
PHYSICAL REVIEW RESEARCH 2, 033026 (2020)

Hydroshearing poorly connected preexisting fractures in the presence
of stress anisotropy as a random percolation process
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Activation of natural fractures by fluid injection is used to enhance the permeability of geological reservoirs.
A fracture slips and activates when the fluid pressure is larger than a critical value that depends on its orientation
with respect to the in situ stress. Using large-cell Monte Carlo renormalization group, we show that activating
poorly connected fractures belongs to the same universality class as random percolation despite the propensity
of stress anisotropy to activate favorably oriented fractures. A crossover that does not change the universality
class is identified as the size of the activated network exceeds the preexisting fractures’ correlation length.
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I. INTRODUCTION

Hydroshearing, the enhancement of rock’s permeability by
fluid injection to activate preexisting fractures, is used to ex-
tract natural gas from shale formations and geothermal energy
from hot dry rocks [1–4]. Preexisting fractures are fractal and
a crucial requirement for a successful hydroshearing process
is to create a network of convective transport paths that
fill space effectively. Anisotropy in the overburden stresses
favors activation of fractures oriented in a preferred direc-
tion, possibly leading to the creation of a low-dimensional
network. In this work, we show using a large-cell Monte Carlo
renormalization group (RG) approach [5] that the activation
of preexisting fractures is a random percolation process in
spite of stress anisotropy and long-range correlations due to
the fractal nature of the preexisting fractures [6]. Building on
this result, we present constitutive laws that predict the effects
of fracturing process conditions on the permeability evolution
of stimulated rocks.

Preexisting fractures activate by shearing when the fric-
tional force holding the fractures’ surfaces in place is re-
duced [7,8]. The induced mismatch, due to slippage, between
the asperities of the two surfaces provides space for hydraulic
flow and the fractures become activated [9]. The fractures are
typically modeled as planar objects and in two dimensions,
Mohr-Coulomb’s criterion yields a critical fluid pressure, Pc,
required to induce slippage [10,11]:

Pc = (σ1+ σ3)/2+ (σ1 − σ3)/2

[
cos(2θ )− 1

η
sin(2θ )

]
, (1)
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where σ1 and σ3 are the far-field maximum and minimum
principal stresses, respectively, η is the friction coefficient,
and θ is the angle of the fracture with respect to the 3 axis.

Following Mohr-Coulomb’s criterion, an inherently con-
nected network of hydraulically conductive activated fractures
can form when the fractures are slipped by the arrival of an
injected fluid with a viscosity higher than that of the reservoir
fluid. Due to the percolative nature of this mechanism, the
connectivity of the formed cluster of activated fractures is pre-
dominantly governed by (1) the connectivity of the underlying
network of preexisting fractures, i.e., its correlation length ξ0;
(2) the variability in the fractures’ critical pressures which is
proportional to σ1 − σ3; and (3) the injected fluid’s viscous
pressure drop over the fractures’ length, l , controlled by the
fluid’s viscosity, the injection rate, and the fractures’ aperture.

When the viscous pressure drop is small compared to the
variability in the critical pressures, the fluid activates and
flows through the least resistant accessible fractures. Each
newly activated fracture is the one with the smallest value of
Pc, calculated from (1), that is connected to the network of
activated fractures. Thus, the primary source of randomness
is the interconnections between fractures associated with their
random positions and orientations.

To provide a framework for understanding the hydraulic
stimulation of rocks and the transport processes after stimu-
lation, we will determine the universality class of the hydros-
hearing process. On first thought, one might expect anisotropy
in the stress field to produce a quasi-one-dimensional network
when percolating paths through the preferentially oriented
fractures are available. Upon closer examination, one may
realize that the fracturing process resembles site-bond per-
colation in which a certain number of sites on a lattice are
filled with particles that are available for bonding. A sparse
network of natural fractures would then correspond to the
case where these particles are near their percolation threshold.
Most site-bond percolation problems fall within the regular
percolation universality class including those in which the
probability of bond activation between well-connected sites
is anisotropic and those with isotropic bond activation among
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FIG. 1. An example of a sparse network of preexisting fractures.
The red fractures are the activated fractures that form a percolating
network, while the blue fractures are the unactivated preexisting
fractures.

sparse sites. One may then infer that hydroshearing is in
the percolation universality class. However, this postulate is
uncertain because no previous studies have considered the
closest analogy to hydroshearing among site-bond percolation
problems, i.e., one in which anisotropy persists and evolves
as the number of sites approaches the percolation threshold.
Furthermore, unlike all bond percolation problems, hydros-
hearing is a deterministic process in which all fractures with a
given orientation are opened at the same injection pressure.

In this paper, we will use RG to show that, indeed, the
hydroshearing process under the aforementioned assumptions
belongs to the same universality class as random percolation.
First, we will present the fracture network model used to
represent the preexisting fractures. Then, we will describe
the renomalization group method by which we calculate the
universal exponents that determine the problem’s universality
class. Finally, the implications of the results for predicting the
permeability of fractured reservoirs are discussed.

II. NETWORK MODEL DESCRIPTION

For simplicity, we examine the activation of a two-
dimensional network of preexisting fractures with equal
lengths, l , and isotropic orientations as illustrated in Fig. 1.
The connectivity of a network of equal-length fractures with
isotropic or anisotropic orientations has been shown to belong
to a random percolation universality class [12–14]. Its corre-
lation length, ξ0, is given by ξ0 = kξ (n − nc)−νn where n is the
number density of preexisting fractures, nc is the percolation
threshold number density, and kξ is a proportionality constant.
The value of nc, for isotropic preexisting fractures, has been
estimated to be about 5.637 [15,16] and the value of νn is 4/3.
When 0 < n − nc � nc, ξ0 is much larger than l but is finite.
Thus, the network looks fractal at length scales smaller than
ξ0 where long-range correlations determine fluid propagation,

but it is homogeneous and stress anisotropy controls the
activation process on scales larger than ξ0. This means the
hydroshearing behavior is different at these different scales.

The lengths of natural fractures, typically, follow a power-
law distribution, P(l ) ∼ l−a. The fractal dimension of the
preexisting fractures depends on the spatial correlations be-
tween the fractures [17]. Our model is applicable to geological
formations such as the Gulf of Suez [18] with power-law
exponents, a, greater than or equal to 3 whose connectivity
is dominated by the smallest fractures. The fractal dimension
of the random fracture model used in this paper is also
believed to characterize systems of natural fractures such as
The Geysers geothermal field [19]. Regardless of the fractal
dimension of the preexisting fractures, the main result that
the stress anisotropy does not control the fracturing process
of fractal networks should apply as long as the lengths of the
fractures are of the same order of magnitude.

The procedure used to prepare the network of preexisting
fractures is similar to that described in [15]. To ensure the
formation of a homogeneous network, the fractures’ centers
of mass are distributed homogeneously within a box of size
(L + 1) × (L + 1). Free boundary conditions are used to de-
fine the system and fractures near the edge of a box of size
L × L are truncated to prevent intersections of the fractures
outside the domain and thus the formation of a percolating
path outside the box. Under such conditions, the percolation
behavior of the network of preexisting fractures is controlled
by their dimensionless number density defined as

n = 1

L2

Nf∑
i=1

l2
i , (2)

where li is the length of each fracture and Nf is the total
number of fractures.

Given a specified number density of the fractures, fractures
are added until the total length squared of the fractures after
truncating the ones near the boundaries is equal to or larger
than nL2. The maximum error in the number density scales
as 1/L2. For systems larger than 100, the maximum deviation
from the set number density was found to be less than 1%.
The results presented in the paper correspond to system sizes
that are larger than 100 × 100.

The critical pressures of the fractures are calculated us-
ing (1). By normalizing the critical pressures with their stan-

dard deviation, δpc = ( σ1−σ3
2 )

√
1
2 + 1

η2 ( 1
2 − 4

π2 ), (1) becomes

pc = η̄

[
σ̄ + cos(2θ ) − 2

η

√
cos(θ )2sin(θ )2

]
, (3)

where pc = Pc/δpc, σ̄ = σ1+σ3
σ1−σ3

, and η̄ = 1/
√

1
2 + 1

η2 ( 1
2 − 4

π2 ).

σ̄ is the normalized average of the fractures’ critical pressures.
The system is defined by two dimensionless parameters, η

and σ̄ . One can easily show that the average value of the
critical pressures does not change the percolation behavior of
the activated fractures. As the value of the friction coefficient,
η, decreases, the anisotropy of the distribution of critical pres-
sures increases. We found that varying the friction coefficient
does not change the qualitative behavior of the activation
process but slightly alters the value of the onset of percolation
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when the effects of stress anisotropy are pronounced, i.e.,
the natural fractures form a well-connected network. The
presented results are based on the value η = 0.85, which is
close to the experimental friction coefficients of most rocks.

III. RENORMALIZATION GROUP APPROACH

The universality class of the activation process will be
identified by determining the value of the activated fractures’
fractal dimension, D f , and the critical exponent ν. The ex-
ponent ν is related to the scaling of the correlation length,
ξ , of the percolating network of activated fractures with the
distance from the percolation threshold value. The percolation
threshold value is defined as the fluid pressure required to
activate a fraction F∞

c of the percolating preexisting fractures
and form an incipient infinite cluster (IIC) of the activated
fractures. Since generating an infinite cluster using computer
simulations is not viable, we use RG [20] to analyze the
formation of percolating networks that span finite domains as
described next.

RG is based on the premise that the IIC is self-similar and
thus when renormalized with cells of a linear dimension, L,
the correlation length of the renormalized IIC, ξ ′, is simply
equal to that of the original network, ξ , scaled with L. Since
ξ ′ is a function of the probability to activate the renormalizing
cell and the percolation threshold value does not change upon
renormalization, one can compute the values of ν and F∞

c
once the dependence of cell activation on fracturing preex-
isting fractures contained in the cell is determined. A cell is
considered activated when the preexisting fractures contained
in the cell form a percolating path and the dependence of
cell activation on fracturing of preexisting fractures is found
through computer simulations.

To get a glimpse of the RG procedure, consider a homoge-
neous network of preexisting fractures. The correlation length
of a network of activated fractures is given by ξ ∼ (F − Fc)−ν

where F is the probability to activate a fracture and Fc is
the percolation threshold value. Replace a finite domain, of
a linear size, L, with a supercell that has a probability to
percolate, F ′. F ′ is a function of the probability to activate
the fractures, F , within the domain. The correlation length of
the normalized network composed of supercells, ξ ′, is given
by ξ ′ ∼ (F ′ − Fc)−ν . Since the connectivity of the network is
reduced by L, one can relate ξ and ξ ′ through ξ = Lξ ′. Since
the value of Fc and ν are the same for the original network and
the normalized one, it can be easily shown that

1

ν
= ln[(F ′ − Fc)/(F − Fc)]

ln(L)
= ln(	∗)

ln(L)
, (4)

where 	∗ = dF ′
dF at F = Fc. Finally, the self-similarity of the

network of activated fractures at all length scales is only valid
when F ′ = F = Fc. Thus, one needs to find the relationship
between F ′ and F to calculate the value of Fc. Using (4), one
can calculate the value of the exponent ν after determining
the value of Fc. For example, in a triangular lattice of sites,
one can replace every three sites that form a triangle with a
supersite. The supersite percolates if all of the sites or two
of them are activated. Thus, the closed form of F ′ = f (F ) is
given by F ′ = F 3 + 3F 2(1 − F ). The solution of F ′ = F =

Fc yields Fc = 1/2 and the value of ν using (4) where L = √
3,

since 3 sites are used to form a supercell, is ν = 1.355 [20].
The procedure described above is only guaranteed to pro-

duce an exact result for Fc and ν when L → ∞. Asymp-
totically, the value of ν calculated using a finite size of the
supercell approaches the exact one. As the size of L is in-
creased, it becomes increasingly difficult to find a closed form
of F ′ = f (F ). Thus, a Monte Carlo approach is used to sam-
ple the total probability to percolate the supercell. One way
to sample the distribution is to perform several percolation
simulations at different values of F to get the functional form
of F ′ [21]. One should notice that F ′ = f (F ) is the cumulative
probability to percolate a supercell and thus 	∗ = dF ′

dF is the
probability distribution function of percolating the supercell
evaluated at Fc. Thus, one can perform percolation simulations
using Newman and Ziff’s algorithm [22] to calculate the
distribution, 	, of the onset of percolation and evaluate 	∗
which reduces the number of simulations required to find
F ′ = f (F ). The value of Fc is obtained by solving

∫ F

0
	(F, L)dF − F = 0. (5)

Once the value of 	∗ is evaluated for different cell dimen-
sions, the value of ν is given by [20]

1/ν = 1/νL + C/ln(L), (6)

while the value of F∞
c is asymptotically approached as FcL −

F∞
c ∼ L−1/ν . Here, νL and FcL are the cell-size-dependent val-

ues of the critical exponent, ν, and the percolation threshold,
respectively. In fact, 1/νL = ln(	∗ )

ln(L) .
In Newman and Ziff’s algorithm, in the context of the acti-

vation process, preexisting fractures are successively activated
starting from the ones with the lowest critical pressure until
a percolating network is formed. The fraction of activated
preexisting fractures, Fc, which can be used as a percolation
parameter, is recorded once a percolating network is formed.
Using several realizations, one can find the distribution, 	, of
the onset of percolation. By introducing an assumption about
the functional form of the probability distribution, 	, of the
onset of percolation, one only needs to store the mean, 〈 fc〉,
and variance, σ fc , of the onset of percolation to evaluate ν [5].

As the system size increases, 	 approaches a delta function
and Fc is the mode of the distribution. For a finite system, Fc

is expected to lie close to the mode of the distribution. This
assumption has been found to produce a close value to the
correct percolation threshold in other systems [5]. Typically,
a Gaussian distribution of fc is assumed and thus 	∗ scales
with the inverse of the standard deviation of the distribution,
1/

√
σ fc . Since the probability to percolate is bounded between

0 and 1 and its distribution is skewed, we have used a β

distribution as it produced a better fit of the distribution of
the onset percolation as shown in Fig. 2. The β distribution is
given by

	nm(x) = �(n + m)
�(n + m)

�(n)�(m)
xm−1(1 − x)n−1, (7)

where the peak of the distribution and thus 	∗ can
be related to 〈 fc〉 and σ fc . In fact, 	∗ = 	nm( m−1

m+n−2 )
where n = [〈 fc〉(1 − 〈 fc〉) − σ fc ](1 − 〈 fc〉)/σ fc and
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FIG. 2. A comparison between normal and β distributions to fit
the simulated onset of percolation. In this example, L = 20 and n =
5.639.

m = n〈 fc〉/(1 − 〈 fc〉). 〈 fc〉 and σ fc are the average and
variance of the onset of percolation, respectively.

IV. RESULTS AND DISCUSSION

A. Universality class of the activation process

Since the sparse network of natural fractures is fractal
when L � ξ0 while it is homogeneous when L � ξ0, a
crossover in the scaling of νL with L is expected as L/ξ0 ∼
O(1). To probe this crossover, using reasonable cell sizes, one
can rescale the system size in (6) with ξ0 ∼ (n − nc)−νn to
obtain

1

ν
ln[L(n − nc)νn ] = ln[L1/νL (n − nc)] + C. (8)

Here, ν is the calculated exponent related to the connectivity
of the IIC in either the fractal or homogeneous regimes. νn

is the critical exponent related to the connectivity of the
preexisting fractures that is equal to 4/3 [12]. If ν = νn, the
ln(n − nc) terms on the two sides of the equation cancel
retrieving (6). The value of the constant C should not be
a function of n when the fractal and homogeneous regimes
are fully developed but it is different in the two regimes
since the activation behavior is different in these regimes.
Thus, a universal curve for all number densities that satisfy
0 < n − nc � nc will be obtained when plotting L(n − nc)νn

vs L1/νL (n − nc). Figure 3 shows a plot of L(n − nc)νn vs
L1/νL (n − nc) for different number densities and a range of
cell sizes. As expected, a crossover in the scaling of νL occurs
when L(n − nc)−νn = O(1). The slope of both the dash-dotted
and solid lines is equal to 3/4 indicating that the value
of ν is equal to that for percolation problems. The value
of the proportionality constant, C, in both regimes is given
by the intercept of the fit lines and is equal to 0.255 and −0.42
in the fractal and homogeneous regimes, respectively.

FIG. 3. This plot is used to calculate the value of ν. The values
of n range between 5.638 and 5.9 while 100 � L � 800. Each value
of n is represented by a different color. The slope of the two lines is
equal to 3/4 while the intercept of the dashed-dotted line is equal to
0.255 and the intercept of the solid line is equal to −0.42.

By estimating the volume of the activated fractures from
core samples, one can employ the scaling of the cluster mass,
M, to estimate the radius of the stimulated reservoir. The
cluster mass is defined as the total length, scaled with λ, of the
activated fractures. Since the cluster mass scales with the sys-
tem size as M = kDLD f , the radius of stimulated reservoirs,
R, is given by R = λ[Vinj/Vf kD]1/D f . Here, Vinj is the injected
volume and Vf and λ are the average volume and length of
the activated fractures. To determine the fractal dimension in
the two regimes, the scaled total length, M, of the activated
fractures is calculated for different domain sizes of the IIC.
Figure 4 shows a plot of the cluster mass, M, scaled with the
number density of preexisting fractures for different system
sizes. Unlike the scaling of νL, no transition is observed as
the system size becomes of the same order of magnitude as
the preexisting fractures correlation length. The slope of the
solid line is 91/48 indicating that the fractal dimension in
the two regimes is the same as the fractal dimension of a

FIG. 4. This plot is used to calculate the value of Df . The
values of n range between 5.638 and 5.9 while 100 � L � 600.
The coloring follows Fig. 3. The slope of the solid line is 91/48 and
the intercept is equal to 1.33.
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percolating network formed using random percolation. The
intercept of the fit line, Id = 1.33, can be used to calculate
the proportionality constant, kD. Since Fig. 4 is generated
by rescaling the system size with the preexisting fractures
correlation length, ξ0 = kξ (n − nc)−ν , the value of kD is given
by kD = kξ exp[D f Id ]. As discussed in Appendix, the value of
kξ is found to be equal to 0.43 and thus, kD = 5.35. If one fits
the cluster mass as a function of the different number density
of fractures without rescaling of the system size with ξ0, the
average value of kD is found to be equal to 4.95 ± 0.71 in good
agreement with the estimation using the calculated value of kξ .

Results from Figs. 3 and 4 show that the effects of stress
anisotropy are irrelevant details due to the large population of
singly connected fractures (known as red links in percolation
theory) the fluid has to activate in order to propagate through
the rock. Moreover, the activation process is still in the same
universality class as random percolation even when the acti-
vation process is controlled by topological long-range corre-
lations, due to the fractal nature of the network of preexisting
fractures. This result is consistent with the Harris criterion
which states that the universality class of a process does not
change upon dilution when dν > 2 where d is the Euclidean
dimension of the network [23]. It is worth mentioning that
this criterion is not rigorously proven and there are reported
systems that violate it [24].

For an optimized fracturing process, the stimulated region
should be of the same size as the hydrocarbon-rich zone.
Since the radius of the stimulated region is given by R/λ =
0.42(Vinj/Vf )48/91, one can approximate the required amount
of fluid to be injected prior to commencing the fracturing
process. For instance, if the radius of the payzone is of the
order of 1 km, the average length of the fractures is equal to
1 m, and the volume of the activated fractures is 5 × 10−3 m3,
the total volume to be injected to stimulate a region of the
same size as the payzone is approximately equal to 2000 m3

of a low-viscosity fluid. Interestingly, the stimulated radius
scaling, when the viscous pressure drop is negligible, is uni-
versal for rocks with uniform preexisting fractures. That is, the
required injected volume is only a function of the volume of
the fractures and is independent of their number density and
connectivity.

B. Transport properties of fractured rocks

Having determined the universality class of the activation
process, let us relate the transport properties of the fractured
rock during the activation process to the injection fluid pres-
sure, Pinj, and the rock’s statistical properties. Such relations
can help simplify the design of the fracturing process and pre-
dict the permeability after stimulation. Moreover, relating the
effective permeability of the stimulated rock to the pressure of
the injected fluid, as argued in [25], can allow for continuum
modeling of the stimulation process when the viscous pressure
drop becomes important at large length scales.

When the viscous pressure drop is negligible, the per-
meability, K , and porosity, φS, of the hydraulically stimu-
lated rock, should scale as K ∼ [(P∞

cc − Pinj )/(σ1 − σ3)]ε and
φS ∼ [(P∞

cc − Pinj )/(σ1 − σ3)]β , respectively. Here, P∞
cc is the

threshold fluid pressure required to form an infinite percolat-
ing network. It corresponds to the inverse of the cumulative

FIG. 5. This plot shows the scaling of the saturation, S, with
the system size at the onset of percolation. When L � ξ0, S is
independent of L and it scales as S ∼ L−β/ν when ξ0 � L. The slope
of the solid line is equal to −β/ν = −5/48. The coloring follows
Fig. 3.

distribution of the critical pressures, F , evaluated at F∞
c . The

form of F for randomly oriented fractures is given by

F =
{− 2

π
{acos[A(pc)]+ 2θmin} if pcmin � pc � σ3/δpc

1− 1
π

acos[A(pc)] if σ3/δpc < pc � σ1/δpc
,

(9)

where A(pc) = [1/η
√

4η̄2 + (2η̄/η)2 − 4(η̄σ̄ − pc)2 −
2(η̄σ̄ − pc)]/[2(1 + 1/η)]. pcmin is the minimum critical

pressure, i.e., pcmin = pc(θmin) = η̄σ̄ − η̄(
√

1+η2+(1+η2 )/η

η+
√

1+η2
),

where θmin is the orientation of the fracture with the lowest
critical pressure. The preferred orientation for fracture
slippage is given by θmin = ±atan(η +

√
η2 + 1) + mπ (for

any integer m) (9) is obtained by integrating (3) for θ from
−π/2 to π/2 normalized by π . φ ∼ ξ

−β/ν

0 is the porosity
of the medium if all the percolating preexisting fractures
are activated, while S is the fraction of preexisting fractures
that belong to the percolating network of activated fractures.
The values of the critical exponents ε, β are universal and in
two dimensions equal to 1.3 and 5/36, respectively [20,21].
However, the value of P∞

cc depends on the connectivity of the
network and the stress anisotropy. Hence, estimating the value
of P∞

cc using field data prior to stimulation helps to predict
how the permeability will evolve as the rock is stimulated
under negligible viscous pressure drop.

As a sample verification of the derived relations, we probed
the scaling of the saturation of activated fractures, S, with the
cell size. At the onset of percolation, the saturation should
scale as S ∼ (L/ξ0)−β/ν in the homogeneous regime while it
becomes a constant in the fractal regime. As shown in Fig. 5,
the crossover between the two behaviors occurs as L/ξ0 ∼
O(1). Derivation of these scalings stems from the fact that the
correlation length of the activated fractures, ξ , scales as ξ ∼
[(P∞

cc − Pinj )/(σ1 − σ3)]−ν . At the onset of percolation, ξ is of
the same order as the system size and when n = nc, ξ ∼ ξ0

since the preexisting fractures form a quasi-one-dimensional
network [26].
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Now, let us find the dependence of the percolating pressure
P∞

cc on the natural fractures’ number density. Depending on
the ratio of the correlation length of the preexisting fractures
to the system size, the finite-size scaling of Fc is different.
When ξ0 � L, the value of Fc approaches F∞

c as

Fc = F∞
c − kH L−1/ν, (10)

where kH is a proportionality constant. This is the typical
finite-size scaling used for percolation problems on perfect
lattices. Since the activation problem belongs to the same
universality class as random percolation, the percolation be-
havior on a homogeneous network of preexisting fractures is
expected to be similar to that on a perfect lattice.

The percolating network of preexisting fractures when
n → nc has the same fractal dimension as a percolating net-
work formed at the percolation threshold value on a lattice.
For an infinite percolating network, there exists only one path
connecting two points within the network and thus F∞

c should
be equal to 1 in order to percolate the network [26]. Thus, the
scaling of Fc with the system size is expected to follow

1 − Fc = k f L−1/ν, (11)

when ξ0 � L. Similar to the scaling of νL with the system size
where the value of the proportionality constant, C, is different
in the fractal and homogeneous regimes, the values of k f and
kH are not necessarily equal.

If one calculates the size-dependent percolation threshold,
Fc, for an arbitrary number density such that n − nc � nc, the
scaling of Fc with the system size is expected to follow (11) for
relatively small systems and as one increases the system size
a transition occurs and Fc starts to scale as (10). Assuming
that the transition in the scaling of Fc from (11) to (10) occurs
sharply when L = O(ξ0), one can replace L with ξ0 = kξ (n −
nc)−νn in (11) and (10) and equate Fc in the two equations to
obtain

1 − F∞
c = (k f − kH )k−1/νn

ξ (n − nc). (12)

Since both the mean and the mode of the onset of percola-
tion follow the same finite-size scaling and approach the same
value as L → ∞, one can choose either value to calculate
F∞

c [5]. In our simulation, we only store the average, 〈 fc〉,
and variance, σ fc , of the onset of percolation. To calculate the
mode, we had to assume a functional form of the distribution
of the onset of percolation. To avoid unnecessary assumptions,
we base our calculations of F∞

c on the size-dependent values
of 〈 fc〉.

To realize the transition in the scaling of Fc for a given
number density such that n − nc � nc, one needs to simulate
very large system sizes. Since that is not a viable option using
current computational power, we showed the transition by
means of calculating Fc for different number densities and a
range of system sizes. By substituting (12) into (10), one can
show that

(1 − Fc)L1/νn = (k f − kH )k−1/νn
ξ (n − nc)L1/νn + kH . (13)

Therefore, plotting (1 − Fc)L1/νn vs L1/νn (n − nc) will yield
a universal curve as shown in Fig. 6. Since the scaling of
Fc in the fractal regime is given by (11) where the value of
k f is independent of the value of n, a horizontal line given

FIG. 6. This plot shows how FcL scales with L in the two regimes.
The slope of the dashed-dotted line is given by (k f − kH )k−1/νn

ξ and
is found to be equal to 0.161. The coloring follows Fig. 3.

by y = k f should be obtained when (n − nc)L1/νn � 1. When
(n − nc)L1/νn � 1, the finite-size scaling should follow (13)
and the transition between the two scalings occurs when
(n − nc)L1/νn ∼ O(1). In Fig. 6, the solid line represents (11)
while the dashed-dotted line represents (13).

The proportionality constants in (12) are universal for
all rocks when the length of the preexisting fractures are
of the same order. Thus, one only needs to measure the
number density of preexisting fractures from core samples
to determine P∞

cc since P∞
cc = F (F∞

c )−1. To verify (12), the
predicted values of F∞

c are compared with those calculated
from computer simulations in Fig. 7. The circles are for
the case when anisotropy effects are taken into account.
The squares represent the case where the critical pressures
are random such that the activation process is analogous to
random percolation. By fitting the values of FcL , shown in
Fig. 6, using the finite-size scaling arguments, the values of
the proportionality constants are estimated to be k f ≈ 0.57,

FIG. 7. This plot shows how the percolation threshold for infinite
systems depends on the number density of natural fractures. The
squares represent the case where Pc’s are random while the circles
are for the case where Pc’s are given by (1).
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FIG. 8. This plot shows how the minimum injection pressure
required to percolate the rock depends on the rock’s properties.
The units of the principal stress field is MPa. The dashed-dotted
lines are calculated from (12), while the circles are calculated
from the simulated data of F∞

c for the case where the anisotropic
effects are taken into account. The asterisk symbols represent the
case where the critical pressures are random and have the same range
as in the case where Pc’s are calculated from (3).

kH ≈ 0.19, and kξ ≈ 0.43. The methods used to estimate the
constants are discussed in Appendix.

The curve created by the circles in Fig. 7 represents the
transition from conditions yielding a finite cluster of activated
fractures to those producing an infinite percolating network.
As shown in the figure, (12) holds when n − nc � nc, the
regime where the network is sparse, i.e., ξ0 � l . Deviations
from (12) for larger number densities of the preexisting
fractures are due to the invalidity of the scaling of ξ0 far
from the percolation threshold. Since the fracturing process
belongs to the same universality class as random percolation,
an infinitely large network of activated fractures is expected
to be isotropic [14]. That is, the percolation threshold value
is independent of the percolation direction even though the
fluid propagates through the preferably oriented fractures. As
indicated by the red circles in Fig. 7, it is easier for the injected
fluid to percolate through the fractures in the presence of an
anisotropic stress field when compared to the case where the
stress field is highly heterogeneous, i.e., the critical pressures
are random. When n − nc � nc, the percolation threshold
value is not affected by the stress anisotropy due to the
large population of singly connected fractures the fluid has
to activate in order to propagate through the rock.

Figure 7 is analogous to the Griffith phase diagram de-
veloped for the dilute Ising model to predict the ferromag-
netic Curie temperature given the concentration of impu-
rities [27,28]. If the stimulation process is conducted at a
constant pressure, there exists a minimum injection pressure,
P∞

cc , needed to ensure the continuous propagation of the
injected fluid. Estimating this value prior to stimulation is
essential in order to ensure the success of the process. Figure 8
shows example values of P∞

cc calculated using (9) for different
stress conditions and number densities required to form a

percolating network of activated fractures. The circles use
the simulation data shown in Fig. 7 while the dashed-dotted
lines were calculated using (12). As shown in the figure,
the injection pressure required to form a percolating net-
work decreases with increasing connectivity of the preexisting
fractures. For well-connected fractures, the injected fluid can
easily find paths with low resistance to propagate through the
rock.

Now, let us discuss how the evolution of the injection
pressure can be predicted using easily measurable quanti-
ties. If the cumulative distribution function of the critical
pressures is linearized, it can be shown that (P∞

cc − Pinj ) =
kPδpc(F∞

c − FcL ). The value of kP depends on the connectivity
of the preexisting fractures and the orientation distribution
of the preexisting fractures. For randomly oriented sparse
fractures, it is equal to the derivative of (9) evaluated at
pc = P∞

cc /δpc. By replacing the system size in (11) and (10)
with the scaling of the stimulated reservoir radius, it can
be easily shown that the injection pressure evolves as Pinj =
σ1 − k f kPδpc(Vf kD/Vinj )1/(νD f ) at initial times when R � ξ0

and changes with the total amount injected as Pinj = P∞
cc −

kH kPδpc(Vf kD/Vinj )1/(νD f ) as the cluster radius exceeds the
value of ξ0. Because the injected fluid propagates away from
the injection well, the injection pressure required to drive the
injected fluid increases as the total injected volume increases.
Moreover, higher stress anisotropy allows lower injection
pressures because the injected fluid percolates through low-
resistance fractures. Interestingly, one can probe the con-
nectivity of the preexisting fractures through analysis of the
transient injection pressure profile. If one plots the injection
pressure as a function of the total injected amount, a critical
injected volume, V c

inj, at which the two scalings intersect can
be identified. The correlation length of the preexisting frac-
tures is of the same order of magnitude as (V c

inj/Vf kD)1/D f . By
solving for V c

inj from the derived scaling of the injection pres-

sure, one can show that V c
inj = 2.19Vf [(σ1 − P∞

cc )/kPδpc]D f ν

where the numerical prefactor is given by (k f − kH )−D f ν/kD.
Thus, one can estimate the value of P∞

cc if statistical informa-
tion about the rock is not known a priori. In fact, one can use
this relation to estimate the number density of the preexisting
fractures if the orientation distribution is known.

Finally, from the scaling of the permeability of a
stimulated reservoir, derived earlier in this section, its
dependence on the injected volume is given by K =
(w3/λ)kikk (Vf kD/Vinj )ε/(νD f ) where w is the average frac-
ture aperture. Similarly, the porosity of the stimulated
reservoir, φS, is given by φS = kiks(Vf kD/Vinj )β/(νD f ). The
proportionality constant ki is equal to k f at initial times when
R � ξ0 and it is equal to kH when the homogeneous regime,
R � ξ0, is developed. The values of kk and ks are independent
of the number density of preexsting fractures but are different
in the fractal and homogeneous regimes. At scales smaller
than ξ0, the preexisting fractures form a fractal network and
the permeability and porosity of stimulated reservoirs are
independent of the number density of fractures. This means
that the performance of the fracturing process for fractal
preexisting fractures is only a function of the total injected
volume of the fracturing fluid and the fractal dimension of the
network.
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V. CONCLUSION

In conclusion, we showed that the sparsity typical of net-
works of activated fractures overcomes stress anisotropy and
leads to the formation of a fractal network of activated frac-
tures with D f = 91/48. The insight that the fracturing process
is in the universality class of random percolation provides a
means to relate the performance of the process to the statistical
properties of the rock. The dependence of the percolation
threshold value on the number density of the preexisting
fractures was derived. We showed how this relation can be
used to estimate the minimum injection pressure required to
successfully stimulate a rock. In general, rocks with higher
connectivity of the preexisting fractures require less energy to
stimulate. A simple criterion to estimate the required injected
volume of fracturing fluid required to fracture a hydrocarbon-
rich region of known size was provided. We showed how the
transport properties of the stimulated rocks evolve with varia-
tions in the volume of injected fluid and the connectivity of the
preexisting fractures. For fractal preexisting fractures, the per-
meability and porosity of the stimulated rock are functions of
the total volume of fluid injected. If the viscous pressure drop
becomes important at large length scales, the derived scaling
of the permeability and porosity, which depend on the fluid
pressure, can be applied locally at length scales above which
the viscous pressure drop becomes important. Consideration
of the effects of the broad length distribution often observed in
natural fractures [29] on the fractal dimension of the network
of activated fractures is an important direction for future
research.
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APPENDIX: ESTIMATION OF THE
PROPORTIONALITY CONSTANTS

In this Appendix, we explain how we estimated the value
of the proportionality constants, kξ , k f , and kH .

The values of k f and kH are calculated by fitting the finite-
size scaling of Fc, given by (11) and (10), in the fractal and ho-
mogeneous regimes, respectively. Using an approximate value
of k−1/ν

ξ , the correlation length of the preexisting fractures
was estimated to be equal to ξ0 = [0.4(n − nc)]−ν . Data that
satisfies the condition that ξ0 is more than ten times L and L
is larger than 110 were used to fit (11). Figure 9 shows the
values of Fc for n − nc � nc used to estimate the value of k f .
Figure 10 shows the calculated values of k f for the different
densities. Since the constant k f is independent of n, an average
value was used, i.e., k f = 0.571.

Similarly, kH was calculated for different densities where
the data collected must satisfy ξ0 � 10L and L � 200 and an
average value was used. Figure 11 shows the values of Fc used

FIG. 9. Values of Fc used to calculate the value of k f . These data
were chosen such that (11) is satisfied, i.e., ξ0 � L. ξ0 ≈ 3000 for
n = 5.643 was a lower boundary for ξ0. The system sizes are in the
range 110 � L � 800. Since k f is independent of n and F∞

c = 1 in
the fractal regime, all the data almost collapse.

to calculate kH and Fig. 12 shows the obtained values kH for
different number densities.

The value of kξ was calculated using two different meth-
ods. In the first method, the data in the region where L(n −
nc)νn � 1 in Fig. 6 were fitted with (13) to extract the value
of k−1/νn

ξ from the slope of the dashed-dotted line that is given

by (k f − kH )k−1/νn
ξ . By now, we know the values of k f and

kH . Thus, the value of kξ was found to be equal to 0.4232.
Figure 13 shows the data used for this purpose along with the
fitting line.

Since the values of F∞
c shown in Fig. 7 along with kH

and kξ were calculated based on the values of Fc in the

FIG. 10. Extracted values for k f from data in the regime where
ξ0 � L. Using these values, k f is estimated to be k f = 0.571 ±
0.0002.
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FIG. 11. The values of Fc as a function of system size for
different number densities such that (10) holds. n is chosen such that
n − nc � nc and L is larger than 200.

homogeneous regime, the comparison between the calculated
values of F∞

c and the predicted values using (12) can only
prove the linear dependence but not the form of the propor-
tionality constant. Thus, one needs to use a different set of data
in order to calculate kξ . We constructed an empirical function
to fit all the data in Fig. 6 including the transition regime. The
function was constructed such that it can fit the data in the
transition regime and has the correct behavior in the fractal
and homogeneous regimes. In the fractal regime, i.e., (n −
nc)L1/νn � 1, finite-size scaling shows that (1 − Fc)L1/νn =
k f while in the homogeneous regime, i.e., (n − nc)L1/νn � 1,
finite-size scaling gives (1 − Fc)L1/νn = k−1/νn

ξ (k f − kH )(n −
nc)L1/νn + kH . The following equation captures the tran-
sition region along with the theoretical behavior in the

FIG. 12. Extracted values for kH from data in the regime where
l � ξ0 � L where l is the length of the preexisting fractures. Using
these values, kH is estimated to be kH = 0.1925 ± 0.01.

FIG. 13. The slope of the fitting line (13) is given by (k f −
kH )k−1/νn

ξ where k f = 0.571 and kH = 0.1925. Therefore, kξ =
0.4232. One should note that the intercept is equal to kH which was
found to be equal to 0.193.

two limits:

(1−Fc)L1/νn

= k−1/νn
ξ (k f −kH )(n−nc)2L2/νn +k f (n−nc)L1/νn +k f k1/νn

ξ

(n−nc)L1/νn +k1/νn
ξ

.

(A1)

By taking the limit of the above function as L → ∞, one
can recover the dependence of F∞

c on the number density
n, i.e., (12). The values of k f and kH were obtained from
previous calculations, i.e., k f = 0.571 and kH = 0.1925 and
kξ was used as a fitting parameter. The empirical function
with kξ = 0.406 was found to give a good fit for the simulated
data in Fig. 14. This value is in good agreement with that,
kξ = 0.4232, found earlier.

FIG. 14. The solid line given by (A1) when fitting to determine kξ .
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