
PHYSICAL REVIEW RESEARCH 2, 033013 (2020)

Exceeding the Landau speed limit with topological Bogoliubov Fermi surfaces
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A common property of topological systems is the appearance of topologically protected zero-energy excita-
tions. In a superconductor or superfluid, such states set the critical velocity of dissipationless flow vcL, proposed
by Landau, to zero. We check experimentally whether stable superflow is nevertheless possible in the polar phase
of p-wave superfluid 3He, which features a Dirac node line in the energy spectrum of Bogoliubov quasiparticles.
The fluid is driven by rotation of the whole cryostat, and superflow breakdown is seen as the appearance of
single- or half-quantum vortices. Vortices are detected using the relaxation rate of a Bose-Einstein condensate
of magnons, created within the fluid. The superflow in the polar phase is found to be stable up to a finite critical
velocity vc ≈ 0.2 cm/s, despite the zero value of the Landau critical velocity. We suggest that the stability of
the superflow above vcL but below vc is provided by the accumulation of the flow-induced quasiparticles into
pockets in the momentum space, bounded by Bogoliubov Fermi surfaces. In the polar phase, this surface has
nontrivial topology which includes two pseudo-Weyl points. Vortices forming above the critical velocity are
strongly pinned in the confining matrix, used to stabilize the polar phase, and hence stable macroscopic superflow
can be maintained even when the external drive is brought to zero.

DOI: 10.1103/PhysRevResearch.2.033013

I. INTRODUCTION

The stability of superflow in superfluids and superconduc-
tors is supported by both topology and the Landau criterion.
Via quantization of circulation, the topological stability pro-
tects gradual decay of flow around vortices and in a ring
geometry. The Landau criterion protects the superflow against
decay via creation of quasiparticles for velocities below the
Landau critical velocity vcL = min[E (p)/p], where E (p) is
the energy spectrum of quasiparticles with momentum p. In
Fermi superfluids and superconductors, vcL ≈ �/pF, where �

is the gap in the energy spectrum of Bogoliubov quasiparticles
and pF is the Fermi momentum. In topological systems,
appearance of subgap (in particular, zero-energy) states or the
presence of nodes in the energy gap is ubiquitous. How such
zero-energy states affect the stability of superflow in topolog-
ical superconductors and superfluids is an open question.

Remarkably, in the topological superfluid phases of 3He,
superflow may persist when one [1,2], or even both [3–5],
of those constraints are violated. In particular, topological
protection is absent in the chiral superfluid 3He-A, where the
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circulation is topologically unstable toward a phase slip with
the formation of skyrmions [4,5]. However, contrary to the
statement in Ref. [5], the superflow persists up to velocity
v ∼ 0.1 cm/s [3]. This velocity also exceeds the Landau
critical velocity, which is zero in 3He-A due to the presence of
two point nodes [E (p) = 0] in the energy spectrum. On one
hand, the absence of topological stability does not exclude
local stability of superflow, supported by anisotropy of the
superfluid density, effects of boundaries, applied magnetic
field, or spin-orbit interaction. On the other hand, superflows
exceeding the Landau critical velocity do not necessarily lead
to the destruction of superfluidity in Fermi superfluids [6]. In
the super-Landau superflow, some Bogoliubov quasiparticle
states acquire negative energy. Fermionic quasiparticles start
to occupy those energy levels, forming a Fermi surface. Such
a Fermi surface is called the Bogoliubov Fermi surface (BFS).
In superfluid 3He and in cuprate superconductors [7–10], the
BFS appears in the presence of superflow, while in systems
with multiband energy spectrum or with broken time-reversal
symmetry the BFS may exist even in the absence of super-
flow [11–18]. Note that in a nodal topological superfluid or
in a cuprate superconductor the superflow explicitly breaks
time-reversal and inversion symmetries, and thus origin of
the BFS can be considered on a common ground in different
systems.

Appearance of the BFS gives rise to a nonzero density of
states at zero energy and thus to a nonzero normal component
density ρn even at T = 0. When all the negative states are
occupied, the equilibrium value of ρn(T = 0) is reached,
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FIG. 1. The polar phase of superfluid 3He engineered with
nanostructured confinement. (a) The confining matrix is a set of
parallel solid strands, realized using commercial NAFEN material
with d ≈ 9 nm and D ≈ 35 nm [25]. In the stationary polar phase,
the energy spectrum of Bogoliubov quasiparticles includes a Dirac
node line in the plane perpendicular to strands. (b) In the presence
of superflow vs, the node line transforms to the Bogoliubov Fermi
surface, consisting of two Fermi pockets which touch each other.
Here the superflow is applied along the x axis, and touching points at
p = ±pF ŷ are pseudo-Weyl points. Their topology is illustrated as
the hedgehog in momentum space, with the topological invariant in
Eq. (4). Arrows show direction of the n̂ vector and the parameters in
Eq. (2) are chosen as m∗c/pF = 1/12 and vs/c = 1/2.

and the nondissipative superflow is restored, though with
smaller superfluid density, ρs(T = 0) = ρ − ρn(T = 0). The
superflow above the Landau critical velocity remains stable
until some other critical velocity vc is reached. This can be
either the velocity at which ρn(T = 0) = ρ and thus the su-
perfluid density ρs = ρ − ρn vanishes, or the critical velocity
at which quantized vortices or other topological defects, such
as skyrmions, are created.

The topology and other properties of the p-wave superfluid
3He can be tuned on a wide range via controlling temperature,
pressure, or magnetic field [19] or by introducing engineered
nanoscale confinement [20–23]. Recently, a new phase of 3He,
the time-reversal symmetric polar phase, has been engineered
using such confinement [24–26]. The polar phase, Fig. 1,
features a Dirac nodal line, robust to disorder and impurities
owing to the extension of the Anderson theorem [27–29].
Because of the presence of the nodal line with E (p) = 0, the
Landau criterion in the polar phase is violated for any nonzero
velocity.

The purpose of the current Report is twofold: First, we
experimentally demonstrate that the superflow in the presence
of the nodal line remains stable until the fluid velocity at the
sample boundaries reaches 0.24 cm/s, well above the zero
Landau critical velocity. At higher velocity, the flow, driven by
rotation of the sample container, becomes unstable toward the
formation of quantized vortices. The appearance of vortices,
strongly pinned to the strands of the confining matrix, is
detected as the increased relaxation rate of a Bose-Einstein
condensate of magnon quasiparticles [30,31]. Vortices remain
in the sample for days after the rotation is stopped, main-
taining long-living superflow exceeding the Landau critical
velocity even in a stationary sample. These observed features
of vortex dynamics in the polar phase are supported by
numerical simulations. Second, we discuss the topology of the
resulting Bogoliubov Fermi surface and provide suggestions

FIG. 2. Types of quantized vortices in the polar phase. The order
parameter phase φ (background color) winds by 2π around a single-
quantum vortex and by π around a half-quantum vortex. To keep
the order parameter single-valued, vector d̂ (red arrows) also rotates
around the HQV core, so that d̂ → −d̂ when φ → φ + π . In non-
axial magnetic field (green arrows), this leads to the formation of d̂
solitons connecting HQVs pairwise (blue dashed line). Vortex cores,
vector m̂, NAFEN strands, and the axis of rotation are perpendicular
to the plane of the picture.

for characterization of the effects of the BFS on superfluid
properties in future experiments.

II. POLAR PHASE

The order parameter in the polar phase is

Aμ j = �Pd̂μm̂ je
iφ . (1)

Here, �P is the maximum gap in the quasiparticle energy
spectrum, φ is the superfluid phase, and d̂ is a unit vector of
spontaneous anisotropy in the spin space. Orbital anisotropy
vector m̂ is locked along the NAFEN strands, while the node
line in the energy spectrum develops in the plane perpendic-
ular to the strands [Fig. 1(a)]. In our sample the strands are
oriented along the rotation axis, labeled ẑ.

This order parameter allows for both usual single-quantum
phase vortices (SQV), around which φ → φ + 2π , and half-
quantum vortices (HQV), where φ → φ + π and α → α +
π [32] (Fig. 2). Here α is the azimuthal angle of d̂ in the plane
perpendicular to the magnetic field. The d̂ vector is kept in this
plane by the Zeeman energy in the magnetic field of applied in
our experiments. Additionally pure spin vortices with winding
α → α + 2π and φ = const around the core can exist, but
they are not relevant for the critical velocity in applied mass
flow, so we do not discuss them here.

The quasiparticle energy spectrum in the polar phase,
which is Doppler shifted in the presence of a superflow vs,
takes the form

E (p) = ε(p) + p · vs , ε2(p) = c2 p2
z + v2

F(p − pF)2 , (2)

where c = �P/pF. For any vs not collinear with the ẑ axis,
this spectrum contains states with E (p) < 0 and the Landau
critical velocity is zero, vcL = 0.

III. MEASUREMENTS

We study the stability of superflow starting from the ini-
tial state prepared by slowly cooling the stationary sample
through the superfluid transition in a transverse magnetic field
to suppress the formation of both HQVs and SQVs [33]. All
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FIG. 3. Increase of the relaxation rate of the magnon BEC τ−1
M

due to vortices in the polar phase. (a) The relaxation rate grows
as a function of rotation velocity 	 applied at the transition to
the superfluid state. For HQVs, the shown slope is extracted from
the data in Ref. [32] with the contribution of vortices, created by
the Kibble-Zurek mechanism (KZM), removed. For SQVs, KZM
is suppressed by the symmetry-violating bias [33]. The measured
points are shown by symbols and the line is a fit to 	1/2 dependence.
(b) For HQVs, τ−1

M (circles) is proportional to the total volume of the
d̂ solitons between HQV cores, measured by the area of the satellite
peak Isat in the normalized NMR spectrum, like in Fig. 4. The line is
a linear fit.

measurements are performed on the 4 × 4 × 4 mm3 cubic
sample container at 7 bar pressure and T = 0.4 Tc in the mag-
netic field H = 12 mT. The container is filled with a nano-
material called NAFEN, which consists of parallel columnar
Al2O3 strands with 0.243 g/cm3 volume density. Then, at
constant T , we gradually increase the rotation velocity in
small steps, reducing the applied field to zero before changing
the velocity.

When the change is finished, we restore the transverse
magnetic field and measure the relaxation rate of long-
living magnons, pumped to the sample by a radio-frequency
excitation pulse. Under conditions of this work, magnons
form a Bose-Einstein condensate (BEC) within the sam-
ple [30,31,34]. The magnon BEC is manifested by coherent
precession of magnetization with the same frequency and
coherent phase, despite the inhomogeneity of the magnetic
field or variation in the spin-orbit interaction strength. The
precession slowly decays due to magnon loss. In 3He-B, such
condensates are thoroughly explored and were used as sen-
sitive probes of temperature [35,36], collective modes [37],
spin supercurrents [38], analog event horizon [39], and vor-
tices [40,41]. Their usefulness as sensors in the polar phase
has not been known before this work.

We have found that the decay rate τ−1
M of the magnon BEC

is sensitive to the presence of vortices also in the polar phase
(Fig. 3). To calibrate this effect, we create an equilibrium array
of vortices by rotating the sample at the angular velocity 	

while slowly cooling it down to the superfluid state. HQVs
are produced with cooling in the zero or axial field [32].

For HQVs [Fig. 3(b)], τ−1
M is proportional to the intensity

Isat of the characteristic satellite peak in the continuous-wave
(cw) nuclear magnetic resonance (NMR) spectrum measured
in the transverse field [Fig. 4(a)]. The Isat ∝ 	1/2 is essentially
a fractional volume occupied by the d̂ solitons connecting
HQVs pairwise [32]. We conclude that the magnon BEC

FIG. 4. Continuous-wave NMR spectra of the polar phase mea-
sured in the magnetic field transverse to NAFEN strands with HQVs
and SQVs present in the sample. (a) The absorption normalized to the
total spectrum area is plotted vs the frequency shift from the Larmor
value f0 = |γ |H/2π , where γ is the gyromagnetic ratio of 3He. The
HQVs produce a satellite in the NMR spectrum, while for SQVs no
clear distinguishing features are seen. (b) SQVs are produced with
the slow sweep of the angular velocity 	(t ). (c) Rapid changes in
rotation velocity produce HQVs in addition to SQVs. Last of the ten
periods of such drive applied in the course of the measurement in
zero magnetic field is shown.

relaxation is concentrated in these solitons, where the spin
configuration deviates from the equilibrium.

If the magnetic field is applied transverse to the rotation
axis and the NAFEN strands, HQVs become energetically
unfavorable [42], and an array of SQVs is created on cooling
through Tc. SQVs cannot be easily identified based on cw
NMR spectra, since SQVs are not associated with a soliton
structure and their cores are too small to provide noticeable
contribution to the signal. However, a definite increase of
the magnon BEC relaxation as a function of 	 is observed
[Fig. 3(a)].

The origin of the magnon BEC relaxation in the B phase
is conversion of the magnons from the condensate to lon-
gitudinal spin waves (light Higgs quasiparticles [37]) in the
distorted orbital texture surrounding nonaxisymmetric vortex
cores [43]. In that case, τ−1

M ∝ 	 in the equilibrium vortex
state. In the polar phase, the structure of vortex cores is not
known and is expected to be substantially affected by the
NAFEN strands with diameter ≈0.1 of the vortex core diame-
ter and spaced by a few times larger distance. Simultaneously,
the orbital texture is believed to be pinned by the strands.
Thus, the microscopic dissipation mechanism for coherent
precession acting in the polar phase and the origin of the
dependence τ−1

M ∝ 	1/2 remain unclear, but we nevertheless
can use τ−1

M as a marker for appearance of vortices. Moreover,
usage of the magnon BEC probe proved to be essential for
fulfilling the main goal of this work, establishing stability of
the flow in the polar phase, as it turns out that the stability is
lost with formation of SQVs (see the next section), which are
invisible to classic linear NMR.
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FIG. 5. Change of the magnon BEC relaxation τ−1
M when the

rotation velocity 	 is gradually increased from 0 to 2 rad/s and then
decreased back to 0 at constant temperature, starting from the state
with no vortices. Two traces for two independently prepared initial
states are shown; the respective 	(t ) dependences and final spectra
are plotted in Figs. 4(a) and 4(b). Single-quantum vortices form
first at 	 ≈ 1 rad/s. Pinning prevents vortices from disappearance
when 	 is decreased. Before vortex formation, stable superflow with
velocity up to vc ≈ 0.2 cm/s exists in the sample, while the Landau
critical velocity vcL = 0 in the polar phase.

IV. CRITICAL VELOCITY

The measured magnon BEC relaxation rate τ−1
M as a func-

tion of 	, when a change of rotation velocity is started from
the vortex-free state at 	 = 0, is presented in Fig. 5. It shows
that there is a clear velocity, above which the relaxation
rapidly grows. We interpret this point as a critical velocity for
vortex formation. These vortices remain in the sample even
when 	 is returned to zero, as expected if the vortices are
pinned on the NAFEN strands. After the 	 cycle is finished,
we identify the type of the formed vortices by measuring the
cw NMR spectrum of the sample [Fig. 4(a)]. Since we find no
satellite peak characteristic to HQVs, we infer that vortices
formed during the 	 cycle are SQVs. In our experimental
conditions, the critical velocity for SQV formation is thus
lower than that for forming HQVs. This is the case although
the energy of an HQV pair is smaller than that of a single SQV
in zero magnetic field (which is applied when 	 changes).
A similar situation is observed in 3He-A, where the critical
velocity for the double-quantum vortex skyrmions [44] is
lower than that of SQVs, while the energy preference is the
opposite [45].

In our cubic container, the flow is nonuniform and at
	 = 1 rad/s, which is seen as a characteristic angular velocity
for vortex formation in Fig. 5, the maximum flow velocity
of 0.2 cm/s is reached in the middle of each side wall of
the square container cross section. This value is somewhat
lower than vc ≈ 1 cm/s observed for SQVs in bulk 3He-B,
where it was also found to depend strongly on the surface
conditions [46]. For confined samples, control of the surface

conditions, especially at the boundaries of the confining ma-
trix, remains a challenge for the future.

Remarkably, we are also able to create HQVs in the super-
fluid state by changing the rotation velocity rapidly enough
[see Fig. 4(c)]. To produce HQVs, we vary the rotation ve-
locity between 	 = +2.25 and −2.25 rad/s for several hours,
in which case the SQV creation and annihilation are not able
to compensate for changes in the rotation velocity quickly
enough and local flow velocity can exceed the critical velocity
for HQV formation. While the amount of SQVs created in this
process increases magnon BEC relaxation beyond what can be
measured, HQVs are also created, as seen from the appearance
of the satellite in the cw NMR spectrum [magenta trace in
Fig. 4(a)]. Therefore, it is possible to set bounds for the HQV
critical velocity for the conditions of the measurements: It
exceeds 0.2 cm/s but is below 1 cm/s.

Before the first vortices are formed, the superfluid is in a
stable flow with nonzero velocity with respect to the walls of
the container and to NAFEN strands, despite the fact that the
Landau critical velocity is zero in the polar phase.

V. NUMERICAL SIMULATIONS

We can gain qualitative understanding of the process that
creates vortices during 	 sweep in the superfluid state with a
simple numerical model (Fig. 6). In the model, we consider
a square sample container with 4 × 4 mm2 cross section con-
taining a grid of 201 × 201 pinning point and rotated about
its center along the axis perpendicular to the cross section.
The flow velocity is calculated as the sum of the potential
flow in a box and the contribution from vortices, which in
the two-dimensional simulation are points. Vortices carry one
quantum of circulation either along the rotation velocity or in
the opposite direction (antivortices).

We start from the configuration with no vortices and zero
rotation velocity 	. Then 	 is increased in small steps of
5 × 10−3 rad/s. After each step, we calculate the superfluid
velocity in the rotating frame at each grid point. If the flow
velocity magnitude exceeds vc,simul = 0.1 cm/s (the imposed
critical velocity in the simulation), a vortex or an antivortex
is placed on the pinning site on the condition that the free
energy of the system is lowered as a result. Vortices with
positive and negative circulation at the same site annihilate
each other. Once created, vortices are not allowed to move,
which emulates the strong pinning by NAFEN observed ex-
perimentally [32]. The flow field of the vortex is then added
to the total flow.

In this model, the resulting vortex configuration forms a
nonuniform pattern [Figs. 6(b) and 6(c)], which resembles that
observed in superconducting thin-film systems where pinning
is also strong [47–49]. The total number of vortices rapidly in-
creases from zero when velocity of the potential flow exceeds
vc,simul. These vortex avalanches emerge from the middle of
each of the four container walls, where vc,simul is first reached.
This feature resembles the substantial jump in τ−1

M at the
critical velocity in the experiments. When the rotation velocity
is later decreased, many vortices with positive circulation
are annihilated by antivortices. However, the total number of
vortices and antivortices remains relatively constant, which
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FIG. 6. Simulation of the vortex formation with pinning:
(a) Number of vortices (red dash-dotted line), antivortices (blue
dashed line), and the sum of the two populations (solid black line),
as a function rotation velocity 	 which is changed from 0 to
2.5 rad/s and back. (b) The configuration of vortices (red circles)
and antivortices (blue crosses) at 	 = 2.5 rad/s. (c) The final vortex
configuration at 	 = 0.

agrees with the observation that the magnon BEC relaxation
rate never decreases with changes in the rotation velocity.

VI. TOPOLOGY OF THE BOGOLIUBOV FERMI SURFACE

Detection of stable superflow in the polar phase is an
indirect indication of the formation of a BFS, given by
solution of E (p) = 0 in Eq. (2). Figure 1(b) demonstrates
the BFS for the superflow in the (x, y) plane transverse to
the m̂ vector. Such BFS possesses quite remarkable features
compared to the BFS expected to form in super-Landau flow
in 3He-A or cuprate superconductors. In the case of 3He-A
with the point nodes and in the available range of stable
superflow velocities [3], the BFS is formed as tiny ellipsoidal
pockets around the nodes. In the case of cuprates, cylinders
are formed around separate line nodes [7,50]. Both cases are
topologically trivial. In the polar phase, the BFS is formed
by two (electron and hole) pockets, which extend across the
whole momentum space even at the smallest velocities and
touch each other at two points with nontrivial topology. Such
a Fermi surface resembles that in graphite, where the chain of
touching electron and hole pockets is present [51–55].

The nontrivial topology of the BFS in the polar phase is
associated with the conical touching points at p = ±pFv̂s × ẑ.

It is similar but not identical to that of the Weyl point in Weyl
semimetals and in 3He-A. This follows from the Bogoliubov–
de Gennes Hamiltonian:

H = τ1n1(p) + n2(p) + τ3n3(p), (3)

where τ1 and τ3 are Pauli matrices in the particle-hole space.
As distinct from the Weyl Hamiltonian, the matrix τ2 is miss-
ing and thus we call those points pseudo-Weyl points [55].
The components of the vector n(p) are n1(p) = cpz, n2(p) =
p · vs, and n3(p) = vF(p − pF). The invariant, which is similar
to that for the Weyl points, is

N3(pseudo) = 1

8π
ei jk

∫
S2

dSk n̂ ·
(

∂n̂
∂ pi

∂n̂
∂ p j

)
, (4)

where n̂ = n|n|−1 is a unit vector and S2 is the spherical
surface around the touching point. Topological charges of the
two pseudo-Weyl points are N3(pseudo) = ±1.

It is interesting that models of some superconducting states
in heavy-fermion superconductors include closed node lines,
like in the polar phase of 3He [56,57]. We thus suggest that
topologically nontrivial BFS could be realized also in those
systems, provided that pseudo-Weyl points turn out to be
robust against impurities.

Let us now discuss predictions for observables resulting
from the appearance of the nonthermal normal component in
the polar phase. The BFS leads to a finite density of states
(DoS),

N (0) =
∫

d3 p

(2π )3
δ(E (p)) = NF

vs

c
, (5)

where NF = pFm∗/π2 is the DoS in the normal 3He and m∗ =
pF/vF is the effective mass. This results in a finite density
of the normal component at T = 0 and an additional heat
capacity, which both are linear in vs:

ρn(T = 0)

ρ
= vs

c

m∗

m
,

C(T )

CF(T )
= vs

c
. (6)

Here CF(T ) is heat capacity of the normal liquid. For vs ∼
0.2 cm/s, the additional DoS is on the order of 0.05NF, which,
in principle, is detectable.

Additionally, the presence of superflow suppresses the
gap amplitude. According to Muzikar and Rainer [58], the
suppression of the gap at T = 0 and vs � c is [�P(vs) −
�P(0)]/�P(0) = −v3

s /3c3, and at experimentally relevant
temperatures

�(vs, T )

�(0, 0)
=

[
1 − α1

T 3

T 3
c

− α2
v2

s

c2

T

Tc

]
, vs/c � T/Tc � 1 ,

(7)
where the parameters α1 and α2 are of order of unity [59].
As a result, the spin-orbit interaction FD = gD(d̂ · m̂)2 is
also suppressed with δgD/gD = −2v3

s /3c3 at T = 0. A well-
established method to measure the strength of the spin-orbit
interaction in superfluid 3He is through the shifts of the
characteristic lines in the NMR spectra. The smallness of
the expected effect (relative frequency shift ≈10−6 for the
temperature and velocity reached in the present experiment)
will, however, make this measurement challenging.
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VII. CONCLUSIONS

We have experimentally observed stable superflow in the
polar phase of 3He at velocities exceeding the zero Landau
critical velocity in the nodal line superfluid. The stability of
superflow, provided by formation of the Bogoliubov Fermi
surface and of the nonthermal normal component at super-
Landau velocities, is limited by creation of the single-quantum
vortices (at velocities of about 0.2 cm/s) and of the half-
quantum vortices (at velocities below 1 cm/s). The next
development will be to observe the contribution of the flow-
induced quasiparticle states to thermodynamic quantities, e.g.,
those predicted by Eqs. (6) and (7). We thus confirm that
appearance of protected zero-energy states in topological su-
perfluids and superconductors does not prevent the existence
of stable superflow in such systems. When the the original
zero-energy states belong to a closed line node, we predict
that the resulting BFS possesses nontrivial topology with the
pseudo-Weyl points. It will be appealing to find a topologi-
cally nontrivial BFS existing even without the applied flow in
systems with broken symmetries. It will also be interesting to
elucidate further consequences of the symmetries, broken by
the superflow in topological superfluids and superconductors,
beyond formation of the BFS. One example here is provided
by the prediction of the spin-stripe phases [60,61].

In the case where BFS is formed by the flow at super-
Landau velocities, like in the polar phase, the initial process
of filling the negative energy states is also a fascinating
problem for future research, as it proceeds via radiation of
quasiparticles which has similarities to the Hawking radiation
from the black-hole horizon [62–64]. Finally, we note that
recent successes in stabilization of uniform ultracold quan-
tum gases [65] open possibilities to study the evolution of
the super-Landau superflow [66] in the BEC-BCS crossover,
where the spectrum of Bogoliubov excitations in the station-
ary system changes drastically.
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