC does not depend on any randomness in the
circuits and holds for any circuit built out of dual-unitary
circuits.

Returning to the calculation of the OTOCs, the right
boundary for odd parity is more involved, but from the
left boundary we see that we only need (ẽn,0|R−

n (σβ )) and
(ẽn,1|R−

n (σβ )). This leads to∑
k=0,1

(Ln(σα )|ẽn,k )(ẽn,k|R−
n (σβ ))

= 1

q2 − 1
[q2Mn(σβ ) − Mn−1(σβ )], (56)

in which Mn(σβ ) is given by

.

(57)

Plugging this in the expression for the OTOC returns

lim
(x+t )→∞

C−
αβ (x, t )

= q2M(t−x+1)/2(σβ ) − M(t−x−1)/2(σβ )

q2 − 1
. (58)

The behavior of Mn can immediately be linked to the dynam-
ical correlations on the light cone, since

Mn(σβ ) = tr[σβMn
−(Mn

+(σβ ))]/q

= tr[Mn
+(σβ )†Mn

+(σβ )]/q, (59)

with M± defined as previously (21). So not only do these
quantum channels fully determine the two-point correlation
functions on the light cone, the only nonzero correlations in
dual-unitary circuits, they determine the decay of the OTOC
inside the light cone in such circuits. This explicitly connects
both the decay rate and the steady-state values of the OTOC
with those of the correlation functions. Since dual-unitary
circuits have been classified in terms of the increasing level of
ergodicity encoded in the eigenvalues of M± (see Ref. [23]),
this is immediately reflected in the OTOC behavior [for (x −
t ) odd]:

(1) Noninteracting: All 2(q2 − 1) nontrivial eigenvalues
of M± are equal to 1. All dynamical correlations remain
constant, and the OTOC similarly remains constant and equal
to 1 both inside and outside the light cone.

(2) Nonergodic: There exist more than zero but less than
2(q2 − 1) nontrivial eigenvalues equal to 1. Some dynamical
correlations remain constant, and the OTOC similarly decays
exponentially to a constant value inside the light cone since,
for some σ , limt→∞ Mt

+(σ ) converges to a nonzero operator.
The limiting value of the OTOC then simply equals the norm
of this operator up to a factor q. The decay rate for the OTOC
is twice that of the corresponding dynamical correlation.

(3) Ergodic and nonmixing: All nontrivial eigenvalues are
different from 1, but there exists at least one eigenvalue
with unit modulus. All time-averaged dynamical correlations
vanish at large times, but Mt

+(σ ) keeps oscillating. The
time-averaged OTOC similarly keeps oscillating, but around
a value that is larger than zero and (generally) smaller than 1.

(4) Ergodic and mixing: All nontrivial eigenvalues are
within the unit disk and all dynamical correlations decay
to zero since limt→∞ Mt

+(σ ) vanishes for all initial σ . The
OTOC similarly exponentially decays to zero inside the light
cone, where the decay rate is again twice that of the corre-
sponding dynamical correlation.

This is illustrated in Fig. 4 for an ergodic and nonmixing
dual-unitarity circuit, showing both the OTOCs at finite times
for n− = 1, 2, 3 and their steady-state value for a large range
of n−, illustrating the exponentially decaying profile of the
OTOC inside the light cone.

B. Nonintegrable kicked Ising model

The previous calculation explicitly assumed no other
eigenoperators with eigenvalue 1 other than the ones from
Eq. (45). However, within the class of dual-unitary circuits
with q = 2 there exist a subclass that are equivalent to the
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FIG. 4. C+
αβ (x, t ) (a) and C−

αβ (x, t ) (b) for σα = σβ = σx and a
random dual-unitary circuit (see Appendix B). Only the values inside
and on the light cone are shown. In the top plot (t − x) is even, and
the long-time values are given by −1/(q2 − 1) = −1/3 for x = t
and 0 otherwise. The bottom plot denotes the evolution for (t − x)
odd, where the inset details the (logarithm of the) long-time values
of limt→∞ |Cαβ (t − 2n − 1, t )| from Eq. (58) for a larger range of n,
where the exponential decay can be clearly observed.

kicked Ising model (KIM) at the self-dual point, given by

, (60)

defined in terms of two-qubit (I) and one-qubit (K) gates

I = exp[−iJσz ⊗ σz]

× exp[−i(h1(σz ⊗ 1) + h2(1 ⊗ σz ))/2], (61)

K = exp [ibσx], (62)

where dual-unitarity fixes |J| = |b| = π/4 and h1, h2 ∈ R can
be chosen freely. In this subsection, we will take h1 
= −h2 in
order for the model to be nonintegrable, where the integrable
point will be the subject of the next subsection. Taking J =
b = π/4, the matrix elements of this gate are given by

Uab,cd = − i

2
exp

[
i
π

4
(a − d )(c − b)

]

× exp

[
−i

h1

2
(a + c) − i

h2

2
(b + d )

]
, (63)

with a, b, c, d ∈ {−1, 1}. As also noted in Ref. [21], these
gates exhibit an additional symmetry that allows for the
construction of additional eigenoperators with eigenvalue 1 as

|zn,k ) = | ◦ · · · ◦︸ ︷︷ ︸
n−k

σz I1 . . . Ik−1Ik−1 . . . I1︸ ︷︷ ︸
2(k−1)

σz ◦ · · · ◦︸ ︷︷ ︸
n−k

), (64)

with k = 1 . . . n, which can again be orthonormalized as

|ẽn,n+k ) = 1

2n

(√
3

2
|zn,k ) −

√
2

3
|en,k ) +

√
1

6
|en,k−1)

)
, (65)

and similarly for (ẽn,n+k|. The necessary overlaps with the left
boundary now explicitly depend on the choice of operators.
Writing σα = αxσx + αyσy + αzσz and σβ = βxσx + βyσy +
βzσz, with α2

x + α2
y + α2

z = β2
x + β2

y + β2
z = 1, the only rel-

evant nonzero overlaps follow from

(Ln(σα )|zn,1) = 2n/2(2α2
z − 1

)
, (66)

(zn,n|R+
n (σβ )) = 2n/2+1β2

z , (67)

leading (for the left boundary) to

(Ln(σα )|ẽn,n+1) = 1

2n/2

[√
6
(
2α2

z − 1
)+

√
1

6

]
, (68)

(Ln(σα )|ẽn,k>n+1) = 0, (69)

and for the right boundary to

(ẽn,2n|R+
n (σβ )) = 1

2n/2

[√
6 β2

z −
√

2

3

]
, (70)

(ẽn,n<k<2n|R+
n (σβ )) = 0. (71)

Considering even parity, this will only modify the steady-state
value for n = n− = 1, where we find

lim
(x+t )→∞

C+
αβ (x, t ) =

{
3β2

z α2
z − α2

z − β2
z , if x = t,

0, if x 
= t .

For the case of odd parity the profile will again be determined
by Mn, where the explicit parametrization of U allows us to
find analytic expressions for C−

αβ (x, t ). The necessary addi-
tional overlap follows from

(zn,1|R−
n (σβ )) = 0, (72)

where we have evaluated the diagram using that, for the KIM,

. (73)

The final value for the OTOC is given by

2n∑
k=0

(Ln(σα )|ẽn,k )(ẽn,k|R−
n (σβ ))

= (
1 + α2

z

)
Mn(σβ ) − α2

z Mn−1(σβ ). (74)

Using the explicit construction of the eigenoperators of
M+ (see Appendix C), we can evaluate

Mn(σβ ) = [βx cos(h1) − βy sin(h1)]2 cos(h1 + h2)2(n−1),

(75)
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FIG. 5. Values of C+
αβ (x, t ) (a) and C−

αβ (x, t ) (b) for σα =
(σx + σz )/

√
2 and σβ = σy for evolution using the KIM with h1 =

0.4 and h2 = 0.6. For even (t − x) the long-time values are given
by −1/2 for x = t and 0 otherwise. The bottom plot denotes the
evolution for odd (t − x), where the inset details the (logarithm
of the) long-time values of limt→∞ |Cαβ (t − 2n − 1, t )| for a larger
range of n, where the exponential decay ∝ cos(h1 + h2)2n can be
clearly observed.

for n � 1 and M0(σβ ) = 1. The final value for the OTOC at
odd values of (x − t ) follows as

lim
(x+t )→∞

C−
αβ (x, t ) = [βx cos(h1) − βy sin(h1)]2

× cos(h1 + h2)t−x−3

× [
cos(h1 + h2)2 − α2

z sin(h1 + h2)2
]
,

(76)

for x < t − 1, and

lim
(x+t )→∞

C−
αβ (t − 1, t )

= (
1 + α2

z

)
[βx cos(h1) − βy sin(h1)]2 − α2

z . (77)

This is illustrated in Fig. 5, both the transient regime for small
values of n and the long-time value for a larger range of n.

Having constructed M+, the correlation functions on the
light cone also immediately follow (for t > 0) as

〈σα (t, t )σβ (0, 0)〉 = cos(h1 + h2)t−1[αx cos(h2) − αy sin(h2)]

× [βx cos(h1) − βy sin(h1)], (78)

which is illustrated in Fig. 6.

C. Kicked Ising model at the integrable point

The final dual-unitary circuit we will consider is the KIM
model at the integrable point, where h1 = −h2. The time evo-
lution governed by this circuit is easily seen to be equivalent

0 2 4 6 8 10 12

t

10−5

10−4

10−3

10−2

10−1

|〈σ
α
(t

,t
)σ

β
(0

,0
)〉| 〈σα(t, t)σβ(0, 0)〉

cαβ cos(h1 + h2)t−1

FIG. 6. Evolution of the correlation function on the light cone
〈σα (t, t )σβ (0, 0)〉 for the KIM and σα,β parametrized as in Fig. 5,
showing exponential decay ∝ cos(h1 + h2)t with prefactor cαβ =
[αx cos(h2) − αy sin(h2)][βx cos(h1) − βy sin(h1)].

to the circuit with h1 = h2 = 0, which is exactly the Trot-
terization of the kicked Ising model at the integrable point.
As shown in the previous section, the decay rate of the KIM
is set by cos(h1 + h2), such that at these values the OTOC
is naively not expected to decay. While this will turn out to
be the case, the argument needs to take into account that the
integrability is reflected in the fact that the transfer matrix sup-
ports an exponentially large number of eigenoperators with
eigenvalue 1.

More specifically, any “product state” of the form∣∣σα1σα2 . . . σα2n

)
(79)

is an eigenoperator of the transfer matrix, with the eigenvalue
either zero or 1 depending on ny + nz, the total combined
number of σy and σz operators in this eigenoperator. If this
is even, the state has eigenvalue 1, otherwise the state has
eigenvalue zero. The unitarity can be combined with a set of
relations for σx, σy, and σz that are satisfied precisely at the
integrable point: U (1 ⊗ σα ) = σα ⊗ σβ and U (σx ⊗ σα ) =
σα ⊗ σβ , for general σα and with σβ either σx or 1 (see
Appendix D), such that the action of the transfer matrix on
such a product state results in an eigenvalue that is either
proportional to tr(σ x ) if ny + nz is odd, or tr(1) for ny + nz

even. As such, the transfer matrix is effectively a projector and
the OTOC immediately saturates to a constant value inside the
light cone.

Since the transfer matrix is a projector, the OTOC diagram
at arbitrary values of n+ equals the diagram with n+ = 1,
which can be explicitly contracted using the identities (D1)
from Appendix D to return

C+(t, t ) = 2
[
(αyβy + αzβz )2 + α2

x β
2
x

]− 1, (80)

C+(x < t, t ) = 1, (81)

and for odd parity,

C−(x, t ) = α2
x + (1 − αx )2

(
2β2

x − 1
)
, (82)

where the limit (x + t ) → ∞ does not need to be taken
because the OTOC does not depend on (x + t ) away from the
light cone (see Fig. 7).

The correlation functions on the light cone can also be
explicitly evaluated from the known eigenoperators of the
quantum channels (see Appendix D) and exhibit the same

033032-10



MAXIMUM VELOCITY QUANTUM CIRCUITS PHYSICAL REVIEW RESEARCH 2, 033032 (2020)

0 5 10 15 20

t

−1.0

−0.5

0.0

0.5

1.0

C
α

β
(t
−

n
,t

)

0 10 20
n

−1

0

1n = 0

n = 1

n = 2

n = 3

n = 4

FIG. 7. Values of C(x, t ) for x = t − n, σα = σx/
√

6 + σy/
√

2 +
σz/

√
3, and σβ = σx/

√
6 − σy/

√
2 + σz/

√
3 for evolution using the

kicked XY model with Jz = π/10. Dotted lines represent the analytic
results, and the inset details lim(x+t )→∞ C(t − n, t ) for a larger range
of n. The immediate saturation to a constant value can be clearly
observed.

behavior, immediately saturating to a constant and nonzero
value on the light cone as

〈σα (t, t )σβ (0, 0)〉 =
{
δαβ, if t = 0,

αxβx, if t > 0.
(83)

To conclude this section, we explicitly point out the rela-
tions between these three different classes of unitary circuits,
where an increased number of eigenoperators with eigenvalue
1 correspond to a decrease in free parameters. Generic dual-
unitary circuits correspond to maximally chaotic models (see
also Appendix B). All nongeneric dual-unitary circuits exhibit
additional symmetries and can be mapped to kicked Ising
models, where a one-parameter subset of the latter correspond
to the KIM at the integrable point.

V. KICKED XY MODELS

In this section, we will show how the results for the inte-
grable KIM can be extended toward a closely related class of
kicked XY models, highlighting that it is not the dual-unitarity
that is responsible for the maximal butterfly velocity. We will
consider circuits of the form

, (84)

with one-qubit gate K = exp [i π
4 σx] and the two-qubit gate

J = J [J] part of a one-parameter family of unitary circuits

J [J] = exp[iJσz ⊗ σz] exp

[
i
π

4
σy ⊗ σy

]
. (85)

This circuit introduces an explicit anisotropy in the one-qubit
operator that only acts on a single site. However, the building

block for time evolution over two time steps is given by

, (86)

both operators of which we can interpret as the Trotterization
of an Ising model with local interactions Jσz ⊗ σz + π

4 σy ⊗
σy, where the transverse field alternates between hx = π/4
and 0. After a spin rotation, this can be interpreted as a
kicked XY spin model with transverse field with magnetization
strength π/4, which is why we refer to this model as a
kicked XY model (following the name of, e.g., Ref. [35]).
However, we will stick with the ZY parametrization because
it highlights the similarities with the kicked Ising model.
More specifically, at J = π/4 the model is dual unitary and
−U (K ⊗ 1) equals the self-dual KIM unitary at the integrable
point. In the following, we will consider the model away from
the dual-unitary point.

Indeed, this model behaves in the same vein as the inte-
grable self-dual KIM, in that it has a maximal butterfly ve-
locity vB = 1 and satisfies a (more restricted) set of identities.
However, it also differs in some crucial ways: it is not dual
unitary (except for |J| = π/4), and the transfer matrix will
no longer be a projector. As such, the OTOC in these models
will again exhibit some transient dynamics, as in maximally
chaotic dual-unitary circuits, before converging to a steady-
state value, where parity effects will turn out to be crucial.

In order to explicitly construct eigenoperators, we can
make use of the relations

U (1 ⊗ 1)U † = 1 ⊗ 1, U (σx ⊗ σx )U † = σx ⊗ σx,

U (1 ⊗ σy)U † = σy ⊗ σx, U (σx ⊗ σz )U † = σz ⊗ 1, (87)

and

U †(1 ⊗ 1)U = 1 ⊗ 1, U †(σx ⊗ σx )U = σx ⊗ σx,

U †(σy ⊗ σx )U = 1 ⊗ σy, U †(σz ⊗ 1)U = σx ⊗ σz. (88)

These are graphically represented in Appendix E. Note that
these are not all independent and the identities for 1 ⊗ 1
are a simple rewriting of unitarity, but written in this way
they can be used to construct a set of eigenoperators with
eigenvalue 1 as product states. In this model left and right
eigenoperators differ, so we will first focus on the construction
of right eigenoperators using Eqs. (87). While the number
of eigenoperators that can be constructed in this way is
exponentially large, a large part of these eigenoperators will
be irrelevant for the calculation of the OTOC; demanding a
nonzero overlap between the eigenoperators and the left or
right boundary fixes the eigenoperators to be symmetric with
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respect to space inversion. Define

r1r2 . . . rn

= |σ(0, r1) σ(r1, r2) . . . σ(rn−1, rn)
σ(rn−1, rn) . . . σ(r1, r2) σ(0, r1))

=

(89)

with ri ∈ {0, 1} and (ri−1, ri ) determining the operator on leg
i and 2n + 1 − i as

σ (0, 0) = 1, σ (0, 1) = σy, σ (1, 0) = σz, σ (1, 1) = σx,

(90)

with implicit r0 = 0. It can easily be checked from Eqs. (87)
that every choice of {r1, r2, . . . , rn} leads to an eigenoperator
with eigenvalue 1, which is graphically illustrated in Ap-
pendix E. Numerically, it can be checked that the resulting
set of 2n eigenoperators seems to exhaust all eigenoperators
with a nonvanishing overlap with the left and right boundaries
for small n, and we conjecture that this holds for arbitrary n.

The same procedure can be followed for the left eigenoper-
ators, using the same symmetry constraint and Eqs. (88). Any
eigenoperator is now denoted as ({l1l2 . . . ln}| with li ∈ {0, 1},
and can be constructed as

({l1l2 . . . ln}|
In(ln−1, ln) . . . I2(l1, l2)I1(0, l1)

I1(0, l1)I2(l2, l1) . . . In(ln−1, ln)|

(91)

with I (li, li+1) = Iσ (li+1,li ) given by

I (0, 0) = I, I (0, 1) = Iz, I (1, 0) = Iy, I (1, 1) = Ix. (92)

The pair of coefficients (li−1, li ) now determines the operators
connecting leg (n + 1 − i) and (n + i). For small n these
operators again seem to exhaust all left eigenoperators with
eigenvalue 1, leading to a set of 2n left and right eigenop-
erators of Tn. However, these do not yet form a dual basis.
The overlap between a left and right eigenoperator is generally
nonzero and can be obtained as

({l1, l2 . . . ln}|{r1, r2 . . . rn})

= 2n(−1)r1·ln−2+r2·ln−3+···+rn−3·l2+rn−2·l1

× (−1)r1·ln+r2·ln−1+···+rn−1·l2+rn·l1 (93)

since the overlap consists of the product of the overlaps on leg
i and 2n + 1 − i. Considering leg i, the right operator follows
from (ri−1, ri ) and the left one from (ln−i, ln−i+1), leading to a

factor

tr[σ (ri−1, ri )σ (ln−i+1, ln−i )σ (ri−1, ri )σ (ln−i+1, ln−i )]

= 2(−1)ri−1·ln−i+ri ·ln−i+1 , (94)

following from the explicit definition of these operators, with
again implicit r0 = l0 = 0. The overlap matrix has the prop-
erty that it is an orthonormal matrix (up to normalization;
see Appendix E), such that we can construct a properly
orthonormalized dual basis by choosing {l1 . . . ln} as labels
and writing

|R({l1 . . . ln}) = 1

22n

∑
r1...rn

|{r1 . . . rn})({l1 . . . ln}|{r1 . . . rn}),

(L({l1 . . . ln})| = 1

2n
({l1 . . . ln}|, (95)

satisfying

(L({l1 . . . ln})|R({l ′
1 . . . l ′

n}) = δl1,l ′1δl2,l ′2 . . . δln,l ′n . (96)

The long-time value of the OTOC can now be evaluated using
the usual construction,

lim
m→∞(Ln(σα )|(Tn)m|R±(σβ ))

=
∑
l1...ln

(Ln(σα )|R({l1 . . . ln})(L({l1 . . . ln})|R±(σβ ))

= 1

23n

∑
r1 . . . rn

l1 . . . ln

(Ln(σα )|{r1 . . . rn})({l1 . . . ln}|R±(σβ ))

× ({l1 . . . ln}|{r1 . . . rn}). (97)

The overlap between the left and right boundaries can be
evaluated in a way similar to that of the overlaps between
eigenoperators, where it is important to note that these will
only depend on the operators on either the outer (right bound-
ary) or inner (left boundary) legs, and hence on (ln−1, ln) and
(rn−1, rn), leading to

(Ln(σα )|{r1 . . . rn})

= 2n/2−1 tr[σασ (rn−1, rn)σασ (rn−1, rn)], (98)

({l1 . . . ln}|R+
n (σβ ))

= 2n/2−1 tr[σβσ (ln, ln−1)σβσ (ln, ln−1)], (99)

({l1 . . . ln}|R−
n (σβ ))

= 2n/2−1 tr[(1 − ln)1 + lnσβσxσβσx], (100)

where the overlap with |R−
n (σβ )) can be simplified since all

contractions can be evaluated, and the final result will depend
on the operator on the horizonal line (see Appendix E), which
is 1 for ln = 0 and σx for ln = 1.

Expressing the overlaps as a phase following Eq. (93),
the summation over l1 . . . ln−2 can be evaluated to return
2n−2δr1,r3δr2,r4 . . . δrn−2,rn . The only remaining summations run
over (rn−1, rn) and (ln−1, ln), where the remaining phase
(−1)r1·ln+r2·ln−1 will either return (−1)rn−1·ln+rn·ln−1 for n even,
or (−1)rn·ln+rn−1·ln−1 for n odd. For n even, the final value
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FIG. 8. Values of Cαβ (x, t ) for x = t − n, σα = σx/
√

6 +
σy/

√
2 + σz/

√
3, and σβ = σx/

√
6 − σy/

√
2 + σz/

√
3 for evolution

using the kicked XY model with Jz = π/10. Dotted lines repre-
sent the analytic results for lim(x + t ) → ∞, and the inset details
lim(x+t )→∞ C(t − n, t ) for a larger range of n.

follows as
1

4

∑
rn−1, rn

ln−1, ln

(−1)rn−1·ln+rn·ln−1

× tr[σασ (rn−1, rn)σασ (rn−1, rn)]

× tr[σβσ (ln, ln−1)σβσ (ln, ln−1)], (101)

while for n odd this follows as
1

4

∑
rn−1, rn

ln−1, ln

(−1)rn−1·ln−1+rn·ln

× tr[σασ (rn−1, rn)σασ (rn−1, rn)]

× tr[σβσ (ln, ln−1)σβσ (ln, ln−1)]. (102)

These already highlight how the OTOC will not decay within
the light cone, since the final value only depends on the
parity of n rather than its explicit value. The summations can
be explicitly evaluated to obtain the long-time value of the
OTOC, which will lead to two possible values for C−

αβ (x, t )
and three possible final values for C+

αβ (x, t ): n = n− either
even or odd, and the case n = 1 needs to be treated separately
because there is no summation over l0 = r0 = 0.

The resulting long-time values of the OTOC
lim(x+t )→∞ Cαβ (x, t ) then follow as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2
y + (

1 − α2
y

)(
2β2

z − 1
)
, if x = t,

2
(
β2

x α2
x + β2

y α2
y + β2

z α2
z

)− 1 if (t − x) ∈ 4N,

α2
y + (

1 − α2
y

)(
2β2

x − 1
)

if (t − x) ∈ 4N + 1,

2
(
β2

x α2
x + β2

y α2
z + β2

z α2
y

)− 1 if (t − x) ∈ 4N + 2,

α2
z + (

1 − α2
z

)(
2β2

x − 1
)

if (t − x) ∈ 4N + 3.

(103)

This is illustrated in Fig. 8, where the 5 possible limiting
values can be clearly observed after an initial transient regime.
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FIG. 9. Evolution of the correlation function on the light cone
〈σα (t, t )σβ (0, 0)〉 for the kicked XY model and σα,β parametrized as
in Fig. 8.

The correlation functions on the light cone can similarly be
evaluated by constructing the eigenoperators of the quantum
channels M±, as is done in Appendix E and illustrated in
Fig. 9. Unlike the integrable KIM, these now decay exponen-
tially to a zero value as

〈σα (t, t )σβ (0, 0)〉 =
{
δαβ, if t = 0,

αxβx sin(2J )t , if t > 0.
(104)

While the OTOC decays to nonzero values inside the light
cone, the correlation functions in this model decay exponen-
tially to zero as sin(2J )t . These do not decay for J = ±π/4,
which is exactly when the model becomes dual-unitary and
returns the correlation functions of the self-dual integrable
KIM.

VI. CONCLUSIONS

We have provided analytical results for the long-time be-
havior of out-of-time-order correlators (OTOCs) in maximal
velocity circuits (MVCs). Representing general OTOCs in
a transfer matrix formalism, a maximal butterfly velocity
vB = 1 implies the existence of nontrivial eigenoperators of
the transfer matrix with eigenvalue 1. This provides both a
criterion for maximal velocity circuits and a way of evaluating
the long-time limit of the OTOCs using the resulting eigenop-
erators, as was done for two classes of MVCs: dual-unitary
models and kicked XY models. These did not require the
usual averaging over random local unitaries in analytically
tractable chaotic systems but rather hold for any realization of
the quantum circuit (including, but not restricted to, Floquet
models).

The resulting behavior for the OTOCs in ergodic MVCs
differs from that in generic unitary circuits not only in the
sense that vB = 1, but also in the absence of a diffusively
broadening front: at long times the OTOC takes a maximal
value on the light cone and decays exponentially away from
the light cone, consistent with recent numerical observations
[13,33]. Furthermore, this exponential decay of the OTOC
is governed by the same quantum channels that fully de-
termine the correlation functions, connecting the scrambling
of quantum information with the relaxation of excitations
toward equilibrium. This was observed both in maximally
chaotic dual-unitary circuits and nonintegrable kicked Ising
models at the self-dual point. Apart from ergodic models,
these MVCs also contain nonergodic integrable classes (the
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self-dual kicked Ising model at the integrable point and kicked
XY models), where no such exponential decay is observed.
Rather, the OTOC immediately saturates to a constant value
inside the light cone, whereas the correlation functions on the
light cone can either exhibit a similar saturation or decay to
zero.

We close with a natural question that merits further study:
is it possible to completely characterize the set of MVCs,
starting with the case q = 2? A necessary condition is that
the transfer matrix T1 has at least one additional unit eigen-
value eigenoperator. Using the explicit parametrization for
q = 2 unitary gates (following, e.g., Refs. [23,36,37]), our
numerical investigations suggest that all models for which
such an additional eigenoperator exists are either dual unitary
or gauge-equivalent to the kicked XY models. However, for
q > 2 the problem is much more involved. Numerically, both
the construction and diagonalization of the transfer matrix
grows exponentially harder with increasing dimension of the
local Hilbert space. Theoretically, dual-unitary circuits can be
constructed at arbitrary q, but for q = 2 it was already shown
that these are only a subclass of all possible MVCs. While
dual-unitary circuits for larger q > 2 have been constructed
building on complex Hadamard matrices [27], there is no
guarantee that these exhaust all dual-unitary models. Even
more, the full classification of complex Hadamard matrices
itself remains an open problem [38]. Still, if such additional

eigenoperators of T1 with unit eigenvalue are known, our
proposed construction can be straightforwardly extended to
calculate the OTOCs in general MVCs.

A Python implementation of all presented calculations is
available [39].
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APPENDIX A: EXPLICIT DERIVATION OF
THE OTOC DIAGRAM

Starting from the explicit definition of

Cαβ (x, t ) = 〈σα (0, t )σβ (x, 0)σα (0, t )σβ (x, 0)〉, (A1)

the diagrams for the OTOC follow from the unitarity of
the circuit, leading to a final diagram that consists of the
intersection of the light cones of σα and σβ , where the top
and bottom legs along the vertical axis are connected. At
each step, the proportionality factors are given by powers of q
following from tracing out local degrees of freedom, indepen-
dently of the choice of σα,β , such that the final prefactor can
easily be obtained from C00(x, t ) = tr[U†(t )U (t )U†(t )U (t )]/
tr(1) = tr(1)/ tr(1) = 1.

(A2)
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APPENDIX B: PARAMETRIZATION OF
DUAL-UNITARY MATRICES

For a local two-dimensional Hilbert space, any two-qubit
unitary gate can be parametrized as

U = eiφ (u+ ⊗ u−)V [Jx, Jy, Jz](v− ⊗ v+), (B1)

where φ, Jx, Jy, Jz ∈ R and u±, v± ∈ SU (2) are one-qubit
special-unitary matrices [36,37]. All entanglement is gener-
ated by the two-qubit unitary

V [Jx, Jy, Jz]

= exp[−i(Jxσx ⊗ σx + Jyσy ⊗ σy + Jzσz ⊗ σz )]. (B2)

As shown in Ref. [23], dual-unitarity fixes two of the pa-
rameters in V [Jx, Jy, Jz] as Jx = Jy = π

4 , leaving Jz, as well
as φ and u±, v±, free variables. Any permutation of Jx, Jy, Jz

works equally well, but can be brought in this parametrization
through the SU (2) rotations u±, v±. These one-qubit oper-
ators can be parametrized as exp [−i(nxσx + nyσy + nzσz )],
with nx, ny, nz ∈ R. For the figures in the main text, random
dual-unitary circuits were generated by choosing all parame-
ters within these parametrizations randomly.

Note that no such full parametrizations exist for q > 2,
although Rather et al. recently outlined a method for the
generation of operators that are arbitrarily close to being dual
unitary [26] and Gutkin et al. showed how it was possible to
construct dual-unitary kicked models for arbitrary q based on
complex Hadamard matrices [27].

APPENDIX C: EIGENVALUES AND EIGENOPERATORS
FOR THE KIM CHANNEL

In this Appendix, we explicitly construct the quantum
channel following from the KIM and its left and right eigen-
operators (similar results were presented in Ref. [27] and
are included here for completeness). Starting from the matrix
elements of U , given by

Uab,cd = − i

2
exp

[
i
π

4
(a − d )(c − b)

]
× exp

[
−i

h1

2
(a + c) − i

h2

2
(b + d )

]
, (C1)

with a, b, c, d ∈ {−1, 1}, the linear map Mn can be found
through an explicit construction of M±. Since M+(σ ) =
tr1[U (σ ⊗ 1)U †], the matrix elements of M+ follow from

(C2)

as (M+)ab,cd = 1
2

∑
e, f Uea,c f (U †)df ,eb. Explicitly writing out

these matrix elements returns

(M+)ab,cd = 1

2
exp

[
i
h1

2
(b − a) + i

h2

2
(d − c)

]

× cos
{π

4
[(b − a) − (d − c)]

}2
. (C3)

From the factor cos{π
4 [(b − a) − (d − c)]}2 it follows that

M+ maps diagonal 2 × 2 matrices to diagonal matrices, since
a nonzero matrix element for c = d requires a = b (otherwise
a − b = ±2 and the cosine vanishes), and maps off-diagonal
matrices to off-diagonal matrices (c 
= d similarly implies
a 
= b for a nonzero matrix element). In this way, the ma-
trix can be block-diagonalized by expressing it in the basis
{(1, 1), (−1,−1), (1,−1), (−1, 1)},

(M+)ab,cd = 1

2

⎡
⎢⎢⎣

1 1 0 0
1 1 0 0
0 0 e−i(h1+h2 ) ei(h1−h2 )

0 0 e−i(h1−h2 ) ei(h1+h2 )

⎤
⎥⎥⎦, (C4)

where both blocks can be diagonalized to obtain the following
eigenvalues λ and right eigenoperators (reexpressed as opera-
tors rather than states),

λ = 1 →
[

1 0
0 1

]
, λ = 0 →

[
1 0
0 −1

]
, (C5)

λ = cos(h1 + h2) →
[

0 e−ih2

eih2 0

]
, (C6)

λ = 0 →
[

0 −eih1

e−ih1 0

]
, (C7)

and an accompanying set of left eigenoperators with the same
eigenvalues,

λ = 1 →
[

1 0
0 1

]
, λ = 0 →

[
1 0
0 −1

]
, (C8)

λ = cos(h1 + h2) →
[

0 e−ih1

eih1 0

]
, (C9)

λ = 0 →
[

0 −eih2

e−ih2 0

]
. (C10)

Using the eigenvalue decomposition and denoting the eigen-
operators with eigenvalue cos(h1 + h2) as |hR) (right) and
(hL| (left), normalized by a factor [2 cos(h1 + h2)]1/2 such
that (hL|hR) = tr(hT

L hR) = 1, and the eigenoperator from the
identity matrix as |1) and (1|, normalized by a factor

√
2 such

that (1|1) = 1, we obtain

M+ = cos(h1 + h2)|hR)(hL| + |1)(1|,
M− = cos(h1 + h2)|hL )(hR| + |1)(1|, (C11)

where |hl ) is the Hermitian conjugate of (hL|, with the com-
plex conjugation made explicit. Assuming n 
= 0, the action
of Mn follows as

Mn(σβ ) = 1
2 cos(h1 + h2)2n(σβ |hL )(hR|hR)(hL|σβ ), (C12)

for a traceless σβ with (1|σβ ) = 0, which can be evaluated as

Mn(σβ ) = [βx cos(h1) − βy sin(h1)]2[cos(h1 + h2)]2(n−1).

(C13)
Alternatively, for n = 0, this leads to M0(σβ ) = 1.
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APPENDIX D: IDENTITIES FOR THE INTEGRABLE KIM

At the integrable point, the KIM satisfies a set of identities
of the form U (1 ⊗ σα )U † = σα ⊗ σβ and U (σx ⊗ σα )U † =
σα ⊗ σβ , with σβ either σx or 1, and these can be graphically
represented as

, (D1)

or in the folded picture for U as

.

(D2)

A similar set of folded identities holds for the folded version
of U †,

.

(D3)

This way, any action of the transfer matrix on a right “product
state” is proportional to the original product state with a
prefactor proportional to the contraction of the horizonal loop,
which is either tr(σx )/2 = 0 if the combined total number of
σy and σz is odd and tr(1)/2 = 1 if this is even.

Eigenoperators of the quantum channels

The eigenvalues and eigenoperators of the quantum chan-
nels immediately follow either by setting h1 = h2 = 0 in
Appendix C or from similar identities to those presented in
(D1). If U (σα ⊗ 1)U † = σβ ⊗ σα , then σα is guaranteed to be
an eigenoperator of M+, since

M+(σα ) = 1
2 tr1[U (σα ⊗ 1)U †]

= 1
2 tr1[σβ ⊗ σα] = 1

2 tr[σβ]σα, (D4)

leading to an eigenvalue tr(σβ )/2, which is either 0 if σβ = σx

or 1 if σβ = 1. The channel M+ acts as a projector, with
two eigenvalues 1 with eigenoperators 1 and σx and two
eigenvalues 0 with eigenoperators σy and σz. Given a traceless
σβ and t > 0, this results in

Mt
+(σβ ) = βxσx, (D5)

which can be used to evaluate the correlation functions on the
light cone (19) as

〈σα (t, t )σβ (0, 0)〉 = 1
2βx tr (σασx ) = αxβx, (D6)

returning the presented correlation functions from the main
text.
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APPENDIX E: IDENTITIES FOR THE KICKED XY MODEL

A similar, but more restricted, set of identities can be used
to construct right operators of the transfer matrix for the
kicked XY model. For the right eigenstates, these are given
by Eqs. (87) and can be graphically represented as

(E1)

Unlike the integrable self-dual KIM, not every product state
is an eigenoperator. Considering, e.g., a transfer matrix with
n = 2, the total number of unit-eigenvalue eigenoperators
is given by | ◦ ◦ ◦ ◦), | ◦ σyσy◦), |σyσzσzσy), |σyσxσxσy), | ◦
◦ σzσy), |σyσz ◦ ◦), | ◦ σyσxσy), and |σyσxσy◦). Of these, only
the first four have a nonzero overlap with the left boundary.
A systematic construction of these eigenoperators is possible

by performing the contraction starting from the outer edges,
e.g., the left leg: acting with the transfer matrix on either 1
or σy returns the same state on the (vertical) leg, where the
horizontal leg contains the identity respectively σx. Given a
horizonal contraction with σx acting on the left leg, acting on
either σy or σx returns the same operator on the vertical leg,
with either the identity or σx on the horizontal leg. To illustrate
how these identities can be used to construct eigenoperators,
consider n = 3 and the action of the transfer matrix on a
right eigenoperator |σyσxσzσzσxσy), contracting from the outer
edges in

. (E2)

Introducing a notation to capture these constraints, we can
parametrize any symmetric eigenoperator with eigenvalue 1
by n values ri ∈ {0, 1}, where the operator on leg i equals the
one on leg 2n + 1 − i and follows from (ri−1, ri ): (0,0) leads
to 1, (1,0) to σz, (0,1) to σy, (1,1) to σx. Contracting the action
of the transfer matrix on the product state from the outer edges
in, ri = 0 denotes the presence of 1 on the horizontal at the ith
step of the contraction. If the horizonal contraction is with the
identity, ri = 0 and acting with the identity does not result in
a σx, while acting with σy introduces a σx on the horizontal,
whereas if the horizontal contraction is with σx, then σx keeps
the σx on the horizontal intact while σz converts this σx into the
identity, leading to the eigenoperators presented in the main
text.
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The necessary identities for the left eigenoperators are
given by Eqs. (88), which can be graphically represented as

. (E3)

These identities now lead to the eigenoperators as presented
in the main text, where the contraction is now most easily

evaluated starting from the center, e.g., for (Ix
3 Iz

2I1I1Iz
2Ix

3 ),

. (E4)

Considering the construction from the main text, these have
the same interpretation of either introducing or canceling a σx

on the horizontal contraction, where the roles of σy and σz

have been exchanged, or (0, 1) ↔ (1, 0).

1. Eigenoperators of the quantum channels

Using Eqs. (E1) and (E3), it follows that

M+(σy) = M+(σz ) = 0, (E5)

which can be combined with M+(1) to return three of the
four eigenvalues and eigenoperators of M+. The fourth will
explicitly depend on J and can be obtained from

U (σx ⊗ 1)U † = sin(2J )1 ⊗ σx + cos(2J )σz ⊗ σx, (E6)

such that

M+(σx ) = 1
2 tr1[U (σx ⊗ 1)U †] = sin(2J )σx, (E7)

returning the fourth eigenvalue and eigenoperator as σx. For
any traceless σβ and t > 0, we then have

Mt
+(σβ ) = sin(2J )tβxσx, (E8)

which can be used to evaluate the correlation functions on the
light cone (19) as

〈σα (t, t )σβ (0, 0)〉 = 1
2 sin(2J )tβx tr (σασx )

= sin(2J )tαxβx, (E9)

returning the presented correlation functions from the main
text.
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2. Orthogonality of the overlap matrix

Using the notation of the main text, it can be checked that the overlap matrix between these left and right eigenstates is an
orthonormal matrix, since∑

r1,...,rn

({l1 . . . ln}|{r1 . . . rn})({l ′
1 . . . l ′

n}|{r1 . . . rn})

= 22n
∑

r1=0,1

(−1)r1((ln−2−ln )+(l ′n−2−l ′n ))
∑

r2=0,1

(−1)r2((ln−3−ln−1 )+(l ′n−3−l ′n−1 ))

× · · ·
∑

rn−2=0,1

(−1)rn−2((l1−l3 )+(l ′1−l ′3 ))
∑

rn−1=0,1

(−1)rn−1(l2+l ′2 )
∑

rn=0,1

(−1)rn(l1+l ′1 ). (E10)

Each summation results in a term ∑
r=0,1

(−1)r(l+l ′ ) = 1 + (−1)l+l ′ = 2δl,l ′ ,

since l, l ′ ∈ {0, 1}. The first n − 2 summations vanish unless (li − li−2) = (l ′
i − l ′

i−2) and the final two summations fix δl1,l ′1 and
δl2,l ′2 , such that the total summation can be evaluated as∑

r1,...,rn

({l1 . . . ln}|{r1 . . . rn})({l ′
1 . . . l ′

n}|{r1 . . . rn}) = 23nδl1,l ′1δl2,l ′2 . . . δln,l ′n . (E11)
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