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Optical and magnetic excitations in the underscreened quasiquartet Kondo lattice
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The underscreened Kondo lattice consisting of a single twofold degenerate conduction band and a crystalline
electric-field (CEF) split 4 f -electron quasiquartet has nonconventional quasiparticle dispersions obtained from
the constrained mean-field theory. An additional genuinely heavy band is found in the main hybridization band
gap of the upper and lower hybridzed bands whose heavy effective mass is controled by the CEF splitting. Its
presence should profoundly influence the dynamical optical and magnetic response functions. In the former the
onset of the optical conductivity is not the main hybridization energy but the much lower Kondo energy scale
which appears in the direct transitions to the additional heavy band. The dynamical magnetic response is also
strongly modified by the in-gap heavy band which can lead to unconventional resonant excitations that may be
interpreted as coherent CEF-Kondo lattice magnetic exciton bands. Their instability at low temperature signifies
the onset of induced excitonic magnetism in the underscreened Kondo lattice.
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I. INTRODUCTION

Fundamental electronic properties of correlated f -electron
compounds can be qualitatively understood within the
Anderson-lattice or Kondo-lattice (KL) models [1–5]. In
the strongly correlated limit (forbidden double occupancies)
with large f -electron repulsion Uf f → ∞ the slave-boson
mean-field treatment with correlations simulated by a charge
constraint on fermion and boson fields provides the most
direct access to a description of renormalized quasiparticle
bands. The combined effect of conduction (s-) and f -electron
hybridzation as well as the f -electron correlation leads to two
fundamental properties. First, the bands appear in (degener-
ate) pairs with a hybridazation gap existing between them for
general k points in the Brillouin zone (BZ). The size of the
(indirect) effective gap is reduced to the order of the single-ion
Kondo temperature T ∗. Second, due to this small energy scale
in the range of a few meV the quasiparticle bands close to the
gap are very flat corresponding to large enhancement of the
effective quasiparticle mass.

The latter explains the thermodynamic and also transport
properties of heavy-fermion metals at low temperatures. In
these materials, mostly Ce intermetallics like, e.g., CeAl2,
CeB6, CeCoIn5, and many others, the chemical potential is
located in the flat part of the lower quasiparticle band. Due
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to residual quasiparticle interaction heavy-fermion metals are
prone to instabilities resulting, as in the above compounds,
in exotic low-temperature magnetic, multipolar [6,7], and
superconducting phase transitions [8]. In rare cases like the
much discussed SmB6 or YbB12 borides [9] the chemical
potential resides inside the hybridization gap leading to a
Kondo insulator or semiconductor state (in the former due to
the mixed valence [10] of ≈2.5+, it should be better termed
mixed valence or hybridization gap insulator). Likewise, the
low-energy charge and spin response as represented by optical
conductivity and inelastic neutron scattering (INS) can be
qualitatively understood within the mean-field slave boson
approach of the Kondo lattices [11–14], self-consistent per-
turbation theory [15], and also dynamical mean-field tech-
nique [16,17]. In particular the appearance of a collective
spin exciton resonance observed in many f -electron materials
(possibly superconducting or with hidden order) inside the
hybridization gaps or those opened by symmetry breaking
may be interpreted within this approach [18–21].

Generally, for these purposes the simplified SU(N) Kondo
lattice model is employed. It assumes that the degeneracy
N of localized (4 f or 5 f ) states is the same as that of
conduction electron states. Without crystalline electric-field
(CEF) effect the former is (2J + 1) and this may be quite large
(J is the f -electron total angular momentum). In practice the
CEF splitting reduces the f -electron degeneracy to N = 2,
4 (the latter only in cubic environment). However, if the
splitting of CEF ground and first excited states is moderate,
then both are involved in the Kondo screening leading to
the heavy-quasiparticle bands, thus possibly invoking a larger
quasidegeneracy. This poses a problem for the straightforward
application of the SU(N) KL model. For general wave vector
in the Brillouin zone conduction electron states are only
twofold Kramers degenerate when time-reversal and inversion
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symmetries hold. Higher degeneracy can only appear at sym-
metry positions. Therefore for N > 2 the genuine KL model is
rather artificial since degeneracies of f and conduction states
no longer match. This problem can be treated for the impurity
model [3,22] but in the lattice it is rather difficult to analyze
properly.

Physically, in most cases it is more reasonable to assume an
“underscreened” model with higher f electron than conduc-
tion electron degeneracy, where the former may actually be of
pseudotype, i.e., with a small CEF splitting of the same order
as the Kondo temperature. Such a model has recently been
investigated in detail in view of its quasiparticle spectrum
and how the latter deviates from the canonical two N-fold
degenerate hybridized bands of the genuine SU(N) KL model
(see Ref. [23] and earlier work in Refs. [24–26]). Specifically
a quasiquartet KL model for f states was studied which is,
e.g., relevant for the (reduced) �6 − �7 CEF-level scheme
in YbRu2Ge2 and similar tetragonal compounds [27–29],
hybridizing with a simple twofold degenerate conduction
band. As an important result it was obtained that in the
underscreened case an additional heavy-quasiparticle band
appears within the main hybridization gap whose dispersion
is controlled by the interplay of CEF splitting and Kondo
screening. This gives the model a much richer low-energy
band structure than the common SU(N) model with several
more discernible hybridization gaps. It would be highly desir-
able to probe this unconventional KL quasiparticle spectrum
with inelastic low-energy probes such as optical conductivity,
inelastic neutron scattering (INS), and STM techniques, since
ARPES does not have the resolution to probe such subtle
features in heavy bands. Actually, the STM-QPI (quasiparticle
interference) technique has given indications in two heavy-
fermion metals that the hybridized band structures are more
complex than suggested by the common SU(N) KL model
with only upper and lower hybridized branches [30–32].

It is the main purpose of the present work to study in detail
inelastic low-energy response of the underscreened quasi-
quartet KL model based on the results of the previous work
[23] to predict the signatures of the additional heavy band of
this model in optical conductivity σ (ω) and inelastic neutron
scattering S(q, ω). We show that their signatures appear as
additional shoulders and peaks in the frequency dependencies
of these experimental quantities and for INS have a distinctly
dispersive behavior. We argue that our results on optical
conductivity suggest a simple explanation for unconventional
behavior of this quantity found in the Kondo insulator YbB12

[33]. Furthermore, we discuss the possibility of a hybrid CEF-
Kondo magnetic exciton mode in the dynamical magnetic
response in the heavy bands of the underscreened KL model.
We also give a qualitative discussion for the appearance of
induced excitonic magnetism due to dominating nondiagonal
exchange in the quasiquartet and how the corresponding insta-
bility criterion is influenced by the Kondo screening for CEF
split f electrons.

II. QUASIQUARTET KL MODEL

The quasiquartet model is illustrated in the inset of Fig. 1
showing the two CEF-split Kramers doublets (τ = 1, 2)

FIG. 1. Quasiparticle dispersion unfolded in the
two-dimensional BZ with �(0, 0), X (π, 0), and M(π, π ).
The lower right inset shows the quasiquartet model (orbital
index τ = 1, 2 denotes ground and excited Kramers doublets,
respectively). Its effective Kondo couplings to conduction
electrons are given by J⊥

1 = c11J0; J⊥
2 = c22J0; J12 = 1√

2
c12J0 and

Jz
1 = cz

11J0; Jz
2 = cz

22J0; Jz
12 = 0, where J0 = (gJ − 1)Iex is the bare

Kondo exchange in Eq. (1). Here μ = −0.094.

which interact with the conduction electrons that are scattered
both elastically (τ ↔ τ ) and inelastically (1 ↔ 2). The basic
Hamiltonian of the lattice of quasiquartets interacting with the
single (doubly Kramers degenerate) conduction band is then

HK = HCEF +
∑
kσ

εkc†
kσ ckσ + (gJ − 1)Iex

∑
i

si · Ji, (1)

where εk = −(Dc/2)(cos kx + cos ky) is the conduction band
dispersion with band width 2Dc, gJ the f -electron g fac-
tor corresponding to the CEF split total f -electron angular-
momentum (J) multiplet and Iex the exchange coupling
strength. The (isotropic) exchange part [which is of rank 1
in Jμ

i , (μ = x, y, z)] is one term extracted from a Schrieffer-
Wolff transformation of the original Anderson model. There
are additional terms obtained that couple conduction elec-
trons to more general localized 4 f operators [34] such as
quadrupoles (rank 2) and octupoles (rank 3) that are supported
in the quasiquartet CEF system [28]. Due to momentum-
dependent form factors these terms correspond to anisotropic
conduction electron scattering which complicate the treatment
of self-consistency equations in the slave-boson treatment.
Therefore we restrict to the above simple isotropic exchange
term.

The Kondo lattice model of Eq. (1) is of the underscreened
type because there are only N = 2 conduction states that
interact with 2N = 4 localized quasiquartet f states. The
heavy quasiparticle spectrum of this model was studied in
detail in Ref. [23] using a fermionic representation of HK and
treating it within a constrained mean-field theory. Using the
spinors �

†
kσ = (c†

kσ , f †
1kσ , f †

2kσ ), where c†
kσ and f †

τkσ create
conduction and f electrons this leads to a bilinear fermionic
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mean-field Hamiltonian,

H̃λ
m f =

∑
km

�
†
kmĥk�km; ĥk =

⎛
⎜⎝

εk V̄1 V̄2

V̄1 ελ
01 0

V̄2 0 ελ
02

⎞
⎟⎠. (2)

Here λ is the effective f level and V̄τ its effective hybridization
with conduction electrons in the fermionic representation.
These quantities are determined by f occupation constraint
n f = 1, conduction electron number nc, and a self-consistency
relation [23]. We define 
 = 1

2
0 so that the CEF split effec-
tive f -level energies are ελ

01 = λ − 
; ελ
02 = λ + 
. Further-

more, ελ
k = εk − λ will be used. The diagonalization of the

mean-field Hamiltionian leads to three quasiparticle bands:

E1k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3

)
,

E2k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3
+ 2π

3

)
,

E3k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3
+ 4π

3

)
.

(3)

where we used the auxiliary quantities

rk =
{

1

3

[
(
2 + V̄ 2) + 1

3
ελ2

k

]} 3
2

,

cos φk = 1

2rk

{
1

3
ελ

k

[
2

9
ελ2

k + (
2 + V̄ 2)

]
− 


(
ελ

k
 + δs
)}

,

(4)
with the definition V̄ 2 = V̄ 2

1 + V̄ 2
2 and δs = V̄ 2

1 − V̄ 2
2 . The

essential problem is the self-consistent determination of the
effective f -level position λ with respect of Fermi energy μ

and the effective hybridization V̄τ of CEF split f states [23].
An example for the structure of quasiparticle bands in the
symmetric case V̄1 = V̄2 is shown in Fig. 1. There are two
hybridized bands E1,2k of partly conduction and f electron
character that changes when crossing the Brillouin zone (BZ).
They have alternating flat portions corresponding to heavy
effective mass. On the other hand, the central overall flat band
E3k has mostly f -electron character with only small c-electron
admixture that causes the small band width given by

W3 = (
T ∗2 + 
2

0

) 1
2 − T ∗, (5)

which is nonzero only for finite CEF splitting 
0. Here in the
symmetric case

T ∗(
) = V̄ 2

Dc
	 (λ − μ) − 
 (6)

is the low-energy (Kondo) scale for the heavy bands that
determines their mass and hybridization gaps. It is obtained
from solving the self-consistency equation for λ − μ. The

former are given by
m∗

1,2

mb
= Dc

T ∗ in the heavy-mass part of the

BZ and m∗
3

mb
= T ∗Dc


2 throughout the BZ so that m∗
3

m∗
1,2

= ( T ∗



)2 (for


 → 0 the central E3k band becomes flat and m∗
3 diverges).

Here mb = h̄2kF
Dc

is the unrenormalized conduction band mass.
Furthermore, the main indirect hybridization gap is given
by 
in

h1 = E10 − E2Q 	 T ∗ + (T ∗2 + 
2
0)

1
2 . The whole heavy

E3k band lies within this gap. There are additional indirect
and direct hybridization gaps to be identified as discussed in
detail in Ref. [23]. These features are nicely illustrated by the
example of heavy-band structure in Fig. 1(b) for the (particle-
hole) symmetric case. We emphasize that these bands should
not be considered like ordinary noninteracting bands that
can be rigidly filled up with the chemical potential at an
arbitrary position. This is not true due to the constraint n f =
1 enforced by the strong on-site correlations (Uf f → ∞).
Therefore when the chemical potential changes the effective
level λ and hence the hybridization gap structure in Fig. 1
is tied and moving along with the chemical potential. This
means the chemical potential always has to be in close vicinity
to the hybridization gap structure in the DOS [23].

III. OPTICAL CONDUCTIVITY

The optical conductivity in Kondo lattice compounds ex-
hibits two distinct features [3]. In the metallic case when
the chemical potential is pinned in the flat part of the lower
band (n = 2 in Fig. 1) a quasielastic Drude peak appears
whose weight is ∼(mb/m∗

2 ) = T ∗/Dc is suppressed due to
the mass renormalization and the width is determined by the
phenomenological quasiparticle relaxation rate in that band.
This is the conventional Fermi-liquid type part. The more
interesting high-frequency part connected with the detailed
hybridization gap structure and the inelastic optical transitions
across those gaps is not described by this phenomenological
approach. It requires the full microscopic theory based on
the (underscreened) Kondo lattice model which is developed
in this section. The microscopic expression for the optical
conductivity (real part) is derived from the response function
associated with the (q = 0) conduction electron current,

j = e
∑
kσ

∇kεkc†
kσ ckσ . (7)

Then the conductivity (j ‖ x̂) is obtained as [3,35]

σ (ω) = 1

ω
Im[(iνl )]iνl =ω+i0+ , (8)

with

(iνl ) = −T
∑
k,iωn

(
vx

k

)2
Gc(k, iωn)Gc(k, iωn + iνl ),

where vx
k = ∇kx εk is the group velocity. Using the spectral

representation

Gc(k, iωn) =
∫ ∞

−∞
dω

ρc(k, ω)

iωn − ω
, (9)

where ρc(k, ω) is the renormalized conduction electron spec-
tral function given by

ρc(k, ω) = δ(ω − �c(ω) − εk ); �c(iωn) = �τ

V̄ 2
τ

iωn − ελ
0τ

.

(10)
Here �c(iωn) denotes the conduction electron self-energy
due to hybridization with the two f orbitals (τ = 1, 2). Its
evaluation leads to a sum of delta functions at the quasiparticle
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energies (β = 1 − 3) weighted by c-electron residua:

ρc(k, ω) =
∑

β

Z̃βkδ(ω − Eβk );

Z̃βk =
∣∣Eβk − ελ

01

∣∣∣∣Eβk − ελ
02

∣∣
α �=β |Eβk − Eαk| . (11)

The explicit forms of the Z̃βk is given in Appendix A. Inserting
Eq. (9) into Eq. (8) and averaging out the velocity we obtain

(iνl ) = ω2
pl

4π

∑
k

∫
dω′dω′′ρc(k, ω′)

× ρc(k, ω′′)
f (ω′) − f (ω′′)
iνl + ω′′ − ω′ , (12)

where ω2
pl = 4πnce2/mb is the plasma frequency with nc and

mb the conduction electron density and effective band mass,
respectively. As for the magnetic susceptibilities (Sec. IV) we
may evaluate this expression using the explicit conduction
electron spectral function given above. Then, using Eqs. (8)
and (12) and the residual weights given in Eq. (A3), we finally
obtain for the optical conductivity

σ (ω) = ω2
pl

4ω

∑
ββ̃

∑
k

{Z̃βkZ̃β̃k[ f (Eβ̃k ) − f (Eβk )]

× δ[ω − (Eβk − Eβ̃k )]}. (13)

Because the chemical potential is closely located below the
upper edge of the lowest band due to the constraint n f =
1 [23] there will be a Drude term from the corresponding
intraband transitions. In the limit T → 0 f (Eβ̃k ) = �H (Eβ̃k )
the interband contributions (β �= β̃ ) in Eq. (13) contain only
pairs (ββ̃ ) = (2, 3), and (2,1) since only band β = 2 is oc-
cupied and β̃ = 3, 1 are empty. Thus the optical conductivity
will have several threshold frequencies given by the various
hybridization gaps in Fig. 1, all of them corresponding to
direct transitions (q = 0). Because the quasipartcle (Eβk )
and residual (Z̃βk ) k dependencies in Eqs. (3) and (11) stem
entirely from the conduction electron dispersion we may
convert the k summation in Eq. (13) into an integral over the
bare conduction electron DOS according to

σ (ω) = ω2
pl

4ω

∑
ββ̃=23,21

∫ Dc

−Dc

dε

(
ρ0

c (ε)Z̃β (ε)Z̃β̃ (ε)δ{ω − [Eβ (ε) − Eβ̃ (ε)]}). (14)

As models the square and tight-binding DOS have been used
before [23] corresponding to a band width 2Dc. In the former
case the DOS may be taken outside the integral as the constant
ρ0

c = 1/2Dc.
For the numerical calculations we use directly the gen-

eral expression Eq. (13). The results for σ (ω) are presented
in Fig. 2. There is a small Drude peak from the lowest
band whose width is determined by the small imaginary
part (γ = 0.001Dc) used in the integration. Most importantly
two inelastic peaks in the frequency dependence are visi-
ble, corresponding to the two direct (q = 0) hybridization
gaps identified in the quasiparticle spectrum [23] and visible

FIG. 2. Frequency dependence of the optical conductivity, σ (ω).
It shows three features: (i) A ω ≈ 0 Drude peak due to chemical
potential μ � E2Q (Q = (π, π ); M point) close to upper edge of E2k.
(ii) A small low-energy inelastic peak between ωl1 < ω < ωl2 due
to direct transitions at M(l1) (small hybridzation gap 
d

h3) and X(l2)
between n = 2, 3 bands. (iii) A large high-energy inelastic peak at ωu

due to direct transition at X and center of �M corresponding to large
hybridization gap 
d

h1 = 2(V̄ 2 + 
2)
1
2 between n = 2, 1 bands.

in Fig. 1. In the terminology of Ref. [23] the lower one
starting at ωl1 ∼ 0.13Dc corresponds to 
d

h3 = E3Q − E2Q =
Dc[( V̄ 2

D2
c
)2 + 
2

0
D2

c
]

1
2 = (T ∗2 + 
2

0)
1
2 ≡ E10 − E30 = 
d

h2, while

the upper one at ωu ∼ 0.5Dc stems from 
d
h1 = E1Q′ −

E2Q′ = 2(V̄ 2 + 
2)
1
2 . The former is determined by the low-

energy Kondo and CEF-splitting energy scales T ∗ = V̄ 2

Dc
and


, respectively, while the upper one by the larger effective
hybridization scale 2V̄ since 
 � V̄ . The lower peak is
much less pronounced because it is associated with optical
transitions from the occupied to the central heavy band whose
Bloch functions have only small c-electron content [23].
The presence of two energy scales and peaks in the optical
conductivity due to the posssibility of two direct transition is
a decisive difference to the conventional Kondo lattice model
which exhibits only the “high” energy scale of 
d

h1 	 2V̄ in
σ (ω). The Kondo scale T ∗ is not associated with any direct
feature in σ (ω) because in the fully screened SU(N) KL it
only appears for the indirect transitions with BZ-boundary
momentum transfer Q. There is indeed some evidence that the
two energy scales of the more realistic underscreened model
may have been observed experimentally (Sec. VIII).

IV. BARE MAGNETIC SUSCEPTIBILITIES

For the calculation of the dynamic magnetic response we
first need to calculate the bare physical magnetic susceptibili-
ties coming from particle hole excitations in the heavy bands
due to the dynamics of magnetic moments gJμBJ. These
are combinations of the pseudospin susceptibilities. In terms
of the pseudospin operators for the two Kramers doublets
(τ, τ ′ = 1, 2) [28]

Sα
ττ ′ = 1

2

∑
σσ ′

f †
τσ σ̂ α

σσ ′ fτ ′σ ′ , (15)
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the total angular-momentum operators, constricted to the
quasiquartet CEF system may be written as

Jz = cz
11Sz

11 + cz
22Sz

22,

J± = c11S±
11 + c22S±

22 + c12
1√
2

(S±
12 + S±

21).
(16)

Here the coefficients cz
ττ ′ and cττ ′ are determined by the

parameters of the CEF potential or their eigenstates [23,28]
(see Appendix B and Table I for more details).

The in-plane (μ = x, y or ⊥) and out-of-plane (μ =
z or ‖) susceptibilities of the physical moment operators μ =
gJμBJ are related to their reduced expressions according to

χμ(q, iνl ) = g2
Jμ

2
Bχ̂μ(q, iνl ). (17)

Here μ = x, y(⊥) Cartesian components are equivalent due
to tetragonal symmetry. Using Eq. (16) the two indepen-
dent components (μ =⊥, ||) of the reduced susceptibility
χ̂μ(q, iνl ) may then be expressed by the pseudospin suscepti-
bilities according to

χ̂‖(q, iνl ) =
∑

τ

(
cz
ττ

)2
χ̂ττ (q, iνl );

χ̂⊥(q, iνl ) =
∑

τ

[
(cττ )2χ̂ττ (q, iνl )

+ 1

2
(c12)2

[
χ̂a

τ τ̄ (q, iνl ) + χ̂b(q, iνl )
]]

. (18)

The second term in the last equation ∼c2
12 is the interorbital

or vanVleck contribution due to nondiagonal matrix elements
between the two CEF doublets (inset in Fig. 1). In the bubble
approximation [3] the bare pseudospin susceptibilities may
then be expressed via the Green’s functions of fermionic vari-
ables in the pseudospin representation of Eq. (15) according
to

χ̂ττ (q, iνl ) = −1

2
T

∑
k,iωn

G f τ (q′, iωn + iνl )G f τ (k, iωn);

χ̂a
τ τ̄ (q, iνl ) = −1

2
T

∑
k,iωn

G f τ (q′, iωn + iνl )G f τ̄ (k, iωn);

χ̂b(q, iνl ) = −1

2
T

∑
k,iωn

B(q′, iωn + iνl )B(k, iωn), (19)

where q′ = k + q. For further evaluation we use the spectral
representation of Green’s functions according to

G f τ (k, iωn) =
∫ ∞

−∞
dω

ρ f τ (k, ω)

iωn − ω
;

B(k, iωn) =
∫ ∞

−∞
dω

ρB(k, ω)

iωn − ω
, (20)

where the f -electron spectral densities are given by [23]

ρ f τ (k, ω) = V̄ 2
τ(

ω − ελ
0τ

)2 ρc(k, ω);

ρB(k, iωn) = V̄1V̄2(
iωn − ελ

01

)(
iωn − ελ

02

)ρc(k, ω). (21)

Using Eq. (11) they are evaluated as

ρ f τ (k, ω) =
∑

β

Ẑτ
βkδ(ω − Eβk );

ρB(k, ω) =
∑

β

ẐB
βkδ(ω − Eβk ), (22)

with the residual weights (see also Appendix A) given by

Ẑτ
βk = V̄ 2

τ

∣∣Eβk − ελ
0τ̄

∣∣
α �=β |Eβk − Eαk|

∣∣Eβk − ελ
0τ

∣∣ ;

ẐB
βk = V̄1V̄2σβk

α �=β |Eβk − Eαk| , (23)

and the definition of

σβk = sgn
[(

Eβk − ελ
01

)(
Eβk − ελ

02

)] = ±1. (24)

Inserting Eq. (20) into Eq. (19) and using the explicit form of
spectral weights in Eqs. (21) and (10) and their residual form
to carry out the frequency integrations we obtain:

χ̂ττ (q, iνl ) = 1

2

∑
ββ̃

∑
k

Ẑτ
βq′ Ẑτ

β̃k

f (Eβq′ ) − f (Eβ̃k )

iνl + Eβ̃k − Eβq′
;

χ̂a
τ τ̄ (q, iνl ) = 1

2

∑
ββ̃

∑
k

Ẑτ
βq′ Ẑ τ̄

β̃k

f (Eβq′ ) − f (Eβ̃k )

iνl + Eβ̃k − Eβq′
;

χ̂b(q, iνl ) = 1

2

∑
ββ̃

∑
k

ẐB
βq′ ẐB

β̃k

f (Eβq′ ) − f (Eβ̃k )

iνl + Eβ̃k − Eβq′
.

(25)

Here the k summation runs over the two-dimensional BZ
and the β, β̃ = 1 − 3 summation over the three quasiparticle
bands of Eq. (3) comprising in principle three intraband and
three interband transitions. However, due to the constraint [23]
n f = 1 the chemical potential lies in the lowest band E2k and
then only one intraband 2 ↔ 2 and two interband transitions
2 ↔ 1, 3 contribute to the susceptibilities.

The results for the bare susceptibilities for both moment
directions and for BZ center and boundary wave vectors are
shown in Figs. 3(a) and 3(b) for ‖ and Figs. 3(c) and 3(d)
for ⊥ where we plotted both real and imaginary parts. For
both moment directions the transitions across the two direct
hybridzation gaps (Sec. III) show up clearly as sharp separate
peaks in the spectrum (imaginary part, blue) associated with
singular behavior of the real part (red) at the zone center q =
0. On the other hand, for the zone boundary wave vector Q =
(π, π ) a larger manyfold of indirect transitions is possible
and the spectrum is more spread out in frequency, although
certain individual indirect gap excitation energies are still
discernible. This result leads one to consider identification
of the two-peak structure not only in optical conductivity but
also in inelastic neutron scattering that probes the magnetic
response functions, albeit of the interacting system considered
in the next section.

V. DIPOLAR RPA DYNAMIC SUSCEPTIBILITY
AND SPECTRUM

From the two-impurity Kondo models it is known that
it induces two competing effects: The on-site screening of

033028-5



ALIREZA AKBARI AND PETER THALMEIER PHYSICAL REVIEW RESEARCH 2, 033028 (2020)

FIG. 3. [(a)–(d)] Frequency dependence of bare susceptibilities:
[(a) and (b)] The in-plane (‖) and [(c) and (d)] the out-of-plane
(⊥) magnetic response functions at q = (0, 0) and q = (π, π ), re-
spectively. Peak features at ωl and ωu for both q = 0, Q stemming
from large and small hybridization gaps in Fig. 1 can be discerned.
[(e) and (f)] The frequency dependence of the perpendicular RPA
susceptibilities at q = (0, 0) and q = (π, π ) for exchange function
parameters |I‖,⊥

0 | = 1/11.25 = 0.09, � = 0.5 [see Eq. (27)]. A col-
lective exciton mode peak appears inside the lowest hybridization
gap.

moments that tend to form a singlet ground state and creation
of effective intersite (RKKY)-type couplings that prefer to
align the moments to a magnetically ordered ground state
in the lattice. The latter may be obtained in second-order
perturbation theory from Eq. (1) by eliminating conduction
electrons. In a similar way more generalized intersite multipo-
lar interactions are generated for the (quasi-)quartet system if
one includes the higher rank(2,3)- quadrupolar and octupolar
terms in Eq. (1). They can favor hidden-order ground states
that are more exotic than the common magnetic ones (Refs.
[9,28,36]).

In the periodic lattice the constrained fermionic mean-field
treatment of the underscreened Kondo lattice model success-
fully captures the ingredients of the heavy-quasiparticle states
that form close to the Fermi level. However, this approxima-
tion only involves a homogeneous global (site-independent)
hybridization field and therefore does not lead to any effective
intersite couplings. The latter would appear if fluctuations of
this field and their exchange between sites would be included
as a next step [37], but this could only capture long-range in-
teractions. To simulate such competition effects more flexibly

even on the basis of the mean-field quasiparticle picture it is
customary to extend the model by adding an extra intersite
exchange term explicitly to Eq. (1) which may be thought
to have been created by having already eliminated additional
higher-lying conduction band states by a Schrieffer-Wolff
transformation. This procedure has been formally carried out
before in the case of the fully screened conventional KL model
[11] . However, the result has a rather singular behavior in k
space and therefore one has to resort to a phenomenological
form of intersite exchange. This leads to an extended Kondo-
Heisenberg model [38,39] described now by

HKH =HCEF +
∑
kσ

εkc†
kσ ckσ

+ (gJ − 1)Iex

∑
i

si · Ji +
∑
〈i j〉

Ji
↔
Ii jJ j, (26)

where
↔
I is a Cartesian uniaxial intersite exchange tensor

(counted per n.n. bond 〈i j〉) with only diagonal components
Ix,y
i j ≡ I⊥

i j and Iz
i j . Note that for consistency we use the same

sign convention for both on-site Kondo and intersite ex-
change, i.e., negative for FM and positive for AF coupling.
For reasons mentioned above, we use a phenomenological
Lorentzian model for the intersite exchange of the form

Iμ(q) = �2

�2 + (q − q0)2

∣∣Iμ
0

∣∣, (27)

where q0 = (0, 0) is a zone center (FM, Iμ
0 < 0) or zone

boundary (AF, Iμ
0 > 0) q0 = (π, π ) ≡ Q wave vector, respec-

tively, and adjustable parameters |Iμ
0 |, � characterize height

and sharpness of the maximum in I (q) around q0, respec-
tively.

In random phase approximation (RPA) the collective dy-
namical susceptibility components (μ =⊥, z) due to the last
term in the above equation are then represented by

χ̂
μ
RPA(q, iνl ) = [1 − Iμ(q)χ̂μ(q, iνl )]

−1χ̂μ(q, iνl ), (28)

where the bare magnetic susceptibilities χ̂μ(q, iνl ) of heavy-
quasiparticle bands have been evaluated in the previous sec-
tion [Eq. (18)]. The magnetic excitation spectrum of the un-
derscreened KL as accessible by INS is then finally obtained
as being proportional to the dynamical structure function
(iνl → ω + i0+)

S(q, ω) = 1

π

1

1 − e−βω

∑
μ

(
1 − q̂2

μ

)
Im

[
χ̂

μ
RPA(q, ω)

]
, (29)

where q̂μ = qμ/|q| is normalized momentum transfer compo-
nent.

VI. MIXED CEF-KONDO SPIN EXCITONS AND THEIR
TEMPERATURE DEPENDENCE FROM RPA RESPONSE

We first discuss the behavior of bare magnetic response
functions in Eq. (18) which is shown in Fig. 3 for ‖ [Figs. 3(a)
and 3(b)] and ⊥ directions [Figs. 3(c) and 3(d)], respectively,
and for zone center q = (0, 0) and zone boundary q = (π, π )
wave vectors. As in the case of optical conductivity (q = 0)
one can clearly identify the two peak structure originating now
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FIG. 4. Frequency and momentum dependence of the intensity plots of bare and RPA susceptibilities along the q = (0, 0) to q = (π, π )
(�M) direction. The left panel represents the ‖ (Jz ) magnetic response, χ̂ ‖(q, T ), and the second panel shows the ⊥ (Jx,y ) magnetic response,
χ̂⊥(q, T ). In each panel, the first and the second subpanels indicate the real and imaginary part of the bare susceptibilities, respectively. The
last subpanels show the RPA result but in the logarithmic scale. Parameters in Iμ(q) same as in Fig. 3. The spectrum of Imχ⊥

RPA shows an
incipient soft mode (q → 0) of the hybrid CEF-Kondo collective magnetic exciton.

from the magnetic transitions between lower band (n = 2)
and central (n = 3) as well as upper (n = 1) bands (Fig. 1).
They are now of comparable intensity because the central
band has mainly f -electron content leading to large magnetic
matrix elements. The peaks are sharper for the ‖ direction,
whereas the spectrum (imaginary part) is more spread out
for the ⊥ direction. Whether they appear directly in the
RPA spectrum and INS structure function S(q, ω) depends
strongly on the type and strength of quasiparticle interactions
described phenomenologically in Eq. (27). For small |Iμ

0 | the
bare spectrum is hardly changed. However, it is clear from
Eq. (31) that for sufficiently large interaction when

1

Iμ(q)
= Re[χ̂μ(q, ωr )] (30)

is first fulfilled for a frequency ωr a collective magnetic
resonance mode appears inside the hybridization gaps (ωr <


d
h1,


d
h3) [Figs. 3(e) and 3(f)] that absorbs almost all the

intensity while only small features are left at the bare peak po-
sitions which are prominent in Figs. 3(a)–3(d). Note that here
the resonance is most pronounced at q = 0 connected with
the direct magnetic transitions. In the conventional KL model
with a single hybridization gap the bare susceptibility exhibits
singular behavior as function of frequency around the indirect
gap threshold and the spin exciton resonance mode evolves
at the zone boundary and inside the gap of order T ∗ [21].
In contrast, the present underscreened KL model with more
realistic band structure involves both the CEF and Kondo en-
ergy scales in direct and indirect hybridization gaps (Sec. III)
and therefore the resonance may also appear at a zone-center
wave vector. This depends, however, on the precise form of
Iμ(q) and its maximum position. The lowest hybridization gap
scale is of order 
d

h3 = (T ∗2 + 
2
0)

1
2 . Therefore a collective

mode inside this gap as seen in Figs. 3(e) and 3(f) may be
termed a hybrid CEF-Kondo magnetic exciton. In the limit
T ∗ → 0 it becomes the conventional CEF magnetic exciton
which is the bare CEF excitation at 
0 dispersing due to

nondiagonal intersite exchange matrix elements (∼c12) of the
bare localized two level (τ = 1, 2) system (Sec. VII).

We also show the magnetic response and spectrum in the
(q, ω) plane for q along �M direction (Fig. 4). For ‖ moment
the bare and RPA spectrum are rather similar, meaning one
is far from the resonance condition in Eq. (30). While for ⊥
direction the comparison of bare and RPA spectrum clearly
shows that a resonance mode at low energy has evolved
around q = 0 by properly tuning I⊥(q) to achieve the con-
dition in Eq. (30). For this direction the strength |Iμ

0 | needs
to be much less than for ‖ direction due to the difference in
the low-frequency bare susceptibilities (real parts) as seen in
Fig. 3.

For the parameters used the hybrid CEF-Kondo magnetic
exciton in Fig. 4(f) shows an incipient soft-mode behavior
with ωr (q → 0) approaching zero. This is the precursor of
an induced moment FM phase transition that will appear for
slightly larger coupling strength. We stress that this type of
excitonic KL magnetism induced by off-diagonal exchange
matrix elements ∼c12 connecting different split CEF states
is fundamentally different from the usual KL magnetism
[40–43] with fully degenerate f states. The soft mode behav-
ior of the zone-center ωr (q = 0, T) is also observed as a func-
tion of temperature (Fig. 5). Note that within the underlying
slave-boson theory for the heavy bands the T dependence has
to be restricted to the range T < (T ∗2 + 
2

0)
1
2 . The induced

moment transition is discussed using a qualitative analytical
approach in the following section.

VII. INDUCED MAGNETISM CRITERION WITH KONDO
SCREENING EFFECT

In the case when the nondiagonal exchange dominates due
to c2

12 � c2
ττ the softening of magnetic exciton mode for T >

Tc indicates an induced magnetic phase transition. This is well
known in fully localized f systems, e.g., in various Pr [44]
and U [45] compounds with lowest singlet-singlet CEF level
scheme. The condition for the critical temperature is obtained
from the divergence of static (iνl = 0) RPA susceptibilities
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FIG. 5. Frequency and temperature dependence of the spectral
intensity plots for bare and RPA out of plane susceptibilities (⊥)
at q = (0, 0). The last panel (RPA) is in the logarithmic scale.
It demonstrates the softening of the hybrid CEF-Kondo magnetic
exciton with decreasing temperature.

[μ = z,⊥ (x, y)], i.e.,

χ̂
μ
RPA(q)−1 = [1 − Iμ(q)χ̂μ(q, T )]/χ̂μ(q, T ) = 0. (31)

For the simple TB band structure and effective intersite ex-
change model used here we can restrict to FM (q = 0) tran-
sition at Tc or AF (q = Q) transition at TN . Naturally for the
itinerant Kondo model the above equation can only be treated
numerically using Eqs. (18) and (25). First, we recapitulate the
result within the completely localized model without Kondo
term but finite intersite interaction. We consider the case
c2

12 � c2
ττ when the nondiagonal vanVleck terms dominate

(Appendix B). Then we have (β = 1/kT )

χ̂μ(q, T ) = 2mμ2

12


0
tanh

β

2

0, (32)

where we defined mμ2
ττ ′ = 1

2

∑
σσ ′ |〈τσ |Jμ|τ ′σ ′〉|2 and there-

fore 2m⊥2
12 	 1

2 c2
12 and mz2

12 = 0 according to Eqs. (15) and
(16). The solution of Eq. (31) is then given by

kTm =
1
2
0

tanh−1 1
ξq

=
⎧⎨
⎩

ξq � 1 : 
0

ln 2
ξq−1

ξq � 1 : 1
2ξq
0

; ξq = 2m⊥2
12 I⊥

q


0
, (33)

where Tm = Tc for FM (q = 0) or Tm = TN for AF (q = Q)
case, respectively. Here ξq is the control parameter for induced
moment magnetism which is not due to the ground-state polar-
ization alone but primarily (c2

12 � c2
ττ ) due to the admixiture

of the excited state into the ground state by the intersite
exchange. The induced moment ground state appears only
when the critical parameter fulfils ξq > 1. This mechanism is
preceded by the magnetic exciton (the bare dispersive CEF
excitation) softening above Tm. It is obtained from the pole of
Eq. (28) (for μ =⊥) as

ω(q0) = 
0

[
1 − ξ (q0) tanh

β

2

0

] 1
2

. (34)

This mode becomes soft, i.e., ω(q0) = 0 at the ordering
temperature Tm and wave vector q0 = 0 or q0 = Q. When

the on-site Kondo coupling Iex to conduction electrons is
included in Eq. (1) the localized doublets will turn into
the (partly) heavy itinerant quasiparticle bands of Fig. 1.
The excitation spectrum and critical temperature then re-
quires the numerical evaluation of Eqs. (28) and (31) using
Eqs. (18) and (25) as in the previous section. It is worthwhile,
however, to have at least a qualitative understanding how the
criticality condition for induced moment magnetism is modi-
fied under the presence of the Kondo screening and resulting
4 f quasiparticle itineracy. This can be achieved for the FM
case by using a simple analytical estimate for χ̂⊥(q = 0, T )
including only the transitions between bands n = 2, 3. This
leads approximately to

χ̂⊥(0, T ) = 2m⊥2

12


e
tanh

β

2

∗

0; 
e := 
∗3
0 (
∗

0 − 
0)
1
2 T ∗2
0

,

(35)
where we defined the average 
∗

0 = (T ∗2 + 
2
0)

1
2 with T ∗

denoting the Kondo temperature of Eq. (6). Furthermore 
e is
the effective dominating low-energy scale for the vanVleck-
type susceptibility contribution of transitions between occu-
pied and empty band states n = 2, 3. Then from Eq. (31)
we obtain the modified instability criterion for the FM case
T ∗

m = T ∗
c which includes the effect of Kondo screening as

kT ∗
c =

1
2
∗

0

tanh−1 1
ξ∗

0

; ξ ∗
0 = 2m⊥2

12 I⊥
0


e
, (36)

where ξ ∗
0 is the new critical parameter for induced magnetism

(ξ ∗
0 > 1) renormalized by the Kondo effect. It is instructive to

consider two limiting cases:
(i) Nearly localized CEF excitations T ∗ � 
0: Then


∗ → 
0 + 1
2

T ∗2


0
leading to 
e → 
 and therefore ξ ∗

0 → ξ0.
This means in the limit of vanishing Kondo coupling T ∗ → 0
the susceptibility χ̂⊥ will be reduced to the free-ion van Vleck
value of Eq. (32) for T < T ∗. Likewise we recover the bare
CEF expression in Eq. (33) for Tc in this limit.

(ii) Dominating Kondo coupling T ∗ � 
0: In this case


∗
0 → T ∗ + 1

2

2

0
T ∗ and therefore 
e → 2T ∗2/
0. This leads

to ξ ∗
0 → 1

2 (
0/T ∗)2ξ0 � ξ0. Therefore the effective control
parameter ξ ∗

0 is much reduced and unless the bare parameter
ξ0 is very large the Kondo screened ξ ∗

0 may fall below the
critical value ξ ∗

0 = 1 preventing the magnetic instability.
These limits imply that for all ratios of T ∗/
0 we have

ξ ∗
0 < ξ0 and the Kondo screening effect will reduce or sup-

press completely the appearance of the induced magnetic
ordering temperature Tc. This behavior is illustrated in Fig. 6.

VIII. DISCUSSION AND CONCLUSION

For Kondo compounds with CEF splitting the under-
screened quasiquartet KL model has more realistic fea-
tures than the conventional SU(N) model. It shows a richer
structure of quasiparticle bands around the Fermi energy that
encompasses the Kondo as well as CEF energy and effective
hybridization scales and their mutual influence. Since the un-
derscreened model is realized in Ce and Yb compounds when
the Kondo temperature is comparable to the CEF splitting
it is of great importance to identify these additional energy
scales in inelastic experiments like finite frequency optical
conductivity and inelastic neutron scattering. The primary
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FIG. 6. (a) Dependence of the Kondo-screened control parameter
ξ ∗

0 (normalized to the bare CEF value ξ0) for induced magnetic
instability on the ratio of Kondo temperature T ∗ to CEF splitting 
0.
(b) Suppression of induced magnetic ordering temperature T ∗

c due to
the strong decrease of ξ ∗

0 (top) with increasing Kondo energy scale
T ∗, plotted for several values of bare above-critical control parameter
ξ0 > 1.

goal of this work was the development of a full microscopic
theory for these important probes based on the mean-field
slave boson solution of the model given in Ref. [23].

First, we found the important result that the optical con-
ductivity which involves only direct (q = 0) transitions has
a distinct two-peak structure at finite frequencies, aside from
a less interesting quasielastic Drude peak. The lower peak
(ωl ) is dominated by the smaller scales (T ∗,
) while the
upper peak (ωu) by the larger effective hybridization scale
2V̄ = 2(T ∗Dc)

1
2 which is a nonuniversal scale beyond the

simple Fermi liquid description. Only the latter is present in
the conventional KL model and therefore within this model
the Kondo scale T ∗ is not directly visible in the optical con-
ductivity. Due to the presence of the third heavy band inside
the main (large) hybridization gap 2V̄ the third heavy band
leaves a direct signature in σ (ω) around ωl at the Kondo-CEF
scales.

As a corollary we briefly comment on some puzzling fea-
tures found in σ (ω) of cubic YbB12 [33]. There experiments
not only showed a peak at the main hybridization gap energy,
as expected from the conventional KL model. It also exhibits
a clear onset in σ (ω) at the much lower Kondo scale given
by T ∗ which in the conventional KL picture can only be
associated with large momentum transitions across the indi-
rect hybridization gap normally not accessible for the optical
response. Therefore the low-frequency onset was explained
by phonon-assisted indirect transitions which are possible
for zone-boundary momentum transfer carried by phonons.
Our investigation suggest a possible alternative mechanism:
The low-frequency onset of σ (ω) at T ∗ in YbB12 can be
due to direct transitions to the central heavy band present in
the underscreened KL model. In this context there would be
no need to resort to indirect phonon assisted transitions. A
qualitative comparison with the calculation of Fig. 2, adding
a quasiparticle broadening [15] for the interband transitions

FIG. 7. Qualitative comparison of optical conductivities. (a) Cal-
culation for same parameters as Fig. 2 but including phenomenolog-
ical linewidth [15] for fermionic quasiparticles described by �(ω) =
γ0 + γ1ω

2 with γ0 = 0.001, γ1 = 0.2. Labels indicate correspon-
dence of peak features to the direct transitions between quasiparticle
bands in Fig. 1. (b) Optical conductivity of YbB12 at T = 8 K
(adapted from Ref. [33]). Both direct transitions from top panel are
visible as onset shoulder and main peak.

is shown in Fig. 7. We note, however, that cubic YbB12 has
a quartet ground state and two closeby doublet excited states
(i.e., a quasiquartet split by 
0 from the quartet ground state)
[18,46]. The details of exchange-parametrization may there-
fore be different from the two doublet model investigated here.
Further experimental evidence for multipeak hybridization
gap structure in σ (ω) has also been found in Ce compounds
[47].

Second, we demonstrated that the intricate quasiparticle
band structure of the quasiquartet KL model also shows up
in the inelastic magnetic response functions probed by INS.
We found that the basic ingredients of the two-peak structure
due to small and large hybridization gap scales should also be
present. The details depend considerably on the CEF param-
eters that enter as weights in the dynamic susceptibilities and
on the form of the phenomenological intersite exchange. The
combined itinerant Kondo-CEF magnetic exciton spectrum
may exhibit a softening as function of temperature at the
wave vector where the exchange has a maximum. This is
a precursor for an induced magnetic phase transition due
to dominating nondiagonal exchange between the CEF-split
doublets. In the FM case (q = 0) this may be described by a
simplified quasilocalized model where the control parameters
are modified due to the presence of the Kondo screening. The
further development of this hybrid localized-itinerant picture
for CEF-Kondo magnetic excitons and induced magnetism
needs an inspiration from INS and other experiments prefer-
ably on Ce- and Yb-based Kondo lattice compounds.
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APPENDIX A

In this Appendix we give the explicit expressions of spec-
tral residua entering the pseudospin susceptibilities in Eq. (25)
as well as those in the optical conductivity of Eq. (13). For the
former χ̂ττ (q, iνl ) and χ̂a

τ τ̄ (q, iνl ) we have:

Ẑτ
1k = V̄ 2

τ

∣∣E1k − ελ
0τ̄

∣∣
|E1k − E2k||E1k − E3k|

∣∣E1k − ελ
0τ

∣∣ ,

Ẑτ
2k = V̄ 2

τ

∣∣E2k − ελ
0τ̄

∣∣
|E2k − E1k||E2k − E3k|

∣∣E2k − ελ
0τ

∣∣ ,

Ẑτ
3k = V̄ 2

τ

∣∣E3k − ελ
0τ̄

∣∣
|E3k − E1k||E3k − E2k|

∣∣E3k − ελ
0τ

∣∣ .

(A1)

Likewise the spectral residua for the orbitally nondiagonal
contribution χ̂b

τ τ̄ (q, iνl ) are given by

ẐB
1k = V̄1V̄2σ1k

|E1k − E2k||E1k − E3k| ,

ẐB
2k = V̄1V̄2σ2k

|E2k − E1k||E2k − E3k| ,

ẐB
3k = V̄1V̄2σ3k

|E3k − E1k||E3k − E2k| ,

(A2)

with the sign σβk = ±1, defined in Eq. (24).
In the case of the optical q = 0 conductivity σ (ω) in

Eq. (13) we need the residua

Z̃1k =
∣∣E1k − ελ

01

∣∣∣∣E1k − ελ
02

∣∣
|E1k − E2k||E1k − E3k| ,

Z̃2k =
∣∣E2k − ελ

01

∣∣∣∣E2k − ελ
02

∣∣
|E2k − E1k||E2k − E3k| ,

Z̃3k =
∣∣E3k − ελ

01

∣∣∣∣E3k − ελ
02

∣∣
|E3k − E1k||E3k − E2k| .

(A3)

APPENDIX B

Here we briefly discuss the origin of the anisotropy co-
efficients cz

ττ ′ , cττ ′ , and c12 that are essential for the rela-
tion between total angular-momentum J and pseudospin S
[Eq. (16)] and enter as well the physical (Cartesian) bare
susceptibilities in Eq. (18). The coefficients are determined
by the composition of quasiquartet CEF states consisting of a
�6-�7 pair given by

(τ = 1) : |�6±〉 = α11

∣∣ ± 7
2

〉 + α12

∣∣ ∓ 1
2

〉
,

(τ = 2) : |�7±〉 = β11

∣∣ ∓ 5
2

〉 + β12

∣∣ ± 3
2

〉
, (B1)

FIG. 8. Contour plot of the differences of squared moment co-
efficients c2

12 − cz2
11 (a) and c2

12 − c2
11 (b) for ground-state doublet

(τ = 1) in the α12 − β12 plane of CEF state parameters. In the
upper right corner where α12, β12 → 1 the nondiagonal coefficents
dominate, i.e., c2

12 � cz2
11, c2

11. For excited state τ = 2 the behavior is
qualitatively similar.

Using the normalization conditions α2
11 + α2

12 = 1 and β2
11 +

β2
12 = 1 the moment coefficients may be obtained as function

of independent CEF parameters α12 and β12 [28]:

cz
11 = 7 − 8α2

12; cz
22 = −5 + 8β2

12,

c11 = 4α2
12; c22 = 4

√
3β12

√
1 − β2

12,

c12 =
√

7
(
1 − α2

12

)(
1 − β2

12

) +
√

30α12β12.

(B2)

The relative size of these coefficients, characterized, e.g.,
by their differences c2

12 − cz2
ττ and c2

12 − c2
ττ (τ = 1, 2) varies

greatly with CEF state parameters α12, β12. The most interest-
ing case is the “induced-moment” situation when off diagonal
coefficients between the two doublets are dominating the
magnetic response and possible ordering, i.e., c2

12 � cz2
ττ , c2

ττ .
Figure 8, which plots the above differences in the α12, β12

plane, shows that this situation can be reached in the upper
right corner where when α12, β12 → 1 meaning α11, β11 → 0.
This corresponds to CEF doublets in Eq. (B1) dominated by
| ∓ 1

2 〉 and | ± 3
2 〉 states which may be the case when the

parameters of the tetragonal CEF satisfy |B0
2| � |Bm

4 |, |Bm
6 |.

Then the moment operators in Eq. (16) are essentially of
easy-plane type Jz ≈ 0 and J± ≈ c12

1√
2
(S±

12 + S±
21) where the

latter has only contributions off-diagonal (12) and (21) in the
CEF doublet states. This corresponds to dominating inelastic
magnetic response due to the quasiquartet CEF splitting and
a possible excitonic magnetic order with primarily induced
moments due to the mixing of τ = 1, 2 by intersite exchange.

TABLE I. The values of the anisotropy coefficients obtained
based on original model parameters (J⊥

1 , J⊥
2 , J12). The energy scale

is Dc.

J⊥
1 J⊥

2 J12 α12 β12 cz
11 cz

22 c11 c22 c12

0.471 0.767 0.2 0.59 0.35 4.18 −4.0 1.4 2.3 0.84
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