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Diffusive scaling of Rényi entanglement entropy

Tianci Zhou*

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

Andreas W. W. Ludwig
Department of Physics, University of California, Santa Barbara, California 93106, USA

(Received 16 December 2019; accepted 27 May 2020; published 6 July 2020)

Recent studies found that the diffusive transport of conserved quantities in nonintegrable many-body systems
has an imprint on quantum entanglement: while the von Neumann entropy of a state grows linearly in time t
under a global quench, all nth Rényi entropies with n > 1 grow with a diffusive scaling

√
t . To understand this

phenomenon, we introduce an amplitude A(t ), which is the overlap of the time evolution operator U (t ) of the
entire system with the tensor product of the two evolution operators of the subsystems of a spatial bipartition.
As long as |A(t )| � e−√

Dt , which we argue holds true for generic diffusive nonintegrable systems, all nth Rényi
entropies with n > 1 (annealed averaged over initial product states) are bounded from above by

√
t . We prove

the following inequality for the disorder average of the amplitude, |A(t )| � e−√
Dt , in a local spin- 1

2 random
circuit with a U(1) conservation law by mapping to the survival probability of a symmetric exclusion process.
Furthermore, we numerically show that the typical decay behaves asymptotically, for long times, as |A(t )| ∼
e−√

Dt in the same random circuit as well as in a prototypical nonintegrable model with diffusive energy transport
but no disorder.

DOI: 10.1103/PhysRevResearch.2.033020

I. INTRODUCTION

Many-body systems that thermalize often possess a glob-
ally conserved quantity. Typical examples are nonintegrable
systems with a time-independent Hamiltonian where the con-
served quantity is energy. The conserved quantity could also
be spin or charge in systems with time-dependent Hamilto-
nians, such as Floquet systems (subject to a time-periodic
drive), or systems subject to time-dependent noise. These
conserved charges often relax diffusively. Diffusive systems
are those in which time-dependent correlation functions such
as 〈Zx(t )Z0〉, for a conserved charge density Zx at position
x, obey a diffusion equation at coarse grained scales. This
therefore generates a hydrodynamic tail in such a correlation
function that scales as 1√

t
[1,2]. There has been also a lot

of effort trying to understand the fluctuations on top of the
classical diffusion from the point of view of effective field
theory (for a recent review see, e.g., Ref. [3]).

In this paper, we focus on the imprint of diffusive transport
on dynamical quantities that cannot be accessed by local cor-
relation functions. For instance the study of the out-of-time-
ordered correlator in the context of quantum chaos reveals
how the support of an initially local Heisenberg operator O(t )
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grows with time. In a generic system without any conservation
law, the support roughly speaking grows ballistically with the
“butterfly velocity” vB [4,5]. In contrast, in the presence of a
conserved quantity, the Heisenberg operator O(t ) was found
to contain a diffusive core of the conserved quantity on top of

H

HL HR

(a)

-20

-16

-12

-8

-4

0

0 20 40 60 80 0 40 80 120t

ln |A(t)|2

”Mixed” Ising
Floquet Ising

−2.26t0.502

t

ln |A(t)|2

Z conserved
w/o conservation

−1.88t0.517

(b) (c)

FIG. 1. Numerical evidence for the scaling of A(t ) proposed in
Eq. (2). (a) The spatial bipartition of the total system. H is the Hamil-
tonian of the whole system; HL and HR are the Hamiltonians for the
left and right semi-infinite parts. (b) ln |A(t )|2 decreases, respectively,
as −√

t and −t for a “mixed” Ising Hamiltonian evolution (i.e.,
with both transverse and longitudinal fields) and its Floquet version.
System size L = 22. (c) The random average (100 samples) ln |A(t )|2
decreases as −√

t and −t in random circuits with and without a U(1)
conserved charge, respectively. System size L = 26.
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the ballistic components [6,7], making the spreading slower.
See also Ref. [8] for open systems.

Perhaps more striking is the scaling of quantum entan-
glement from a quenched state. A few years ago, Ref. [9]
concluded that for a Hamiltonian evolution (i.e., where energy
is conserved) the entanglement spreads ballistically despite
the energy diffusion. More precisely, this work provided
numerical evidence for a linear growth in time of the von
Neumann entropy SA(t ) = −tr[ρA(t ) ln ρA(t )] of the reduced
density matrix ρA(t ) of a subsystem A, time evolved from a
quenched initial state. Before this question was investigated in
detail, it was commonly believed that the Rényi entanglement
entropies Sn(t ) = −1

n−1 ln trρn
A(t ) also grow linearly in time.

Evidence that may have appeared to support this claim came
from systems without any conserved quantities, e.g., quantum
quenches in random unitary circuits [5,10–14] and exactly
solvable kicked Ising models at self-dual points [15] which
indeed exhibit this behavior. However, fairly recent work [16]
argued that rather different behavior occurs for the Rényi
entanglement entropies with n > 1 of a Hamiltonian evolution
like Ref. [9], i.e., of a time evolution possessing a conservation
law (here the energy). Despite an initial linear growth, this
work found that Sn>1(t ) grows as

√
t at long times.

This scaling was attributed to the “slow decay” of the
largest Schmidt eigenvalue of the time evolved reduced den-
sity matrix ρA(t ), which was numerically shown to decay
at long times as e−√

Dt [16]. This largest eigenvalue will
dominate in Sn>1 as all other Schmidt eigenvalues will decay
exponentially in time, i.e., much faster. On the other hand, in
the von Neumann entropy the logarithm of the reduced density
matrix is averaged together with the other faster decaying
eigenvalues, thus leading to a loss of the diffusive scaling
form. This fact was also utilized in Ref. [17] to obtain a
slightly weaker bound, where it was shown that Sn>1(t ) �
O(

√
t ln t ) with probability 1 − ε(t ), where ε(t ) decays at

least as a power law in t .
In the present paper, we view the problem from the op-

erator perspective. In particular, cutting the one-dimensional
(1D) diffusive system into disconnected left and right parts,
we introduce as a key object the amplitude A(t ) defined as

A(t ) = tr[U (t )U †
L (t )U †

R (t )]/tr(I) (1)

and propose that it behaves as1

A(t ) ∝ e−√
Dt , (2)

for sufficiently long times2 t . Here U (t ) denotes the evolution
operator for the whole 1D system, and UL(t ) and UR(t )
denote the evolution operators of the disconnected left and
right subsystems, respectively [the latter two being separated
by cutting a single bond connecting them—see Fig. 1(a)].
The division of the trace by the Hilbert-space dimension
normalizes the amplitude A(t ) to be 1 at t = 0, and implies

1Strictly speaking, A(t ) should be asymptotically equal to
f (t ) e−√

Dt , where f (t ) is a function that is bounded from below and
above 0 < c1 < f (t ) < c2.

2I.e., for times t larger than the local thermalization time. In the
numerical results of Fig. 1, this time scale is of order unity.

|A(t )| � 1 at any time t . In a system with time-independent
Hamiltonian H for the total system, we have U (t ) = e−iHt and
UL/R(t ) = exp(−iHL/Rt ), where HL and HR are the Hamilto-
nians restricted to the left and right subsystems.

The amplitude A(t ) measures to what extent the unitary
operator U (t ) for the whole system can be approximated by
the independent evolutions in the subsystem (left) and its
complement (right). Our proposal is that at least in generic
nonintegrable (chaotic) many-body systems the decay of am-
plitude A(t ) is controlled by the slowest mode of transport: In
such a system with a conservation law, the amplitude decays
as e−√

Dt as displayed in Eq. (2), in contrast to the case without
conservation laws where we expect the amplitude A(t ) to
decay exponentially in time.

The diffusive scaling of the nth Rényi entropy for n > 1 is a
direct consequence of the asymptotics of A(t ). In fact, Eq. (2)
implies that the operator Rényi entropy of the time evolution
operator U (t ), upon left-right bipartioning, is bounded from
above by − ln |A(t )| ∼ √

t (see Sec. II). A weaker claim can
be made for time evolved states as follows: We define the
annealed averaged entropy of the time evolved state |ψ (t )〉
to be S(a)

n>1[|ψ (t )〉] = − 1
n−1 ln[(e−(n−1)Sn )]av, where Sn on

the right-hand side denotes the Rényi entropy of the state
|ψ (t )〉 evolved from a random initial product state. We take
the average [...]av over those initial product states inside the
logarithm. We will show below that Eq. (2) implies that S(a)

n>1

is also bounded from above by
√

t .
We note that the (second) Rényi entanglement entropy

under time evolution from a fixed (“quenched”) state has been
experimentally measured by various means [18–21], albeit
the number of coherent degrees of freedom is still somewhat
limited. Making use of the quantity A(t ) that we propose in
the present paper [Eq. (1) above] can greatly reduce effects of
finite system size, and is thus more promising as compared
to using the n > 1 Rényi entropies themselves which were
considered in the current experiments.

In the following, we present substantial evidence for the
proposal in Eq. (2) and the fact that the bound in this equation
is saturated. Namely, we first study A(t ) in a random circuit
model with a U(1) conserved charge, which can be regarded
as a minimal model for a nonintegrable diffusive system. In
contrast to previous works on such random circuits [6,7,16],
we are able to dispense of an expansion in terms of a large lo-
cal Hilbert-space dimension, which is known to generate bal-
listic transport that overshadows the diffusive mode of inter-
est. In particular, we analytically prove that the circuit average
of the amplitude |A(t )|2 decays slower than e−√

Dt . We also
show numerically that in the random circuit the typical decay
of the amplitude, i.e., the decay of eln |A(t )|2 , scales as e−√

Dt .
Finally, we provide numerical evidence that Eq. (2) holds in a
nonrandom chaotic system with a conserved quantity.

II. IMPLICATIONS FOR QUANTUM ENTANGLEMENT

It turns out that the scaling proposed in Eq. (2) constrains
the Rényi operator entanglement entropies of the unitary time
evolution operator U (t ), as well as the entanglement entropy
of a time evolved state. Operator entanglement is a natural
concept when we view the operator as a state in the Hilbert
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space of operators. A familiar example is the thermal field
double state 1

Z

∑
i e−βH/2|i〉|i〉 constructed from the thermal

density matrix ρth = 1
Z

∑
i e−βH |i〉〈i|.

In general, a nonzero operator O = ∑
i j Oi j |i〉〈 j|, written

in an orthonormal basis {|i〉} of the Hilbert space H it acts
on, is mapped to a normalized state 1√

tr(OO† )

∑
i j Oi j |i〉| j〉

in the tensor product Hilbert space H ⊗ H. A bipartitioning
H = HL ⊗ HR then leads naturally to a bipartitioning of
this tensor product Hilbert space as H ⊗ H = (HL ⊗ HL ) ⊗
(HR ⊗ HR). In complete analogy with a quantum state in
a Hilbert space of states H, one can define the reduced
density matrix of an operator, when the latter is viewed as
an element of the vector space H ⊗ H of operators; this is
called the reduced operator density matrix of the operator
O. The spectrum of the latter consists, as in the case of a
state, of the set of entanglement eigenvalues {λop

i }, from which
the operator Rényi entropies can be computed in the familiar
fashion

Sop
n [O] = − 1

n − 1
ln

[∑
i

(
λ

op
i

)n

]
. (3)

Operator entanglement has been studied for various purposes
ranging from efficiently simulating Heisenberg operators to
probing the onset of quantum chaos [22–30].

We now apply this to the time evolution operator, i.e.,
O → U (t ), so that the eigenvalues become time dependent,
λ

op
i → λ

op
i (t ). It turns out that the largest entanglement eigen-

value leads to an upper bound for the absolute value of our
amplitude, |A(t )| (see Appendix A):

|A(t )| � max
i

{√
λ

op
i (t )

}
. (4)

From this we see that if we assume the scaling in Eq. (2)
we obtain Sop

∞[U (t )] = − ln[maxi{λop
i (t )}] � 2

√
Dt . From the

following well-known inequalities satisfied by the Rényi en-
tropies when n > 1, S∞ � Sn � n

n−1 S∞, we then obtain an
upper bound for the operator Rényi entropies:

Sop
n [U (t )] � 2n

n − 1

√
Dt, when n > 1. (5)

This is notable compared to the linear growth of the von
Neumann operator entropy Sop

1 [U (t )], which was numerically
observed in Ref. [30] for systems with an (energy) conserva-
tion law.3

To put this into state language, we consider the Rényi
entropy of a time evolved state |ψ (t )〉 where the initial state is
taken to be a product state

|ψ (0)〉 = ⊗i∈sites|ψi〉 (6)

of random on-site states |ψi〉 = cos θi
2 |↑〉 + sin θi

2 eiφi |↓〉 statis-
tically independent at each site with a uniform measure over
solid angles. Since then the random average at each site yields

3The result in Ref. [30] can thus be viewed as an analog for
operator entanglement growth of the observation made in Ref. [9]
for entanglement growth of states.

[|ψi〉〈ψi|]av = 1
2Ii, we have

[〈ψ (0)|U †
L (t )U †

R (t )U (t )|ψ (0)〉]av = A(t ). (7)

Let the entanglement eigenvalues of the state |ψ (t )〉 for
a half cut [as in Fig. 1(a)] be {λψ

i (t )}. Then by a reason-
ing analogous to that in Eq. (4) we show at the end of
Appendix A that (before averaging)

|〈ψ (0)|U †
L (t )U †

R (t )U (t )|ψ (0)〉| �
√

λ
ψ
max(t ). (8)

Hence, upon averaging over initial states, we obtain in
combination4 with Eq. (7)

|A(t )| � [√
λ

ψ
max(t )

]
av �

√[
λ

ψ
max(t )

]
av. (9)

In fact, we can use the amplitude A(t ) to obtain a lower
bound for the annealed averaged Rényi entropies of a time
evolved state |ψ (t )〉, defined above: On general grounds we
have for n > 1

[e−(n−1)Sn ]av =
{∑

i

[
λ

ψ
i (t )

]n

}
av

�
({∑

i

[
λ

ψ
i (t )

]}
av

)n

�
[
λψ

max(t )
]n

av. (10)

The last inequality follows since all λ
ψ
i � 0. Then, using

Eq. (9), Eq. (2) implies the following upper bound for the
annealed averaged nth Rényi entropies with n > 1:

S(a)
n (t ) = −1

n − 1
ln

({∑
i

[
λ

ψ
i (t )

]n

}
av

)
� 2n

n − 1

√
Dt . (11)

The singular behavior of the upper bound at n = 1 is indica-
tive of the fact that we cannot naïvely take the n → 1 limit
to obtain the von Neumann entropy at large times. The same
applies to the operator entanglement in Eq. (5). This suggests
that for diffusive nonintegrable systems the large t limit and
the replica limit n → 1 do not commute.

III. RANDOM UNITARY CIRCUIT WITH
CONSERVATION LAW

In this section we study analytically a random unitary
circuit with a two-dimensional (“single qubit” or “spin-1/2”)
onsite Hilbert space. The circuit has a brick wall structure to
model local interactions (see Fig. 2). Such circuits have been
used to investigate entanglement [12,13,31] as well as out-of-
time-ordered correlation functions [4] in chaotic many-body
systems with [6,7,16] and without [5] conserved charges. The
variant that we consider here conserves the total σ z (Pauli-
matrix) spin, and each gate represents a 4 × 4 block-diagonal
unitary matrix acting on two nearest-neighbor qubits (Fig. 2,
right panel). We take each block to be randomly sampled
from the Haar ensemble. Specifically, the two 1 × 1 blocks

4For a complex random variable z, |[z]av| �
√

[|z|2]av �
[
√

|z|2]av = [|z|]av.
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4×4

FIG. 2. Random unitary circuit of a spin- 1
2 chain with a σ z-

conservation law. The circuit has brick wall structure so that each
gate acts on a nearest-neighbor pair of qubits. Each gate is a block-
diagonal matrix that conserves the total σ z spin. Each block is taken
to be an independent random matrix from the Haar ensemble.

for nearest-neighbor qubit configurations ↑↑ and ↓↓ are two
random phases.

The previous analytic analysis in Refs. [6,7,16] uses a
model with a 2 × q-dimensional onsite Hilbert space, in
which the degrees of freedom of the q-dimensional factor
(“spectators”) do not carry information about the conserved
quantity, and there is a 4q2 × 4q2 unitary matrix for each
nearest-neighbor two-site gate. A limit of infinite onsite
Hilbert-space dimension q → ∞ was then employed in those
works to enable an analytic treatment. However, to see the
claimed e−√

Dt decay of A(t ) in this kind of system one
needs to remain in the q = 1 limit. This is because the
“internal”(“spectator”) Hilbert space of dimension q at each
site creates ballistic modes when the system scrambles, which
give rise to a linear growth term in Sn>1(t ) even at late time,
while the diffusion physics arising from the conservation law
gives rise only to a subleading

√
t correction (see Ref. [16]).

This behavior would only imply a bound A(t ) � e−vt for the
quantity A(t ) at long times in the large-q limit, where v is
proportional to the rate of growth of the corresponding Rényi
entropy.

Now we proceed with the random circuit implementation
of A(t ) for q = 1 (the case we consider here), shown in Fig. 3.

= (〈 | + 〈 |)
= 1

2 (| 〉 + | 〉)

center gate
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

eiφi

eiϕi

↑↓, ↓↑

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

FIG. 3. The amplitude A(t ) shown in terms of circuit diagrams.
The red gates (front layer) represent the time evolution operator
U (t ) for the whole system; the blue gates (back layer) represent
the product of the time evolution operators of the left and right half
systems, U †

L (t )U †
R (t ), where the links in the center between the left

and right parts have been removed. The trace operation is understood
as bell pair states at both the bottom and the top of the circuit. The
unpaired (red) center gate, which has no (blue) partner in the back
layer, is a block-diagonal random matrix, where the two 1 × 1 blocks
are two random phases.

Note that Fig. 3 depicts a two-layer circuit: The circuit in the
front layer, denoted by red two-site gates, represents the full
evolution U (t ). The circuit in the back layer, denoted by blue
two-site gates, is identical to the one in the front layer, except
that the center two-site gate is missing. The circuit in the back
layer (blue) thus represents an independent evolution of the
right- and the left-half subsystems, and is described by the
evolution operator U †

L (t )U †
R (t ). The front (red) and back (blue)

layers of the random circuit in the figure thus represent the two
ingredients entering into the amplitude A(t ) of Eq. (1).

In the following, we will prove for the so-defined circuit
(with q = 1, i.e., with two-dimensional on-site Hilbert space)
that the circuit average of the amplitude A(t ) satisfies the
lower bound:

|A(t )| � e−√
Dt . (12)

The amplitude A(t ), Eq. (1), starts off at A(t = 0) = 1,
but will in general be a complex number for t > 0. In fact,
the random evolution above will generate a random phase
in A(t ) and so its circuit average vanishes, A(t > 0) = 0.
The estimation of its magnitude calls for the evaluation of
the circuit average |A|2. This calculation involves a random
average over four layers of the circuit rather than over just
the two layers shown in Fig. 3. The random average over
four layers produces a many-body problem that contains even
more degrees of freedom per site than the original spin- 1

2
chain. Making things worse, it has a sign problem and lacks a
stochastic interpretation (see Ref. [32], and also the discussion
in Ref. [8]). It thus remains practically intractable so far.

We circumvent this problem by isolating the phase and
magnitude of A(t ). We focus first on the two-site unitary cen-
ter gates: There are two random phases in a two-site unitary
center gate of the front layer (red) of the circuit, namely, one
in each of the two 1 × 1 blocks. [As mentioned, there is no
corresponding two-site unitary center gate in the back layer
(blue) circuit in Fig. 3.] We denote these phases by eiφi and
eiϕi for the ith gate among the t

2 (red) center two-site gates of
the “front” circuit (i.e., i = 1, 2, . . . , t/2, where t denotes the
discrete time step). We first obtain an estimate of the quantity
A(t )|φi=ϕi=0, in which we have fixed the two phases in each
of its t/2 front (red) center two-site gates to unity, while the
average is performed over the remaining random parameters
of the circuit. These parameters include the 2 × 2 block in
each of the t/2 front (red) center two-site gates, as well as the
matrix elements of all the other front and back two-site unitary
gates.

In the two-layer unitary structure, A(t ) can be com-
pactly written as a Loschmidt echo in the form A(t ) =
〈ψ f |U2-layer(t )|ψi〉: Here the operator U2-layer(t ) represents the
two-layer (front and back) unitary evolution depicted in Fig. 3,
and is equal to U (t ) ⊗ [U ∗

L (t )U ∗
R (t )]. Due to their special

importance after the random circuit average (see below), we
introduce the following notation for single-site states of the
front and back layers:

|◦〉 ≡ |↑〉front ⊗ |↑〉back , |•〉 ≡ |↓〉front ⊗ |↓〉back. (13)

We take the initial state |ψi〉 to be a tensor product of such
states over sites

|ψi〉 = ⊗
sites

1
2 (|◦〉 + |•〉), (14)

033020-4
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where the factor of 1
2 will account for the normalization of the

amplitude A(t ). The final state |ψ f 〉 is taken to be 2L|ψi〉. The
initial and final states represent the lines in Fig. 3 that connect
at each site the front and back layers at the top and bottom
boundaries. In the matrix element A(t ) = 〈ψ f |U2-layer(t )|ψi〉,
they therefore implement the trace in the definition, Eq. (1),
of the amplitude A(t ).

The random circuit average of U2-layer(t ) has simple effects
when acting on states |◦〉 and |•〉 [defined in Eq. (13)] at
neighboring sites. Away from the center, where the two-site
front (red) and back (blue) gates defined above are “paired”
with each other, one easily finds (see Appendix B) that upon
averaging

| ◦ ◦〉 → | ◦ ◦〉, | ◦ •〉 → 1
2 (| ◦ •〉 + | • ◦〉),

| • •〉 → | • •〉, | • ◦〉 → 1
2 (| ◦ •〉 + | • ◦〉).

(15)

In contrast, the random average of the center two-site gates,
while keeping | ◦ ◦〉 and | • •〉 invariant (since we set their
random phases to be 1), completely decimates the remaining
two states at the center two sites:

| ◦ •〉 → 0 | • ◦〉 → 0. (16)

We therefore obtain a stochastic process [Fig. 4(a)] for
which A(t )|φi=ϕi=0 is the survival probability: The initial state
|ψi〉 is an ensemble (equal weight sum) of all the configura-
tions of on-site states ◦ and • appearing with equal probability.
On sites away from the center, the transition probability in
Eqs. (15) is that of a symmetric simple exclusion process
(SSEP) of ◦ and • particles [33–36]. They perform a random
walk subject to a hard-core constraint. One can check that the
initial state |ψi〉, Eq. (14), is invariant under the SSEP rule
Eqs. (15) for each pair of sites not located at the center. This
is a consequence of the unitarity of the gates: Contracting the
two-site gates u and u∗ between the front and back layers
of the circuit as shown at the bottom of Fig. 3 amounts to
the matrix product uu† = I , which reproduces the initial state.
The center two-site gate breaks this balance of ◦ and • “parti-
cles” implied by the SSEP, by removing the states that contain
configurations | ◦ •〉 or | • ◦〉 at the center every two steps.
The overlap of the initial two-layer state in Eq. (14), time

1
2 ×

= 0 for or

(a)

l

(b)

FIG. 4. The random average A(t )|φi=ϕi=0. (a) Spin states are
represented in the ◦ and • notation. The figure shows the average
effects of applying a random gate. Away from the center, the •
particle has 1

2 probability of moving to a neighboring ◦ state. It will
stay if the neighboring site is also the • state (hard-core constraint).
Any configuration with •◦ or ◦• at the center will be killed in one
step. (b) A domain of ◦ with size l symmetric around the center.

evolved with the two-layer time evolution operator U2−layer(t ),
with |ψ f 〉 thus counts the survival probability of the particle
configurations in the state |ψi〉.

Among all, those configurations with a large domain of
contiguous ◦ or • particles spanning the center are more likely
to survive in the end. In particular, consider an ensemble of
configurations containing domains of size l of contiguous
states ◦ arranged symmetrically around the center, while
having equal weight for finding particles ◦ and • outside
[for example, see the configuration in Fig. 4(b)]. Due to the
diffusion induced by the symmetric exclusion process [33],
it takes of the order of l2 time steps for a • particle to reach
the center, before the configuration is decimated. To avoid this
fate within t steps, we need l2 � t . The only exception is the
case where l = 0, and we may consider similarly a domain of
• particles, which works analogously. Combining both cases,
the survival probability scales as

A(t )|φi=ϕi=0 ∼
∑
l�√

t

2−l ∼ e−√
Dt . (17)

Next we relax the constraint of the random phases, and
compute the average 〈|A(t )|φi,ϕi |〉φi,ϕi : The procedure here is
to first take the random average given a fixed set of phases
φi, ϕi (not necessarily zero), then to take the absolute value,
and finally to average over the choices of phases φi, ϕi. The
estimation of |A(t )|φi,ϕi | is similar to that of A(t )|φi=ϕi=0. The
only change is the effect of the center gate, which leads to
multiplication with an additional phase at each time step as
follows:

| ◦ ◦〉 → eiφi | ◦ ◦〉,
| • •〉 → eiϕi | • •〉. (18)

(Recall that i = 1, 2, . . . , t/2 denotes time steps.)
Again, we consider the same ensemble of size-l domains

of particles ◦ arranged symmetrically around the center, con-
sidered above. Before a • particle reaches the center, the
dynamics is almost the same as discussed above, but now
accompanied by a common phase ei

∑
φi accumulated for each

configuration surviving at time t . After a • particle reaches the
center, the configuration will be decimated. Similarly, if we
start with a domain of • particles, the accumulated common
phase is ei

∑
ϕi . Therefore, the dominant contribution to |A(t )|

will be the survival probability of each of the two ensembles
times their common phases:

∣∣A(t )|φi,ϕi

∣∣ = ∣∣ei
∑

i φi e−√
Dt + ei

∑
i ϕi e−√

Dt
∣∣

∼ e−√
Dt

∣∣∣∣∣cos

[∑
i

(φi − ϕi )/2

]∣∣∣∣∣. (19)

Thus, the average over the random phases, performed af-
ter taking the absolute value, will not affect the t scaling,
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yielding 〈∣∣A(t )|φi,ϕi

∣∣〉
φi,ϕi

∼ e−√
Dt . (20)

Here the overbar (...) inside denotes the random circuit av-
erage (with fixed φi, ϕi), and the bracket outside denotes the
average over the random phases φi, ϕi.

Finally, in view of the inequalities 〈|A(t )|φi,ϕi |〉φi,ϕi � |A| �√
|A|2, we have √

|A|2 � |A| � e−√
Dt . (21)

Let us now discuss the role played by the random circuit
average. A single site on two layers has Hilbert-space dimen-
sion 4. The random circuit average allows us to work in the
smaller effective local Hilbert space of dimension 2, which is
spanned by the |•〉 and |◦〉 on-site basis defined in Eq. (13).
This basis produces classical configurations on which the
dynamics of A(t ) has a simple stochastic interpretation. In-
stead of the disorder average, consider now a single disorder
realization of the random circuit: the state U2-layer|ψi〉 will
contain a “classical component” completely expressed in the
|•〉 and |◦〉 basis and a “noisy component” which allows for
onsite states of the form |↑〉front ⊗ |↓〉back or |↓〉front ⊗ |↑〉back

to appear. Recall that those were excluded from the onsite
states ◦ and • defined in Eq. (13). The overlap of the noisy
component with the final state |ψ f 〉 vanishes, and therefore
does not contribute to the amplitude A(t ) in the final time
step. But at intermediate time steps the noisy components
appear to act as a random environment that produces noise
in the hopping amplitudes of the ◦ and • particles. Since the
system is still reflection symmetric on average, we expect
that in the long-time limit the ◦ and • particles should have
no preferred hopping direction and they will thus generically
still diffuse in the hydrodynamic limit. Therefore we expect
to recover the e−√

Dt scaling for the amplitude A(t ) also in a
typical realization of the circuit. We also conjecture that such a
similar mechanism works in generic (nonintegrable) diffusive
systems without disorder.

IV. NUMERICAL RESULTS

In this section we check the scaling proposed in Eq. (2)
numerically for systems with disorder, as well as for chaotic
systems without disorder.

At the end of Sec. III, we argued that diffusive scaling
generically holds for a particular realization of the random
circuit (with conserved charge). Here we provide numerical
evidence for this statement as shown in Fig. 1(c). The figure
shows the circuit average ln |A|2 as a function of time for
system size L = 26. The fitted exponent is very close to 1

2 .
This implies that the typical value of |A|2 in the random
circuit scales as e−√

Dt for t > t0, where t0 is a system size
independent constant of order unity. For comparison, we
computed the same quantity for a random circuit without any
conservation law, i.e., taking a full 4 × 4 random unitary for
each gate. The slowest mode then becomes ballistic and we
obtain a much faster exponential decay in time [also shown in
Fig. 1(c)].

Next we examine a clean chaotic system—the “mixed field
Ising” Hamiltonian (with both transverse and longitudinal
fields) used in Ref. [9]:

H =
L∑

i=1

hσ z
i +

L∑
i=1

gσ x
i + J

L−1∑
i=1

σ z
i σ z

i+1 − Jσ 1
z − Jσ L

z . (22)

The conserved quantity is now energy. We choose the param-
eters J = 1, g = 0.9045, h = 0.8090, with which the spectral
correlations of the Hamiltonian were confirmed to be those
of a corresponding random matrix ensemble [9]. As a result,
this system is often regarded as a prototypical example of a
diffusive nonintegrable model. The additional boundary fields
at site 1 and L are introduced to reduce finite-size effects.
We compute |A(t )| where HL and HR take the same form as
Eq. (22) but restricted, respectively, to the decoupled right
and left subsystems of half the length. Figure 1(b) shows the
quantity ln |A(t )|2 that is seen to decrease as −√

t , which
agrees with our prediction.

For comparison, we also compute ln |A(t )|2 for the Floquet
version of the model in which energy conservation is absent.
The Floquet operator is

U = exp

[
− iτ

( L∑
i=1

hσ z
i + J

L−1∑
i=1

σ z
i σ z

i+1

)]

× exp

[
− iτ

L∑
i=1

gσ x
i

]
. (23)

We take τ = 0.8 and obtain an almost linear decrease for
ln |A(t )|2 as shown in Fig. 1(b). This implies that A(t ) decays
exponentially in time when the only conservation law (energy)
is removed.

V. DISCUSSION

We believe that the diffusive scaling of the Rényi entan-
glement entropy [16,17] derives mainly from the unitary time
evolution operator of the system. This perspective leads us to
propose the amplitude A(t ) in Eq. (1), which is the overlap
between the unitary evolution operator of the entire system
and that of the tensor product of the two decoupled right-
and left-half systems. In a diffusive nonintegrable system, we
expect the amplitude A(t ) to decay as e−√

Dt [Eq. (2)], which
directly implies an upper bound on the operator Rényi entropy
Sop

n>1[U (t )] that scales as
√

t , as well as an upper bound on
the annealed averaged Rényi entropy S(a)

n>1(t ) for states. For
a spin- 1

2 random local unitary circuit model with a U(1)
conservation law, we have been able to show analytically the
bound |A2| � e−√

Dt : In order to arrive at this result, we have
mapped the dynamics of the disorder average to a diffusion
process of ◦ and • particles with a decimation process in the
center of the system. This allowed us to show that the circuit
average |A|2 can be bounded from below by the corresponding
survival probability that scales as e−√

Dt . We have argued
that the picture of • and ◦ particles undergoing a classical
diffusion process will also hold for a typical realization of
the U (1)-symmetric circuit without random averaging, and
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likely also for generic diffusive nonintegrable models with or
without disorder.

We can also discuss the amplitude A(t ) in a quantum
field theory setting. One possible approach is to analytically
continue this quantity to imaginary time, and compute

tr(e−σH e−τ (HL+HR ) ) (24)

where σ = β

2 + it , τ = β

2 − it . In a path-integral formulation,
one can think of this as a partition function on a cylinder5 with
a slit of length τ at the center. For a conformal field theory in
(1+1) dimensions, this represents the two-point function of
the twist field, which reads

A(β, τ ) =
(

π

β

1

sin πτ
β

)4h

, (25)

where h is the conformal weight (dimension) of the twist field.
Going back to real time, we see that this amplitude decays
as A(t ) ∝ e−4h π

β
t . With conformal symmetry, space and time

are on an equal footing, which implies ballistic transport but
excludes diffusive transport, the dynamical exponent of which
is z = 2. Technically, conformal symmetry also completely
fixes the correlation function of the twist field evaluated in
Eq. (25) which, as shown above, leads to the exponential
decay of the amplitude A(t ). This is consistent with the
fact that in a global quench scenario a (1+1)-dimensional
conformal field theory always has a linear growth of all the
Rényi entropies. It would be interesting to understand the
behavior of the amplitude A(t ), introduced in this paper, in
other interacting quantum field theories, especially the ones
that exhibit diffusive transport.

For completeness, we briefly discuss nth Rényi entropies
Sn with 0 < n < 1. The Rényi entropies S0<n<1(t ) are gener-
ally not affected by the presence of a diffusive mode since they
give higher weights to the smaller entanglement eigenvalues.
The inequality S1(t ) � S0<n<1(t ) and the linear growth of the
von Neumann entropy requires a not slower than linear growth
of S0<n<1(t ). On the other hand, from the Lieb-Robinson
bound [37] for a Hamiltonian with local interactions, we
expect that quantum information propagates ballistically with
a velocity no faster than the Lieb-Robinson velocity. Hence
S0<n<1(t ) should still grow linearly.

Finally, we compare our result for chaotic systems with
possible diffusive entanglement scaling in integrable models.
It is well known that the von Neumann as well as Rényi entan-
glement entropies will both grow linearly when time evolved
under a global quench by an integrable Hamiltonian (for a
recent review, see, e.g., Ref. [38]). The linear growth behavior
is ascribed to pairs of ballistically propagating quasiparticles,
that could be interacting with each other [39]. We note that
it is possible to design diffusive dynamics for quasiparticles:
To our knowledge, one could at least design a CFT subject
to a random collection of conformal slits in space-time that
reflect the quasiparticle stochastically (the stochastic CFT)
[40]. Then all the Rényi entropies with Rényi index n > 0
will asymptotically grow as

√
t . The von Neumann entropy

5A generalized “cylinder” when the spatial dimension is larger
than 1.

and the Rényi entropies S0<n<1 make no exception because
entanglement is “transported” by the quasiparticles and is thus
completely determined by them. This is in sharp contrast to
the case of chaotic models studied in this paper.
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APPENDIX A: BOUND FOR THE OPERATOR
ENTANGLEMENT

In this section, we prove the inequality in Eq. (4) stating
that |A(t )| is less than or equal to the square root of the
maximal eigenvalue of the reduced operator density matrix
of the time evolution operator U (t ).

We will use the von Neumann inequality [41] which states
the following: Let X and Y be complex n × n complex matri-
ces, the singular values of which,6 in nonincreasing order, are
denoted by λX

1 � λX
2 � ... � λX

n � 0 and λY
1 � λY

2 � ... �
λY

n � 0, respectively.
Then the von Neumann inequality is satisfied:

|tr(XY )| �
∑

i

λX
i λY

i . (A1)

We will take X and Y to be the matrices representing the
operators U (t ) and UL(t )UR(t ), respectively, in an orthonor-
mal basis of operators, {V L

i } and{V R
i }, of the left and the right

subsystem. We expand

U (t ) =
∑

i j

Xi jV
L

i V R
j , (A2)

U †
L (t )U †

R (t ) =
∑

i j

Yi jV
L

i V R
j . (A3)

Then, according to the way we construct the operator reduced
density matrix reviewed in Sec. II, we have(

λX
i

)2 = λ
op
i (t ). (A4)

But since U †
L (t )U †

R (t ) is a single tensor product of operators
on the left and right subsystems the rank of Y must be 1 and

λY
1 = 1, λY

i>1 = 0. (A5)

6I.e., the square roots of the eigenvalues of the non-negative Her-
mitian matrices XX † and YY †, respectively.
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Therefore, according to Eq. (A1), we have

|A(t )| = |tr(XY )| � λX
1 =

√
λ

op
max(t ). (A6)

The proof for Eq. (8) is similar. Now we take

X = U (t )|ψ (0)〉〈ψ (0)|U †(t ),

Y = UL(t )UR(t )|ψ (0)〉〈ψ (0)|U †
L (t )U †

R (t )
(A7)

and then obtain

|tr(XY )| = |〈ψ (0)|U †
L U †

RU |ψ (0)〉|2. (A8)

Since |ψ (0)〉 is a product state, the operator Y defined
above can be decomposed as a single tensor product of
operators acting on the left and right subsystems. Hence

λY
1 = 1, λY

i>1 = 0. (A9)

On the other hand, given the Schmidt decomposition of the
state

U (t )|ψ (0)〉 =
∑

α

√
λ

ψ
α |α〉L|α〉R (A10)

the Schmidt eigenvalues of the operator X are the products√
λ

ψ
α

√
λ

ψ

β .
Therefore, by Eq. (A1), we have

|tr(XY )| � λX
1 = maxα,β

√
λ

ψ
α λ

ψ

β := λψ
max. (A11)

Combining with Eq. (A8), we obtain the inequality in Eq. (8).

APPENDIX B: AVERAGES IN THE RANDOM CIRCUIT
WITH A CONSERVED CHARGE

Moments of the matrix elements of the Haar random matrix
can be computed analytically [42,43]. In this paper we only
need the second moment. For d × d unitary matrix U drawn
from the Haar ensemble, we have

Ui1 j1U
∗
i2 j2

= 1

d
δi1i2δ j1 j2 . (B1)

In the text, we use a block-diagonal U(1) conserved matrix
as the building block of the circuit, where each block is an
independent Haar random matrix. Consequently, the second
moment is only nonzero when the average is performed within
the same block. Because of different block sizes, we have

Ui1 j1U
∗
i2 j2

= δi1i2δ j1 j2

{
1 i1 = j1 = ↑↑ or ↓↓
1
2 i1, j1 ∈ {↑↓,↓↑}

. (B2)

The tensor δi1i2 in the result indicates that the gate will only
produce |◦〉 and |•〉 states. We then translate Eq. (B2) to the
symmetric simple exclusion process in Eq. (15).

For the unpaired center gate, we have

Ui1 j1 = 0, (B3)

which produces the decimation in Eq. (16).
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