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We argue that several empirical constraints strongly restrict parameters of the effective microscopic spin model
describing α-RuCl3. In particular, such constraints dictate a substantial positive off-diagonal anisotropic coupling
�′ >0, not anticipated previously. The renormalization by quantum fluctuations allows to reconcile larger values
of the advocated bare parameters with their earlier assessments and provides a consistent description of the
field evolution of spin excitations in the paramagnetic phase. We assert that large anisotropic terms inevitably
result in strong anharmonic coupling of magnons, necessarily leading to broad features in their spectra due to
decays, in accord with the observations in α-RuCl3. Using duality transformations, we explain the origin of the
pseudo-Goldstone mode that is ubiquitous to the studied parameter space and is present in α-RuCl3. Our analysis
offers a description of α-RuCl3 as an easy-plane ferromagnet with antiferromagnetic further-neighbor and strong
off-diagonal couplings, which is in a fluctuating zigzag ground state proximate to an incommensurate phase that
is continuously connected to a ferromagnetic one.
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I. INTRODUCTION

Finding strong physical bounds on the parameters of a
model is often the key to understanding the system [1]. In
quantum magnets, a nearly exact determination of their mi-
croscopic models can be achieved by measuring the spectrum
of spin excitations in magnetic fields that are high enough to
quench quantum fluctuations [2–4]. Recent remarkable high-
field experiments in the rare-earth pyrochlore Yb2Ti2O7 and
the subsequent theoretical exposé of the unfolding quantum
effects in lower fields [5–7] provided a spectacular demon-
stration of the unequivocal power of such an approach.

However, in anisotropic-exchange magnets, quantum ef-
fects often remain significant even in the nominally spin-
polarized phases [6–10], making magnetic fields necessary to
eliminate quantum fluctuations prohibitively high. Moreover,
it is common for the spin models of these materials to contain
many non-negligible terms that create a multidimensional
parameter space and make it harder to find a unique set of
microscopic constraints [10–13]. Such is the case of α-RuCl3,
a honeycomb-lattice quantum magnet of great current inter-
est because of its purported proximity to a spin-liquid state
[13–22].

Because of the Kitaev spin-liquid solution with much-
desired topological excitations, the research on α-RuCl3 has
been understandably skewed toward ignoring realistic terms
beyond the “Kitaev-only” model or adding them in a some-
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what homeopathic manner with a hope for a reasonable
phenomenology [22–26]. On the other hand, a significant
effort has also been made to establish and restrict physical
parameters of the realistic microscopic spin model of α-RuCl3

[13]. Without the luxury of a direct determination from the
high-field spectrum measurements, studies involving sym-
metry considerations, first-principles calculations, and per-
turbative orbital model expansions [27–33], combined with
the analysis of various experimental observations [34–46]
have led to a broad consensus on the minimal microscopic
model of α-RuCl3 and to a wide range of estimates for its
key parameters [41]. It is the K-J-�-�′-J3, or generalized
Kitaev-Heisenberg (KH) model, where the symmetry-allowed
terms of the nearest-neighbor exchange matrix are Kitaev,
Heisenberg, and the off-diagonal � and �′ exchanges [47,48],
and J3 is the third-neighbor Heisenberg coupling [13]. Al-
though minimal, this model still requires a five-dimensional
parameter space and even a reasonable agreement on the
parameter values is yet to emerge.

In this work, we use theoretical insights into several ob-
servables to strongly restrict parameters of the minimal model
of α-RuCl3. In particular, electron-spin-resonance (ESR) and
terahertz (THz) experiments on magnetic excitations in high
fields [18,42] put a clear lower bound on a combination
of � and �′. Moreover, critical fields H (a)

c and H (b)
c of the

transition to a paramagnetic phase for the two principal in-
plane directions are nearly identical [45], binding � and �′
together, dictating a substantial �′, and also limiting � term
from above. Similarly, the observed values of H (a/b)

c closely
tie up a combination of J and J3 terms. Lastly, the restrictions
on the spins’ out-of-plane tilt angle [27,40], on the zigzag state
being the ground state, and on the bandwidth of the observed
magnetic intensity [42,49], allow to put additional bounds on
the K , J , and J3 terms.
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Altogether, our analysis suggests a surprisingly large off-
diagonal coupling �′ ≈�/2>0, strong constraints on � and
on a combination of J and J3 with a rough estimate |J|≈J3 ≈
�/2, and the overall absolute values of all parameters that are
generally larger than advocated previously. We would like to
underscore that parameters of an effective model can differ
from the ones in the first-principles approaches. Namely, ab
initio further-neighbor terms get effectively incorporated in
the fewer model parameters. This may allow to reconcile our
positive �′ term with the previous analyses [50].

Another reconciliation is with the smaller parameters in the
prior estimates inferred from the experiments in the ordered
zigzag phase [35,37–39]. They often provide a satisfactory
description of the features below the field-induced transition
to the paramagnetic phase, but fail above it. This dichotomy
can be rationalized as due to an effective reduction of the
bare parameters by quantum fluctuations [42], which are
gradually lifted by the field in the paramagnetic phase. For a
representative set of the proposed parameters, we demonstrate
that a mean-field approach to quantum fluctuations provides a
consistent description of the field evolution of spin excitations
in the paramagnetic phase that is in agreement with the ESR,
THz, and Raman experiments [18,42]. This approximation is
further justified by a comparison to the exact diagonalization
results [43].

A different set of quantum effects is also notable. As is
advocated in Refs. [35,51], large off-diagonal terms in the
anisotropic-exchange magnets necessarily precipitate strong
anharmonic coupling of magnons, regardless of the under-
lying magnetic order. These strong anharmonic interactions
inevitably lead to large decay rates of the higher-energy
magnons into the lower-energy magnon continua [52], such
that some of the magnon modes cease to be well defined, lead-
ing to characteristic broad features in the neutron-scattering
spectra. We apply the analysis of Ref. [35] to the representa-
tive sets of our model parameters and demonstrate a coexis-
tence of the low-energy well-defined quasiparticles with the
broadened excitation continua. These results are in agreement
with the prior studies [35,51] and are also in accord with the
experiments in α-RuCl3 [22,34,49,53]. Our results underscore
the importance of taking into account magnon decays in inter-
preting broad features in the spectra of the strongly anisotropic
magnets [7].

There are other persistent features in the spectrum of the
generalized KH model throughout the advocated parameter
space that are also present in α-RuCl3. One of them is the
quasi-Goldstone modes that occur away from the ordering
vector of the underlying zigzag phase [34,53], suggesting
accidental near degeneracy due to a hidden symmetry. We
provide an insight into its nature using duality transformations
of the model. First, a global rotation in the plane of mag-
netic ions transforms the generalized KH model into itself,
but with the dominant ferromagnetic J <0, smaller positive
and nearly equal K and �′ terms, and a much smaller �

term. It is important to note that this description is identical
to the original one and represents a feature of the KJ��′
parametrization of the exchange matrix. We then show that
the Klein duality [54] transforms the K-J-�′ model with �=0
into a K-J-�̆′ model with an antisymmetric �̆′ term that is
akin to the Dzyaloshinskyi-Moriya coupling. This last model

FIG. 1. (a) The nearest-neighbor Ru-Ru {X, Y, Z} bonds, crys-
tallographic {x0, y0, z0} and cubic {x, y, z} axes, and principal in-
plane a(b) directions. (b) Cubic axes and idealized Ru-Cl bonds.
(c) Brillouin zone with the ordering vectors of the zigzag phase Y ,
M, and M ′.

preserves a Goldstone mode of the pure K-J model, in a close
similarity to the observation made for the same model on the
triangular lattice [55].

Not only does this observation explain the ubiquitous acci-
dental pseudo-Goldstone modes, but it also suggests a simpler
model for α-RuCl3, which is more amendable to a detailed
exploration because of the lower dimensionality of its param-
eter space: the K-J-�′-J3 model obtained by the first transfor-
mation described above. Moreover, the original K-J-�-�′-J3

model can be rewritten in the “spin-ice” language [5,10,54,55]
that uses more natural spin axes tied to the honeycomb plane,
yielding the so-called XXZ-J±±-Jz± form of the model. For
the parameter range that we advocate for α-RuCl3, the model
in this language consistently has two nearly vanishing terms,
the XXZ anisotropy � and one of the anisotropic terms J±±.
That is, the model that closely describes α-RuCl3 is dominated
by an easy-plane ferromagnetic J1 and a sizable anisotropic
Jz± terms. Such a J1-Jz±-J3 model description offers a much
simpler way of thinking about α-RuCl3, can give a new
perspective on its physics, and deserves further investigation.

The paper is organized as follows. We discuss the model,
its parameters, their empirical constraints, and outline the
resulting parameter space in Sec. II. In Sec. III, we discuss
the effects of quantum fluctuations on magnons in the param-
agnetic and zigzag phases. Section IV is devoted to the dual
models for the advocated parameter space and to different
ways of representing them. We conclude by a brief discussion
in Sec. V and provide some further details in Appendices.

II. PARAMETERS AND CONSTRAINTS

The postulated minimal microscopic two-dimensional
(2D) spin model of α-RuCl3 is the K-J-�-�′-J3 or generalized
Kitaev-Heisenberg model [29,30,41],

Ĥ = Ĥ1 + Ĥ3 =
∑
〈i j〉

ST
i Ĵi jS j + J3

∑
〈i j〉3

Si · S j, (1)

where ST
i = (Sx

i , Sy
i , Sz

i ), the third-neighbor exchange is as-
sumed isotropic, and Ĵi j is the nearest-neighbor bond-
dependent exchange matrix. Since the spin-rotational symme-
tries in the anisotropic-exchange Hamiltonians are, generally,
absent, the allowed matrix elements of Ĵi j are determined
solely by the symmetry of the lattice [47].

For α-RuCl3 and related materials [13], the conventional
choice of the Cartesian reference frames for the spin projec-
tions are the so-called cubic axes (see Fig. 1). They correspond
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to an idealized undistorted octahedral environment of Ru3+

and are not coincidental with the plane of magnetic ions, the
point that is often lost on a nonexpert or a casual reader. These
axes are natural within the orbital model considerations [13],
leading to a parametrization of the exchange matrix Ĵi j that
converts the nearest-neighbor part of the model (1) into

H1 =
∑
〈i j〉γ

[
JSi · S j + KSγ

i Sγ
j + �

(
Sα

i Sβ
j + Sβ

i Sα
j

)
+ �′(Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ

j + Sβ
i Sγ

j

)]
, (2)

where 〈i j〉γ numerates the bonds γ = {X, Y, Z}, with the
triads of {α, β, γ } being {y, z, x} on the X bond, {z, x, y}
on the Y bond, and {x, y, z} on the Z bond, respectively
(see Fig. 1 for the cubic axes, crystallographic reference
frame {x0, y0, z0}, and other notations). We also note that the
parametrization of the exchange matrix Ĵi j that is used in
(2) is a subject of some less-than-obvious transformations
[54] under relatively trivial symmetry operations discussed in
Sec. IV.

A number of the {J, K, �, �′, J3} parameter sets have been
proposed to describe α-RuCl3 using the first-principles meth-
ods [24,29–33] and phenomenological analyses [22,34–42].
We provide a compilation of them in Table I in the end of
this section and compare with the ranges advocated in this
study. The coupling that is believed to be the leading one is
the (negative) Kitaev term K <0. The off-diagonal �>0 term
is also discussed as significant and potentially comparable to
|K|, while the ferromagnetic exchange J <0 is believed to
be subleading [13]. All three “main” parameters vary quite
significantly between the studies, with the antiferromagnetic
third neighbor J3 of the same order as |J| also frequently
invoked, and a small, predominantly negative �′ included as
being allowed by symmetry [30,41,47].

In the following, we use the first-principles guidance for
α-RuCl3 [30] and assume that K <0. We also use other
restrictions from these works, such as some of the prevalent
hierarchies of the couplings. However, we demonstrate that
it is the currently available phenomenology that is power-
ful enough to significantly restrict and drastically revise the
physically reasonable parameter space of the generalized KH
model for α-RuCl3.

A. ESR and THz data

The electron spin resonance (ESR), terahertz (THz), and
Raman spectroscopies have provided detailed information on
the q=0 magnetic excitations of α-RuCl3 and their field
evolution in the fluctuating paramagnetic state [18,42,56].
While a rich spectrum with multiple modes has been analyzed
[42], we focus on the field dependence of the low-energy
single-magnon mode [57].

In Fig. 2, we show the data for this mode from the ESR
(Ref. [18]) and THz (Ref. [42]) studies for the in-plane field
direction that is perpendicular to the Ru-Ru bond, referred to
as the a direction, for the field range from the critical field
H (a)

c ≈6 to 35 T. The data for the field along the b direction
are quite similar, suggesting nearly equal g factors, the point
also supported by the earlier studies [24,43]. We provide a fit

FIG. 2. ESR [18] and THz [42] data and their fit for the magnon
energy gap ε0 at q=0 vs field in the a direction; LSWT results from
Eq. (4) for representative �tot from 8 to 13 meV and for �=2.5 meV
[35] for a comparison. Arrows indicate anticipated downward renor-
malization of the LSWT results by quantum fluctuations. Insets:
sketches of the zigzag and polarized states and in-plane a and b
directions.

of the data by

ε0 =h + a0 + a1/h, (3)

with h=gμBH , a0 =4.2 meV, and a1 =30 meV2, which is
motivated by the high-field expansion of Eq. (4) below.
Throughout this work, we use ga =gb =2.5, which is in accord
with the previous estimates [24,43,58].

Importantly, the linear spin-wave theory (LSWT) gives the
q=0 magnon energy that depends on a combination of only
two parameters of the model (1), �tot =� + 2�′,

ε
(0)
0 =

√
h[h + 3S(� + 2�′)], (4)

where h=gμBH . This result is asymptotically exact in the
H →∞ limit where fluctuations are suppressed. Expansion
of (4) in 1/h yields the form used in (3).

In Fig. 2, we present LSWT results for several represen-
tative �tot from 8 to 13 meV. The lowest LSWT line (�=
2.5 meV) uses parameters that were successful in describing
the low-field phenomenology of α-RuCl3 [35,37], but clearly
fail to reproduce the high-field data, suggesting significantly
larger �tot. The key point is that one should generally expect
a downward renormalization of the LSWT spectrum due to
quantum fluctuations [35,59], as is confirmed by a comparison
with the exact diagonalization results of Ref. [43] in Sec. III.

Therefore, it is clear from Fig. 2 that �tot cannot be less
than ≈8 meV and it is also hard to justify it to be larger than
≈13 meV as this would imply unphysically large fluctuations
in a strongly gapped high-field state. Thus, while the latter is
not a precise constraint, there is a clear sense of both the lower
and the upper bounds on the value of � + 2�′ from the ESR
and THz data.

Qualitatively, fluctuations produce the downward shift of
the spectrum due to repulsion of the one- and two-magnon
states, which is expected to get stronger near the critical field,
in agreement with Fig. 2 and with a discussion in Ref. [42].
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We also note that the observed single-magnon energy can be
related to the “bare” LSWT result of Eq. (4) as ε0 =�ε

(0)
0 ,

where � is the field-dependent renormalization factor with the
high-field behavior �=1 − O(h−1). Thus, while naively one
can extract �tot using expansion in Eq. (3) directly from the a0

term, the fluctuation factor provides a significant correction to
it that requires a self-consistent consideration.

As we show in Sec. III, the field-dependent renormalization
factor can be approximated by the reduced ordered moment
�=〈S〉/S, as follows from the self-consistent random-phase
approximation (RPA) [60]. According to it, fluctuation cor-
rections to ε

(0)
0 at higher fields can still produce a substantial

downward shift, suggesting the lower limit for �tot to be
�9 meV.

B. Critical fields

In α-RuCl3, the in-plane field induces a phase transition
from the zigzag to a fluctuating paramagnetic state at a critical
field about 7 T [17,43,45] (see Fig. 2). An additional transition
at a lower field [45] has been identified with an interplane or-
dering [21,61] and is unrelated to the key physics of α-RuCl3

discussed in this work [62].
In the field-induced paramagnetic phase, magnon spectrum

is gapped and the transition to the zigzag phase upon lowering
the field corresponds to a softening of the spectrum. The
gap closes at the ordering vectors associated with the zigzag
structure, the face centers of the Brillouin zone [see Fig. 1(c)].
For H ‖b, the ordering vector of the single field-selected
zigzag domain is Y , and for H ‖a, the two domains have
the ordering vectors at the M and M ′ points, respectively
[38,61,63].

In the paramagnetic phase spins are oriented along the field
and the magnon spectrum can be obtained analytically (see
Appendix A). The condition on the gap closing yields the
critical fields for H ‖a and H ‖b (see also [64])

h(a)
c = J + 3J3 + 1

12
(5K − 5� − 16�′)

+ 1

12

√
(K + 5� + 4�′)2 + 24(K − � + �′)2, (5)

h(b)
c = J + 3J3 + 1

4
(2K − � − 6�′)

+ 1

12

√
(2K + 7� + 2�′)2 + 32(K − � + �′)2, (6)

where h(α)
c =gαμBH (α)

c . An important feature of these results
is that the difference of the critical fields in (5) and (6) appears
to be a function of only three anisotropic terms of the model:
K, �, and �′. As is discussed above, we assume the g factors
in the two principal directions to be the same, so �hc =g�Hc,
with �Hc =H (b)

c −H (a)
c . This feature is key to the constraints

proposed below.
Before we discuss them in more detail, we note that, exper-

imentally, the critical fields in α-RuCl3 for a and b directions
are nearly identical [18,45]. While small �Hc seems to be
a minor point, it is virtually impossible to reproduce from
Eqs. (5) and (6) without a sizable �′, the difficulty also clearly
encountered in Ref. [45] that used a model with �′ =0.

FIG. 3. (a) The difference of the critical fields from Eqs. (5) and
(6), �Hc =H (b)

c −H (a)
c , vs �/|K| for representative values of �′/�

and �=5 meV. (b) �Hc vs �′/� for representative ratios of K/�.
The physical range for �Hc is <1.5 T (see text); the experimental
value is �H exp

c =0.6 T [45]. The physical range requires significant
�′ ∼�/2>0.

We demonstrate this by Fig. 3(a) showing �Hc vs �/|K|
for several values of �′/� and for a representative value of
�=5 meV (see Table I). The highlighted physical range for
�Hc is chosen as <1.5 T to account for possible difference
of the g factors, while the experimental value is �H exp

c =
0.6 T [45]. It is clear from Fig. 3 that even at |K|→∞ the
asymptotic value of �Hc for �′ =0 is well above the physical
range and a positive �′��/2 is needed to reach it. The
same effect is illustrated in Fig. 3(b), with �Hc plotted vs
�′/� for three representative ratios of K/�. Again, a model
without a significant positive �′ cannot reproduce observed
small difference between the critical fields.

Superficially, a large positive �′ contradicts first-principles
results for α-RuCl3 [29,30,33]. However, as we discussed
in Sec. I, our model implicitly incorporates further-neighbor
terms into fewer effective parameters, with a phenomenology
dictating physical answer. This result is also in accord with the
ESR/THz constraints that require large �+2�′. Having sub-
stantial �′ ∼�/2 removes the need for the unphysically large
� in explaining some of the other α-RuCl3 phenomenologies
[34,40,41].

One concern is the potential effect of quantum fluctuation
corrections on the LSWT results for the critical fields in
Eqs. (5) and (6). However, such corrections are unlikely to
affect the smallness of their difference, �Hc 
H (a/b)

c , and
the arguments on a sizable �′ that follow from it. Moreover,
the self-consistent mean-field RPA approach advocated in
Sec. III predicts no quantum effects on the critical fields.
Near the transition, Zeeman energy of the fluctuating spin
polarization, (H − Hc)〈S〉, competes with the gap that is
reduced by quantum fluctuations, ��(0), where �=〈S〉/S as
suggested above [60]. Then, the condition on closing of the
gap is the same as within the LSWT, in which bare Zeeman
energy, (H − Hc)S, competes with the bare gap �(0). Thus,
the critical field is unchanged by the fluctuations. While this is
a mean-field argument, it points to suppressed quantum effects
on the critical fields.
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FIG. 4. The K-� projection of the parameter range restricted
by two constraints: 9 meV <� + 2�′ <13 meV and 0.5 T <�Hc <

1.5 T (shaded area). �max (dashed line) is the asymptotic value of the
upper boundary of the shaded region, {�tot, �Hc}={13 meV, 1.5 T},
for |K|→∞. Plausible region for K suggested by the prior estimates,
Table I, is indicated.

C. Empirical constraints, I

As is discussed above, for the model (1) of α-RuCl3 there
are bounds on �tot =� + 2�′ and on �Hc. Moreover, �Hc de-
pends only on three parameters of the model: �Hc(K, �, �′).
Thus, if one would be able to fix exactly both �tot and
�Hc, this would restrict the three-dimensional (3D) parameter
subspace of {K, �, �′} to a 1D curve.

To get an insight into the resulting constraints, we show
projections of such curves onto the K-� plane in Fig. 4
for four sets of {�tot,�Hc} with �tot =9 and 13 meV and
�Hc =0.5 and 1.5 T. Obviously, the entire ranges of �tot from
9 to 13 meV and of �Hc from 0.5 to 1.5 T are confined
between these curves, shown by the shaded area. This range of
�tot is bounded by the ESR/THz as discussed above. Instead
of fixing �Hc to its experimental value of 0.6 T [45], we
allow for an additional range from 0.5 to 1.5 T to account for
small differences in the g factors and for the residual quantum
corrections to H (a)

c and H (b)
c in Eqs. (5) and (6).

It is clear from Fig. 4 that the values of � are strongly
constrained already at this stage, while there is no upper
limit on |K|. An expression for K (�,�tot,�Hc) vs � indeed
displays an unbounded asymptotic form K ∼1/(� − �max)
with �max =�tot/2 + 5�hc. Figure 4 shows such �max by the
dashed line for the upper-boundary values of �tot =13 meV
and �Hc =1.5 T.

The main message of Fig. 4 is that � for the model (1)
of α-RuCl3 is constrained from both below and above mainly
by the bounds on �tot from the ESR/THz gap and to a lesser
extent by the variation of allowed �Hc, while K is only
restricted by the choice of K <0. However, Kitaev term also
has physical constraints (see Table I), as we highlight in Fig. 4,
which should lead to even tighter bounds on the possible
ranges of �. Overall, the “typical” value of � appears to be
∼�tot/2, and �′ ∼�/2.

There is an important feature of the critical fields H (a)
c

and H (b)
c given by Eqs. (5) and (6). They both depend on the

Heisenberg exchanges only via a linear combination

J03 ≡ J + 3J3, (7)

which makes J03 a natural variable in the discussion of the
empirical constraints. Quantitatively, this dependence is also
very strong. Using g=2.5, a relatively small change of J3 by
0.3 meV modifies Hc by about 6 T. Incidentally, this also
mitigates concerns about quantum effects on experimental
values of the critical fields compared to the theoretical ones,
as a small adjustment of J3 in the latter is sufficient to match
the former.

Thus, for the purpose of considering critical fields,
the five-dimensional (5D) parameter space of the
model (1) of α-RuCl3 is effectively reduced to a
four-dimensional (4D) subspace by using J03 from Eq. (7):
H (α)

c =H (α)
c (K, �, �′, J03). Using the same bounds on �tot and

�Hc as in Fig. 4 and experimental value of H (a)
c,exp = 7 T [45]

allows us to put constraints on J03 in a similar manner to that
of the � term.

As one can see from Fig. 5(a), the K-J03 projection of
the parameter range restricted by these constraints shows the
same characteristics as the K-� projection in Fig. 4. That is,
J03 is constrained from below and above, while K is only
semibounded. In addition, the “plausible range” of 2< |K|<
25 meV (see Table I), further restricts J03 within the “typical”
values that are very similar to that of �, J03 ∼�tot/2. We
note that these results are rather insensitive to the variations
of H (a)

c,exp, easily so within the limits of ±2 T, as they can
be effectively absorbed into small changes of J03 of order
∼0.1 meV.

Altogether, constraints on the parameters of the model (1)
of α-RuCl3 discussed so far have resulted in strong bounds on
� and J03. This is demonstrated explicitly in Fig. 5(b), which
shows a J03-� projection of the allowed parameter ranges that
are restricted by the same limits as in Figs. 4 and 5(a), dictated
by the ESR/THz gap, variation of �Hc, and fixed H (a)

c,exp =7 T.
In this figure, the narrow width of the projection is mostly
controlled by �Hc, while the length is due to the limits on �tot

and K . In Fig. 5(b), we explicitly limited K to the “plausible
range” of 2 meV < |K|< 25 meV.

Lastly, all three projections of Figs. 4, 5(a), and 5(b) are
summarized as a 3D shape in Fig. 5(c), which makes it explicit
that the allowed regions illustrated in each figure correspond
to a projection of this three-dimensional object onto a respec-
tive plane. The aforementioned correlations between different
parameters also become clearer, with the upper and lower
bounds on �tot providing the ranges for � and J03, while the
difference of the critical fields �Hc is giving a narrow width
of the allowed 3D parameter space. However, Kitaev term
remains unbounded and so do the Heisenberg exchanges J and
J3, as we have only restricted their combination. Therefore,
more empirical constraints are needed.

D. Empirical constraints, II

To establish further constraints for the model (1) of
α-RuCl3, we employ two additional “soft” criteria motivated
by several experimental results. Below we discuss the range of
the out-of-plane tilt angle of spins in the zigzag state and an
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FIG. 5. (a) The K-J03 and (b) the J03-� projections of the parameter space allowed by three constraints: 9<�tot <13 meV, 0.5<�Hc <

1.5 T, and H (a)
c =7 T. These criteria strongly bind � and J03 [see (b)]. The K-J03 projection in (a) is similar to the K-� projection in Fig. 4,

with the upper and lower limits on J03 and plausible boundaries on the Kitaev term K indicated. (c) The 3D J03-�-K subspace of the allowed
parameters, with the extent of �tot giving the length, �Hc determining the width, and K restricting the height of the 3D region. Projections of
this 3D object yield Figs. 4, 5(a), and 5(b).

overall upper limit on the energy bandwidth of the observed
magnetic intensity.

First of the “soft” criteria is the experimentally observed
tilt of the spins away from the ab plane in zero-field zigzag
ground state of α-RuCl3 (see inset in Fig. 6). This effect has
been discussed in Refs. [27,54], with the tilt occurring due to
anisotropic terms and the angle in the classical limit given by

tan 2α = 4
√

2
1 + r

7r − 2
, r = − �

K + �′ . (8)

It has also been analyzed by the neutron diffraction, muon spin
relaxation, and resonant elastic x-ray scattering [17,40,65],
with the best fits giving the tilt angle around α≈35◦ (see
Fig. 6). By comparing to exact diagonalization, it was shown
in Ref. [27] that quantum corrections can modify the classical

FIG. 6. Same as Fig. 4 with constraints on the tilt angle α (shown
in the inset) and on magnetic intensity width W0 (see text). Dots are
representative parameter sets from Sec. II E.

value of α by about 5◦. Furthermore, there may be a difference
between the calculated direction of the pseudospin in (8)
and the experimentally measured direction of the magnetic
moment (see Ref. [27]). To account for these effects, we take
a generous range of 25◦ <α<45◦ as our criterion instead of
fixing the tilt angle to a particular value (see also Appendix C).

Figures 6 and 7 show the effect of this constraint on various
projections of the allowed parameter space. We note that the
classical expression (8) can be solved analytically for small
α, giving |K|≈0.9� for �′ =�/2, which agrees closely with
the α=25◦ boundary for the K-� plane in Fig. 6, obtained
numerically. One can see that the most important effect of the
constraint on the tilt angle is the lower boundary on |K|. This
is physically meaningful as the tilt can only occur due to the
nonzero anisotropic terms K , �, and �′ (see also Ref. [40]).

Our second criterion is the upper limit on the energy band-
width of the magnetic intensity observed by the neutron and
Raman scattering [22,42,49,56], which sets a logical upper
bound on the model parameters. In zero field, the bulk of
the magnetic spectral weight is found below �8 meV, with
extrapolations of the upper limit of the measurable signal
extending to at most 15–20 meV.

We make two general assumptions. First, the width of
the detectable spectrum intensity is exhausted by one- and
two-magnon excitations, which is true for the well-ordered
phases such as the zero-field zigzag state of α-RuCl3. Even
in the case of the pure Kitaev model, the basis of spin flips
is still complete, thus suggesting that this measure should
provide a reasonable estimate of the bandwidth of any type of
excitations. This yields the spectrum intensity width as 2W0,
where W0 is the “bare” LSWT single-magnon bandwidth.
Second, as is discussed above and in Sec. III, there is a
quantum renormalization factor for the spectrum that can
be approximated within the RPA [60] by a reduced ordered
moment, �=〈S〉/S, thus narrowing the effective extent of the
one- and two-magnon spectrum to ≈2�W0.
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FIG. 7. Same as Fig. 5 with constraints on the tilt angle α, magnetic intensity width W0 (“realistic” �15 meV, “generous” �20 meV, and
“outrageous” �25 meV), and zigzag ground state (see text). Dots are parameter sets from Sec. II E.

The experimental estimates of the reduced ordered moment
vary around �≈0.5 [15,17], with our LSWT calculations in
Sec. III suggesting a factor of 0.44. Taken together, the “bare”
LSWT one-magnon bandwidth W0 itself is roughly equivalent
to an effective extent of the detectable magnetic intensity. This
consideration, together with the experimental limits discussed
above, create the basis for our criterion. In the spirit of
keeping this criterion “soft,” we present several versions of the
constraint for W0: “realistic” �15 meV, “generous” �20 meV,
and “outrageous” �25 meV cutoff values.

We also combine the constraint on W0 with the verification
that the zero-field ground state is indeed a zigzag state for all
parameter choices and that no intermediate phases occur be-
tween H =0 and Hc. For the first, we use the Luttinger-Tisza
(LT) approach [66], and for the second we inspect possible
spectrum instabilities within the LSWT. This combination of
the W0 and zigzag criteria is essential as they are less stringent
separately.

Figures 6 and 7 show the results of these constraints on
different projections of the allowed parameter space. The
constraints on W0 and zigzag are found numerically from the
LSWT and LT, but for the boundaries shown in Figs. 6 and
7 we use a fit [67] that closely approximates them. One can
see that the most important effect of these constraints is the
upper boundary on |K| and a tighter bound on � and J03 for
the “realistic” W0 limit.

For the K-�-J03 subspace exhibited in Figs. 6 and 7, the
boundary of the zigzag with an incommensurate phase occurs
at both smaller and larger |K|. For the smaller |K|, it is
superseded by the lower bound on the tilt angle α>25◦. While
the bandwidth limit does constrain the value of |K| from above
by itself, the combined effect with the zigzag requirement is
considerably stronger. Thus, the boundary of each color-coded
shape in Figs. 6 and 7 for large values of |K| is also a boundary
to an incommensurate state. This is in a broad agreement with
Ref. [45], where larger |K|/|J| led to phases different from the
zigzag (see also Appendix C).

In Fig. 8 we show a projection of the allowed parameter
space onto the �-�′ plane, which quantitatively confirms our
earlier assertion that �′ should be large and positive. The
boundaries of the �-�′ region are set by the ESR/THz bounds
on �tot =� + 2�′, with �min

tot =9 meV and �max
tot =13 meV, as

well as by the lower boundary on the tilt angle α=25◦ from
above and on the bandwidth W0 and zigzag from below. The
latter are more stringent than the restrictions from �Hc (not
shown), that were advocated earlier. One can also observe
that, overall, �′ is strongly tied to �, which, in turn, is ≈�tot/2.

Lastly, we present the J-J3 projection in Fig. 9. According
to our prior discussion, a combination of J and J3, termed
J03 in (7), is restricted and correlates narrowly with �, while,
individually, these exchanges are unbounded. In Fig. 9, their
allowed region is confined between parallel lines that are
defined by the lower and upper limits of J03 from Fig. 7 and
Eq. (7).

FIG. 8. The �-�′ projection of the parameter regions with all the
constraints. Dots are parameter sets from Sec. II E.
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FIG. 9. The J-J3 projection of the parameter space, subject to
all constraints discussed in text. Boundaries to an incommensurate
phase are from the ab initio guided constraints |J|<�max =6.5 meV,
|J|��max

tot /2, and J3��max
tot /3 (see text). Dots are parameter sets from

Sec. II E.

The zigzag ground state is stabilized by the larger values of
|J| and J3, in agreement with the previous work that pointed
out that trend [68]. One can see that the constraints on the
spectral width W0 and on the zigzag state are responsible
for the majority of the J and J3 boundaries for both “realis-
tic” and “generous” W0, while the parameter region for the
“outrageous” (25 meV) choice of W0 also encounters other
boundaries.

These additional constraints are imposed by the ab initio
results. As one can see in Table I, the ab initio methods set
a rather strict hierarchy on the parameters of the model (1)
of α-RuCl3: K and � are dominant, while the rest of the
terms are subleading. This produces an additional constraint,
|J|, J3 < |K|, �, that limits |J| and J3 from above. Since � is
bounded by the ESR/THz constraints on �tot, this ab initio
guided constraint together with the definition of J03 in Eq. (7)
lead to close approximations for the upper limits on |J| and
J3 in terms of �max

tot shown in Fig. 9. In addition, one of the
boundaries in Fig. 9 is due to an explicit constraint |J|<�max.

E. Summary

Altogether, we have provided a series of empirical con-
straints of varying rigidity on the parameters of the model
(1) for α-RuCl3, with an overall qualitative, if somewhat
crude, take-home message. Most of the terms of the model
are related to the same parameter �tot, which is bounded by
the ESR/THz constraints. Specifically, �≈J03 ≈�tot/2 and
�′ ≈�/2. The leading parameter is less constrained, with the
ratio |K|/�≈1.0–3.0, and J and J3 require finer adjustments
to the experimental value of H (a)

c . Empirically, |J|/�≈J3/�≈
0.5–0.75.

These constraints and limits are represented in our Figs. 6–
9. In these figures, we also show the representative points from
each of the three regions bounded by the different constraint
on the bandwidth W0, with the following (K, �, �′, J, J3)

coordinates and the corresponding values of {�tot, J03}, all in
meV:

(K, �, �′, J, J3) {�tot, J03}
Point 1: (−4.8, 4.08, 2.5, −2.56, 2.42) {9.08, 4.70}
Point 2: (−10.8, 5.2, 2.9, −4.0, 3.26) {11.0, 5.78}
Point 3: (−14.8, 6.12, 3.28, −4.48, 3.66) {12.7, 6.50}

Some properties of these parameter sets, such as linear spin-
wave spectrum, magnetization, Néel temperature, and critical
fields, are presented in Sec. III.

F. Compilation of parameters

Our Table I provides a representative compilation of the
parameters of the model (1) that were proposed to describe
α-RuCl3 using the first-principles methods [24,29–33] and
phenomenological analyses [22,34–42], with the first column
providing the reference and the second abbreviating the details
of the used approach. In cases when the proposed model
description did not retain the C3 symmetry of the ideal lattice
structure, we used the bond-averaged values of the exchange
parameters.

In Table I, we also present our results for the ranges of
individual parameters for the “realistic” cutoff on W0 and for
the representative point 1,2,3 sets described above. We note
again that the parameters are correlated, with representative
parameter sets illustrating these correlations. For instance,
larger � requires larger values of �′, |J|, etc. In that sense,
the parameter ranges do not do full justice to the constraints
that we advocate, as the actual five-dimensional constrained
region is much narrower.

The listed values for each parameter are highlighted in
bold in case they fall within or come close to our advocated
“realistic” parameter range. Although one can see quite a few
“hits” in case of K , these may be mostly attributed to an
extensive random shooting.

There are two particularly notable differences of our results
from the prior studies. First is a significant and positive �′,
which is either completely absent in the previous consider-
ations or is small and negative. In Sec. II, we have discussed
extensively and made our case for the necessity of a significant
�′ >0 in the effective model description (1) of α-RuCl3.

Second are the “cumulative” parameters �tot =�+2�′ and
J03 =J+3J3 in the last two columns of Table I. For the case
of �tot, there are a few studies providing comparable values,
in which there is an attempt to describe phenomenology that
is similar to ours, but without positive �′. These attempts can
be seen as trying to compensate for the lack of �′ by cranking
up � [40,41]. For J03, it appears that previous works have,
generally, underappreciated the importance of the mutual
correlation of J and J3, leading to a nearly random distribution
of their values. As is discussed above, this work underscores
the phenomenological constraints on both �tot and J03 and the
associated strong mutual bounds on �, �′, and J03 (see Figs. 7
and 8).

Lastly, as is emphasized in Secs. I and II, the results
of our work may differ from the prior analyses in Table I
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TABLE I. The representative sets of parameters of the generalized KH model (1) for α-RuCl3 (in meV). The values that come close to
the ranges proposed in this work are highlighted in bold. The common acronyms include linear spin-wave theory (LSWT), density-functional
theory (DFT), spin-orbit coupling (SOC), inelastic neutron scattering (INS), exact diagonalization (ED), and terahertz spectroscopy (THz);
structures of P3 and C2 symmetry are referred to as “P3” and “C2” for brevity.

Reference Method K � �′ J J3 �+2�′ J+3J3

Banerjee et al. [22] LSWT, INS fit +7.0 −4.6 −4.6
Kim et al. [29] DFT+t/U , P3 −6.55 5.25 −0.95 −1.53 3.35 −1.53

DFT+SOC+t/U −8.21 4.16 −0.93 −0.97 2.3 −0.97
Same+fixed lattice −3.55 7.08 −0.54 −2.76 6.01 −2.76
Same+U + zigzag +4.6 6.42 −0.04 −3.5 6.34 −3.5

Winter et al. [30] DFT+ED, C2 −6.67 6.6 −0.87 −1.67 2.8 4.87 6.73
Same, P3 +7.6 8.4 +0.2 −5.5 2.3 8.8 +1.4

Yadav et al. [24] Quantum chemistry −5.6 −0.87 +1.2 −0.87 +1.2
Ran et al. [34] LSWT, INS fit −6.8 9.5 9.5

DFT+t/U , U =2.5 eV −14.43 6.43 −2.23 2.07 6.43 +3.97
Hou et al. [31] Same, U =3.0 eV −12.23 4.83 −1.93 1.6 4.83 +2.87

Same, U =3.5 eV −10.67 3.8 −1.73 1.27 3.8 +2.07
Wang et al. [32] DFT+t/U , P3 −10.9 6.1 −0.3 0.03 6.1 −0.21

Same, C2 −5.5 7.6 +0.1 0.1 7.6 +0.4
Winter et al. [35] Ab initio + INS fit −5.0 2.5 −0.5 0.5 2.5 +1.0
Suzuki et al. [36] ED, Cp fit −24.41 5.25 −0.95 −1.53 3.35 −1.53
Cookmeyer et al. [37] Thermal Hall fit −5.0 2.5 −0.5 0.11 2.5 −0.16
Wu et al. [38] LSWT, THz fit −2.8 2.4 −0.35 0.34 2.4 +0.67
Ozel et al. [39] Same, K >0 +1.15 2.92 +1.27 −0.95 5.45 −0.95

Same, K <0 −3.5 2.35 +0.46 2.35 +0.46
Eichstaedt et al. [33] DFT+Wannier+t/U −14.3 9.8 −2.23 −1.4 0.97 5.33 +1.5
Sahasrabudhe et al. [42] ED, Raman fit −10.0 3.75 −0.75 0.75 3.75 1.5
Sears et al. [40] Magnetization fit −10.0 10.6 −0.9 −2.7 8.8 −2.7
Laurell et al. [41] ED, Cp fit −15.1 10.1 −0.12 −1.3 0.9 9.86 +1.4
This work “Realistic” range [−11,−3.8] [3.9,5.0] [2.2,3.1] [−4.1,−2.1] [2.3,3.1] [9.0,11.4] [4.4,5.7]

Point 1 −4.8 4.08 2.5 −2.56 2.42 9.08 4.7
Point 2 −10.8 5.2 2.9 −4.0 3.26 11.0 5.78
Point 3 −14.8 6.12 3.28 −4.48 3.66 12.7 6.5

because we consider phenomenology of an effective model
as opposed to the first-principles methods, and we also extract
bare parameters that are typically larger than the ones reduced
by quantum fluctuations.

III. QUANTUM EFFECTS

In this section, we present the RPA results for the spectrum
renormalization in the paramagnetic phase and demonstrate
their close agreement with the ESR and THz data. As is shown
above, the α-RuCl3 model has strong anisotropic-exchange
interactions. They should inevitably lead to significant nonlin-
ear quantum effects in the magnon spectra due to substantial
three-particle interactions. Below, we calculate the damping
of magnons due to associated decays and consider their effect
in the spectrum and the dynamical structure factor.

A. Quantum fluctuations

The self-consistent RPA approach is based on the mean-
field decoupling of the equations of motion for the spin
Green’s functions [60,69]. It provides an approximate, yet
effective, way of accounting for the downward spectrum
renormalization by quantum fluctuations. For S = 1

2 , the result

is particularly simple [60,69]

ε̃k = �εk, � = 〈S〉/S, (9)

where 〈S〉 is the average onsite magnetization reduced by
quantum fluctuations, εk is the LSWT magnon energy, and
ε̃k is the renormalized energy.

One can justify this approximation using unbiased numer-
ical methods. In Fig. 10, we provide a comparison of the
RPA results with the ED calculations for the magnon energy
spectrum at q=0 in the paramagnetic phase vs field for two
field orientations. The ED data are from Ref. [43] for the
parameter set K =−5 meV, �=2.5 meV, �′ =0, and J3 =
−J =0.5 meV, which has also been used in Refs. [35,37] for
different phenomenologies of α-RuCl3. One can see that RPA
provides a significant improvement over the LSWT results
and yields a good agreement with the numerics.

With this justification, we now demonstrate the effect of
quantum fluctuations on the LSWT results for the single-
magnon energy gap at q=0 that was anticipated in Fig. 2.
The results in Fig. 11 are shown for the three representative
parameter sets, referred to as points 1, 2, and 3 in Sec. II E
and Table I. For all three sets, the mean-field RPA already
yields a close quantitative description of the ESR/THz data,
with the point 1 set, which belongs to the “realistic” region of
the advocated parameter space, giving the best fit of the three.
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FIG. 10. The ED results for the magnon spectrum at q=0 as
a function of magnetic field for two principal directions (intensity
plot), reproduced from Ref. [43]. Results for the single-magnon
branch by LSWT [Eq. (4)] (dashed line) and by the RPA (solid line)
for the parameter set from Ref. [43].

The variation of the slope of ε0(H ) near the critical point
has been attributed to changes of an effective g factor and
novel excitations [18]. In Ref. [42], this effect has been as-
cribed to stronger repulsion from the two-magnon continuum
in this field regime, which was also supported by the ED cal-
culations. Here, we corroborate the latter interpretation using
the RPA method, which also shows a significant change of
the slope due to enhanced quantum effects near the transition
field. In our case, in addition to the field dependence of the
LSWT results from Eq. (4), an extra curvature of ε0(H ) is due
to the field dependence of the ordered moment 〈S〉.

We summarize some of the zero-field properties of the
model (1) for the points 1, 2, and 3 parameter sets in Table II,
where we present spin-wave results for the ordered moment,
Néel temperature, critical fields from Eqs. (5) and (6), and tilt
angle from Eq. (8) for all three sets.

Our LSWT calculations yield ordered moments that are
indicative of strong fluctuations, 〈S〉≈0.22, the value that is

FIG. 11. ESR and THz data for the single-magnon energy gap at
q=0 vs field from Fig. 2 together with the LSWT (dashed lines) and
RPA (solid lines) results for the representative points advocated in
Sec. II E and Table I.

TABLE II. Zero-field magnetization, Néel temperature, critical
fields, and tilt angle for representative parameter sets.

〈S〉 TMF (K) TN (K) H (a)[(b)]
c (T) α (degrees)

Point 1 0.219 16.0 12.3 7.14 [7.88] 28.2
Point 2 0.220 25.4 16.2 7.20 [7.87] 37.2
Point 3 0.225 31.1 21.5 6.94 [7.79] 39.4

in agreement with experimental estimates [15,17] and is also
similar to the results for the Heisenberg antiferromagnet on
the same lattice [70]. While LSWT calculation of the ordered
moment 〈S〉 is standard, the Néel temperature is calculated
from a self-consistent condition on the ordered moment 〈S〉→
0 at T →TN within the spin Green’s function formalism
using RPA (see Refs. [55,60,69] and Appendix B for details).
One can see a significant lowering of the mean-field results
for the ordering temperature, with the latter obtained from
TMF =−S(S + 1)λmin(Q)/3kB, where λmin(Q) is the lowest
eigenvalue of the Fourier transform of the exchange matrix
in (1) at the ordering vector Q [71]. The experimental value
of TN for α-RuCl3 is known to be sensitive to the stacking of
the honeycomb planes [17] and can be lower than our values in
Table II, which is likely related to the frustrating 3D interplane
couplings [61].

As was discussed above, the critical fields are not changed
by quantum effects within the RPA, as, at the mean-field level,
the effect of fluctuations on the field-induced spin polarization
cancels the same effect on the gap that is closing at the
transition. While this is a mean-field argument, it points to
suppressed quantum effects on the critical fields. In Table II,
the critical fields are from Eqs. (5) and (6), and for all three
sets they are close to the experimental values for α-RuCl3

[45]. Altogether, the RPA approach provides a good overall
description of several aspects of α-RuCl3 phenomenology.

The zero-field ordered moment 〈S〉 in Table II is about the
same for all three representative parameter sets, the feature
that can be attributed to a significant similarity of the spin-
wave spectra in all three cases shown in Fig. 12 for a q contour

FIG. 12. The LSWT magnon spectra for three representative
parameter sets, points 1, 2, and 3 from Sec. II E and Table I.

033011-10



RETHINKING α-RuCl3 PHYSICAL REVIEW RESEARCH 2, 033011 (2020)

through the Brillouin zone (see Fig. 13 below). The spectra
consist of four branches due to the four-sublattice structure
of the zigzag state. Since the points 1, 2, and 3 sets belong
to the parameter regions with different bandwidth limits, this
provides the main difference between otherwise similar plots.

We also note the pseudo-Goldstone mode at the M point
in all three plots that occurs due to an accidental degeneracy.
The nature of this degeneracy will be discussed in Sec. IV.
The experimental value of the gap at the M point is larger
than in our Fig. 12, which is related to the C3 symmetry
breaking in α-RuCl3 [30,42]. While strongly affecting the gap
at the accidental degeneracy points, this lower symmetry is
not expected to significantly change other results discussed in
this work [72].

B. Magnon decays

It was argued in Refs. [35,51] that strong quan-
tum effects are expected to be generally present in the
spectrum of any anisotropic-exchange magnet, except in
some narrow regions of its phase diagram where the
off-diagonal exchange terms are suppressed. The signif-
icant off-diagonal terms necessarily produce strong an-
harmonic couplings of magnons for any form of the
underlying magnetic order. Such couplings, in turn, in-
evitably lead to a nearly complete wipeout of the higher-
energy magnons due to large decay rates into the lower-energy
magnon continua [52]. As a result, much of the magnon spec-
trum observed by the inelastic neutron scattering is expected
to be comprised of the broad features combined with some
well-defined low-energy magnon modes.

Since the preceding consideration unequivocally points to
large off-diagonal � and �′ terms in the model (1) of α-RuCl3,
there is no question in our mind that the scenario advocated
in Refs. [35,51] is applicable here. Below, we first repeat
the general arguments for the inevitability of strong magnon
decays, and then apply the approximate analysis of them to a
representative set of the model parameters and demonstrate
a coexistence of the well-defined low-energy quasiparticles
with the broadened excitation continua. We argue that these
results are in agreement with the experimental features found
in the spectrum of α-RuCl3 [22,34,49,53]. We underscore,
once again, the importance of taking into account magnon
decays in interpreting broad features in the spectra of all
strongly anisotropic magnets [7].

1. General formalism

Within the spin-wave expansion, the reference frame on
each site is rotated to a local one with the new z axis pointing
along the spin’s quantization axis that is given by the classical
energy minimization Si = R̂ĩSi. Here, S̃i is the spin vector in
the local reference frame at the site i and R̂i is the rotation
matrix for that site. For the case of the model (1) of α-RuCl3,
this would be a rotation from the cubic axes to the axes of
the zigzag order that are tilted out of the basal plane of the
honeycomb lattice.

Thus, the spin Hamiltonian (1) can be rewritten as

Ĥ =
∑
〈i j〉

S̃T
i J̃i j S̃ j, (10)

where the “rotated” exchange matrix is

J̃i j = R̂T
i Ĵi jR̂ j =

⎛⎜⎜⎝
J̃xx

i j J̃xy
i j J̃xz

i j

J̃yx
i j J̃yy

i j J̃yz
i j

J̃ zx
i j J̃ zy

i j J̃ zz
i j

⎞⎟⎟⎠. (11)

For the model (1) one can ignore the third-neighbor Heisen-
berg exchange terms because they do not contribute to decays
for a collinear zigzag order.

The LSWT needs only diagonal and J̃xy
i j (J̃yx

i j ) terms of the

matrix J̃i j , while it is its off-diagonal parts that give rise to the
three-magnon interaction

Hod =
∑
〈i j〉

(
J̃xz

i j S̃x
i S̃z

j + J̃yz
i j S̃y

i S̃z
j + {i ↔ j}). (12)

The form of the “original” exchange matrix Ji j in (2), in which
all terms of the generalized KH model are present, makes
it clear that it is only some very restrictive choices of the
parameters and ordered states that can render the resultant
off-diagonal J̃xz

i j and J̃yz
i j terms negligible.

For the zigzag state within the model (2), we obtain explicit
expressions of J̃xz

i j and J̃yz
i j for each nonequivalent bond in

terms of K , �, �′, and polar and azimuthal angles of the
zigzag axes relative to the cubic ones. They are listed in
Appendix D. As was discussed in Ref. [35], the off-diagonal
couplings in Eq. (12) are nonzero except for the case �=
�′ =0, which also makes spins orient along one of the cubic
axes. Given that in case of α-RuCl3, K and � are, in fact,
the leading terms of the generalized KH model, it is natural
that the off-diagonal couplings J̃xz

i j and J̃yz
i j are very significant.

Thus, it is imperative to consider their effect in the spin-wave
excitations.

The Holstein-Primakoff bosonization of Eq. (12) yields the
three-particle interaction

H3 =
∑
〈i j〉

Ṽi j (a
†
i a†

j a j + H.c + {i → j}), (13)

where Ṽi j =−√
S/2(J̃xz

i j + iJ̃yz
i j ).

While the technical procedure of obtaining fully sym-
metrized three-magnon interactions from the Holstein-
Primakoff form of Eq. (13) typically requires numerical di-
agonalization of the quadratic LSWT Hamiltonian and is also
quite involved otherwise (see Ref. [51]), the resultant form of
the decay part of it is general,

Ĥ3 = 1

2
√

N

∑
k+q=−p

∑
ηνμ

(
Ṽ ηνμ

qk;p d†
ηqd†

νkdμ−p + H.c.
)
, (14)

where d†(d ) are magnon operators, indices η, ν, and μ

numerate magnon branches, and Ṽ ηνμ

qk;p is the vertex. With
this interaction (14), standard diagrammatic rules allow for
a systematic calculation of the quantum corrections to the
magnon spectra in the form of self-energies �μ(k, ω).

2. Approximations

The standard approach, justified within the 1/S expansion,
is to consider a one-loop correction to the spectrum due to
three-magnon interaction (14). Since the most drastic qualita-
tive effect of decays is the finite lifetime, one can ignore the
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real part of the self-energy of the branch μ and calculate it
in the on-shell approximation, �μ(k, ω)≈−i�μ

k , where the
decay rate of the mode μ is

�
μ

k = π

2N

∑
q,ην

∣∣Ṽ ηνμ

q,k−q;k

∣∣2
δ(εμk − εηq − ενk−q). (15)

Below we will also capitalize on the apparent success of the
RPA approach to account for the renormalization of the real
part of magnon energies in a simplified fashion.

Generally, the use of Eq. (15) together with the derivation
of the vertex in Eq. (14) requires numerical diagonalization
of the LSWT Hamiltonian and matrix transformations with
potentially prohibitive computational costs. Instead, we use
the “constant matrix element” approach that was proposed in
Ref. [35] and was recently validated for the generalized KH
model in Ref. [51], where it was found to provide a good
quantitative approximation. We briefly describe its nature
below.

The decay rate (15) can be related to a simpler quantity, the
on-shell two-magnon density of states (DOS)

Dk(εμk ) = π

N

∑
q,νη

δ(εμk − ενq − εηk−q), (16)

which quantifies the overlap of the single-magnon excitations
of the branch μ with the two-magnon continuum.

Since we have the full knowledge of the real-space three-
magnon vertices in Eq. (13) (see Appendix D), we can intro-
duce the overall strength of the coupling

Ṽeff = 1

12

∑
i

∑
〈i j〉γ

|Ṽi j |, (17)

where i sums over four sublattices of the zigzag state and
γ ={X, Y, Z} is numerating the bonds. This definition is
consistent with the ones used in Refs. [35,51]. Then, one can
rewrite the three-magnon vertex in Eq. (14) as

Ṽ ηνμ

qk;p = Ṽeff �̃
ηνμ

qk;p, (18)

where the dimensionless vertices �̃ include all the necessary
transformations and symmetrizations.

Within the “constant matrix element” approximation, we
substitute the dimensionless |�̃ηνμ

q,k−q;k|2 in the decay rate (15)
by a constant, thus eliminating the numerically costly and
analytically cumbersome element of the calculation. As a
result, the decay rate (15) is simply proportional to the on-
shell two-magnon DOS (16)

�
μ

k ≈ f

2
|Ṽeff |2D(εμk ), (19)

with an implied relation of the average f =〈|�̃ηνμ

q,k−q;k|2〉. This
approximation leads to a drastic simplification for the decay
rate calculation, as one needs only magnon energies from
the harmonic theory and the average real-space three-magnon
coupling strength from Eq. (17).

One of the strong justifications of the constant matrix
element approximation is the common origin of the Van Hove
singularities in the decay rates and the two-magnon DoS.
This approximation is also significantly improved by using
the self-consistency within the Dyson’s equation, referred to

FIG. 13. The dynamical structure factor S(q, ω) for the point 1
parameter set: (a) LSWT results with RPA renormalization, (b) in-
cludes magnon lifetime effects and longitudinal contribution (see
text).

as the iDE approach [35,51,59,73,74],

�
μ

k = f

2
|Ṽeff |2Dμ

k

(
εμk + i�μ

k

)
, (20)

where the δ function with the complex argument is a short-
hand for a Lorentzian. Since within the iDE approach there is
an effective averaging over various states, it provides further
credence to the constant matrix element approximation.

3. Results

In Fig. 13, we present the results of the calculation of
the dynamical structure factor S (q, ω) for the representative
parameter set of point 1 from Sec. II E and Table I. Fig-
ure 13(a) shows the LSWT results with all energies multiplied
by the RPA renormalization factor, 〈S〉/S ≈ 0.44, argued for
above (see also Table II). Since within the LSWT only trans-
verse component of the structure factor contributes, this panel
showcases the mean-field renormalization effect of quantum
fluctuations on the bare spectrum of Fig. 12. We note that the
results in Fig. 13 are averaged over three equivalent domains
of the zigzag order, the intensity is cut below the highest
maxima in order to emphasize details of the structure factor,
and artificial broadening is δ=0.05 meV.

Figure 13(b) is our main result. It shows a mix of the
contributions of the transverse and longitudinal components
of the structure factor, both taking into account magnon
lifetime effects on top of the RPA renormalization. Compared
to Fig. 13(a), the transverse component includes the decay
rates obtained within the iDE approach (20). For the point
1 parameter set, the calculated overall strength of the three-
magnon coupling (17) is Veff =6.1 meV, which is about half
of the bare magnon bandwidth in Fig. 12 for the same set.
This value is in accord with the expectations of the significant
off-diagonal terms in the exchange matrix laid out above. For
the ad hoc parameter f in the calculations of the damping in
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Eq. (20), the choice was made at f =0.1, which is similar to
the ones used in the prior works (see Refs. [35,51]), where
it was based on a comparison with the fully microscopic
calculations for the honeycomb-lattice XXZ model in a field
[75] and for the KH-� model [51].

As a result of the damping, the upper magnon modes
are strongly washed out, with the lower branches damped in
some regions of the Brillouin zone and stable in the others.
In particular, regions near the � point are broadened due to
decays into the quasi-Goldstone modes, in an accord with the
results of Ref. [35] for a different set of parameters. Overall,
the broadening is stronger in the present case because the
three-magnon coupling is larger.

An important element to the structure factor in the strongly
fluctuating system is the longitudinal component that probes
the two-magnon continuum directly. To keep its description
on a par with that of the constant matrix element approxima-
tion for the decays into such a continuum, we approximate
the longitudinal structure factor as directly proportional to
the two-magnon density of states with the help of another ad
hoc constant parameter, bypassing the need for cumbersome
manipulations with the magnon eigenvectors

Szz(q, ω) = π f2

N

∑
k,νη

δ(ω − ε̃νk − ε̃ηq−k ), (21)

where ε̃νk =ενk + i�ν
k is the RPA-adjusted magnon energy of

the mode ν together with its damping. Including broadening
effects in the magnon lines in Eq. (21) adds another level
of self-consistency to our calculation. Here, an improvement
over Ref. [35] is the use of the momentum dependent �ν

k(q−k)
instead of the averaged ones, resulting in more pronounced
Van Hove singularities in the two-magnon continuum. The
choice f2 = 2

15 is also similar to the prior work [35].
In Fig. 13(b), the two-magnon longitudinal component

provides a strong contribution to the signal at higher energies.
Specifically, it contributes to the broad band of intensity
between ≈4 and 6 meV, which is in a close accord with the
experimental observations of Refs. [22,53] that interpreted it
as a sign of fractionalization. The two-magnon continuum
also extends the observable bandwidth to the values that are
consistent with experiments [22,42,49,56].

The well-defined magnon excitations at low energies are in
a qualitative agreement with the neutron scattering results of
Refs. [34,53]. The weak C3 symmetry breaking that is present
in α-RuCl3 [30,42] is expected to provide a gap at the M
points and suppress the decays of the low-energy magnons
near the � point, thus improving the agreement further. The
decays of the higher-energy magnons and the broad band of
intensity are expected to be insensitive to such a symmetry
breaking.

Altogether, our results strongly substantiate the expecta-
tions outlined in the beginning of this section. The results
of our calculations for a representative parameter set from
the realistic parameter region yield the spectrum that is com-
prised of the broad excitation continua coexisting with the
well-defined low-energy magnon modes. In accord with the
scenario advocated in Refs. [35,51], it highlights the signif-
icance of the phenomenon of magnon decays and outlines
the challenges of interpreting broad features in the spectra of
strongly anisotropic magnets.

IV. DUAL MODELS AND OTHER FORMS

In this section we provide further insights into the relevant
section of the phase diagram of the generalized KH model
that is pertinent to α-RuCl3 parameter space, analyze it with
the help of the duality transformations, and discuss possible
simplified versions of the effective model that should contain
essential physics of this material.

A. Dualities

The generalized KH model (2) is known to map onto itself
under various transformations [54,76,77], contributing to the
aura of sophistication surrounding this model. While some of
such transformations are rather non-trivial, others occur under
benign symmetry operations, with the latter made not obvious
by the parametrization of the exchange matrix (2) in the cubic
axes.

One of such artifacts of the cubic axes representation is
the self-duality under the π rotation of the honeycomb plane
about crystallographic z0 axis ([111] direction in the cubic
axes) (see Figs. 1 and 14). While for the model in crystal-
lographic axes (see below) this innocent symmetry operation
leads to an inconsequential sign change in one of the terms
(Jz±), it requires rewriting of the generalized KH model (2)
within the rotated set of the cubic axes [54], transforming its
parameters as

⎛⎜⎝ J
K
�

�′

⎞⎟⎠
dual

=

⎛⎜⎜⎜⎜⎝
1 + 4

9 − 4
9 + 4

9

0 − 1
3 + 4

3 − 4
3

0 + 4
9 + 5

9 + 4
9

0 − 2
9 + 2

9 + 7
9

⎞⎟⎟⎟⎟⎠
⎛⎜⎝ J

K
�

�′

⎞⎟⎠. (22)

It is important to note that models with the dual and original
parameters lead to identical physical outcomes.

Because of that, the utility of such duality transformations
is that they can reveal the origin of some properties of the
generalized KH model that are hidden in the original lan-
guage. For instance, for the same model on the triangular
lattice, the so-called Klein duality has allowed to relate an
enigmatic quasi-Goldstone mode in the stripe phase to an
accidental degeneracy in the Klein-dual ferromagnetic phase
[55]. In the spectrum of α-RuCl3, quasi-Goldstone modes are
ubiquitously present at the M points that are complementary
to the ordering vector of the zigzag phase [34,53], suggesting
a proximity to an accidental degeneracy. This is also true
throughout the parameter space advocated in Sec. II, as is
highlighted in Fig. 12 for representative parameter sets.

Here, we use duality transformations to shed light on
the relevant phase diagram and properties of α-RuCl3. In
Fig. 14(a), we show �̃′-J̃3 projection of the “realistic” param-
eter region (see Sec. II), where �̃′ and J̃3 are �′ and J3 nor-
malized by

√
J2 + K2 + �2, which is used as an energy scale,

reducing the parameter space dimensions to 4D. Figure 14(b)
shows the same projection after duality transformation of
Eq. (22).

To make possible an exploration of the wider phase dia-
gram, we choose a representative point from the “original”
projection in Fig. 14(a), {�̃′, J̃3}={0.35, 0.36}. Since this
fixes two parameters of the 4D parameter space, we can
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FIG. 14. (a) The �̃′-J̃3 projection of the “realistic” (W0 <15 meV) parameter region from Sec. II (see also Figs. 6–9); �̃′ and J̃3 are �′

and J3 in units of
√

J2 + K2 + �2. (b) Same projection after duality transformation of Eq. (22). (c) Bottom: a sketch of the π rotation in the
honeycomb plane about crystallographic z0 axis. (c) Top: a schematic illustration of the transition between the two planes of the J-K-� phase
diagrams in Fig. 15 along the �̃′ axis of an extended cylindrical 3D phase diagram as a result of the duality transformation.

investigate the remaining J-K-� phase diagram by the
Luttinger-Tisza method [66] [see Fig. 15(a) for the polar
representation of it], in which � is the radial and J and K
are the polar variables.

The entire phase space is exhausted by the aniferromag-
netic (AFM), zigzag (ZZ), and the incommensurate (IC)
states. The parameter space associated with the “realistic”
parameter choices occupies a small region of the zigzag phase

FIG. 15. (a) The J-K-� phase diagram for {�̃′, J̃3}=
{0.35, 0.36}, and (b) for {�̃′, J̃3}={0.54, 0.35} (see text).

bordering incommensurate phase, as is discussed in Sec. II D
(see also Appendix C). The zigzag-to-incommensurate phase
transition is of the first order by both LT and LSWT analysis.
The IC phase evolves continuously from a ferromagnetic state
in a broader �̃′-J̃3 parameter space and is similar in nature
to the helical phase within the phase diagram of the J1-J2-J3

model on the same lattice [78].
It is the dual π−rotated version of this phase diagram

that is of interest. A minor subtlety occurs because the trans-
formation of Eq. (22) concerns all four parameters of the
exchange matrix, so that the transformation of the single point
in Fig. 14(a) results in an area in the dual �̃′-J̃3 projection in
Fig. 14(b), which is highlighted by the ellipse. To make a com-
parison meaningful and given a small size of the dual region of
interest, we also pick a representative point in the dual region
of parameters {�̃′, J̃3}={0.54, 0.35} [see Fig. 14(b)]. We also
note that since the duality transformation (22) involves four
parameters, one can see it as a transition between the planes
of a 3D cylindrical phase diagram along the �̃′ axis, as is
schematically illustrated in Fig. 14(c).

The dual J-K-� phase diagram for this choice of �̃′ and
J̃3 is shown in Fig. 15(b). The most important observation
is that the duality-transformed “realistic” parameter region
of the generalized KH model corresponds to the vanishing
values of the � term. This is also corroborated by the dual
transformation (22) of the points 1, 2, and 3 representative
parameter sets of the model from Sec. II E, given by the
following dual (K, �, �′, J, J3) coordinates (in meV):

(K, �, �′, J, J3)

Dual point 1: (3.71, 1.24, 3.92, −5.40, 2.42)
Dual point 2: (6.67, −0.62, 5.81, −9.82, 3.26)
Dual point 3: (8.72, −1.72, 7.20, −12.32, 3.66)

In all three cases, as well as in Fig. 15(b), the allowed
parameters correspond to �≈0, dominant ferromagnetic J <

0, followed by substantial antiferromagnetic Kitaev and �′
terms, K ≈�′ >0. The dual zigzag region is also bordered by
the incommensurate phase because the global π rotation does
not affect the ground state. We emphasize once more that the
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resultant physical properties of the original and dual models
are identical.

The duality of the original model to the one with negli-
gible � sheds light onto the nature of the persistent pseudo-
Goldstone modes in α-RuCl3 [34,53]. The pure Kitaev-
Heisenberg model with �=�′ =0 is well known to have a
classical accidental degeneracy leading to a gapless mode
[76,77]. Such a degeneracy is generally lifted by � �=0. It
is less known that the nonzero �′ term can leave this de-
generacy intact [47]. The logic of this behavior is exposed
by the four-sublattice Klein duality transformation that con-
verts zigzag to antiferromagnetic state [76,77]. While this
transformation maps pure Kitaev-Heisenberg model onto it-
self, the off-diagonal �′ term morphs into antisymmetric,
Dzyaloshinskii-Moriya–type interaction �̆′. The latter does
not affect collinear ground state on a classical level, leav-
ing the accidental degeneracy intact and preserving pseudo-
Goldstone modes. This effect is similar to the one discussed
for the same model on the triangular lattice [55].

B. Simpler models

The other reason why the negligible-� form of the gen-
eralized KH model is important is because it results in an
effective description of α-RuCl3 by fewer parameters. The
relevant K-J-�′-J3 model has a lower dimensionality of its
parameter space and is, thus, more amendable to a detailed
exploration.

A potentially more drastic simplification can be achieved
by rewriting the model (1) in the “spin-ice” language that
uses crystallographic axes [5,10,47,54,55,79], where x0 and
y0 correspond to the a and b directions in the plane of the hon-
eycomb lattice (see Fig. 1). This leads to the XXZ-J±±-Jz±
form of the Hamiltonian (1):

H1 =
∑
〈i j〉

{
J1

(
Sx0

i Sx0
j + Sy0

i Sy0
j + �Sz0

i Sz0
j

)
−2J±±

[(
Sx0

i Sx0
j −Sy0

i Sy0
j

)
c̃α−(

Sx0
i Sy0

j +Sy0
i Sx0

j

)
s̃α

]
−Jz±

[(
Sx0

i Sz0
j +Sz0

i Sx0
j

]
c̃α+(

Sy0
i Sz0

j +Sz0
i Sy0

j

)
s̃α

]}
, (23)

where abbreviations are c̃α =cos ϕ̃α and s̃α =sin ϕ̃α , bond-
dependent phases ϕ̃α ={0, 2π/3,−2π/3} correspond to the
{Z, X, Y} bonds in Fig. 1, respectively, and the isotropic third-
neighbor H3 is unchanged.

The relation of the parameters of the model (23) to the
parameters of the model (2) is given in Appendix A. Rewriting
the points 1, 2, and 3 representative parameter sets from
Sec. II E in these new variables yields all in meV except for
the dimensionless XXZ anisotropy parameter �.

(J1, �, J±±, Jz±, J3)

“Ice” point 1: (−7.20, −0.26, 0.3, −3.0, 2.42)
“Ice” point 2: (−11.3, 0.02, 1.0, −6.2, 3.26)
“Ice” point 3: (−13.6, 0.07, 1.5, −8.3, 3.66)

It transpires that for all three representative sets, the easy-
plane anisotropy � is small and one of the bond-dependent

terms J±± is much smaller than the other interactions. We
can verify that the same is true across the advocated realistic
parameter ranges for α-RuCl3: the model in the language of
Eq. (23) consistently has these two terms nearly negligible.
Some of the parameter sets suggested in the prior works based
on α-RuCl3 phenomenology also follow the same trend [35].
Of the remaining terms, the leading is the ferromagnetic XY
exchange J1 with the sizable Jz± ≈|J1|/2 and J3.

It follows from this analysis that the J1-Jz±-J3 model,
written in crystallographic axes of the honeycomb lattice and
operating in a much more accessible 3D parameter space,
should be able to offer a much simpler and much more
natural way of describing α-RuCl3 that can give a refreshing
perspective on its physics.

It also appears that the relevant physics of α-RuCl3 is
not related to a model with a dominating Kitaev term, but
is that of the easy-plane ferromagnet with antiferromagnetic
third-neighbor coupling and strong off-diagonal exchange
Jz±. Naturally, it is the latter term that is responsible for
the out-of-plane tilting of the ordered moment, substantial
fluctuations in the ground state, and significantly damped
magnon excitations.

From this study, one is also led to believe that it is not a
proximity to a Kitaev spin-liquid phase, but a proximity to an
incommensurate phase, which is continuously connected to a
ferromagnetic one, that is significantly more pertinent to the
phase diagram of α-RuCl3. These and other features of this
material and relevant models deserve further investigation.

V. SUMMARY

We conclude by summarizing our results. We have demon-
strated that empirical constraints lead to significant restric-
tions and rather drastic revisions of the physically reasonable
parameter space for the effective microscopic spin model of
α-RuCl3. Specifically, the ESR and THz data in the field-
induced paramagnetic regime, combined with the analysis of
the in-plane critical fields, out-of-plane tilt angle, bandwidth
of the magnetic signal, and the zigzag nature of the ground
state, produce convincing bounds on the parameters of this
model.

In broad strokes, for the key parameters of the generalized
KH model, these constraints necessitate a significant positive
�′ ≈�/2 not anticipated previously and a close relation J+
3J3 ≈�. The leading Kitaev term K <0 is also constrained and
is not overly dominating, with the ratio |K|/�≈1.0–3.0, and
J <0 and J3 >0 terms varying within the range of |J|/�≈
J3/�≈0.5–0.75. In the absolute units, the bounds on � are
≈4 meV–6 meV, setting the scale for the rest of the model.

We have also demonstrated that our proposed parameter
sets provide an excellent account of a variety of other phe-
nomenologies of α-RuCl3, allowing to consolidate previous
attempts of their description. Our parameters can be recon-
ciled with the typically smaller parameters discussed in the
prior works by suggesting their renormalization due to quan-
tum fluctuations. We have shown that the latter effect can be
successfully approximated with the help of a self-consistent
mean-field RPA approach.

We have argued, in accord with the previous studies,
that the off-diagonal terms that necessarily produce strong
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anharmonic couplings of magnons are expected to be signifi-
cant throughout the phase diagram of an anisotropic-exchange
magnet and for any form of the underlying magnetic order.
These couplings, in turn, inevitably lead to large decay rates of
the higher-energy into the lower-energy magnons, resulting in
a coexistence of the broad continua with the well-defined low-
energy modes in the inelastic neutron scattering spectrum. The
proposed parameter space of α-RuCl3 is no exception to this
scenario, with our calculations of the dynamical structure fac-
tor for a representative parameter set strongly substantiating it
in a close agreement with experiments. This result highlights
the challenges of interpreting broad features in the spectra
of strongly anisotropic magnets and the significance of the
phenomenon of magnon decays in this context.

We have also provided an important insight into the na-
ture of the pseudo-Goldstone modes that occur away from
the ordering vector of the zigzag phase of α-RuCl3. Using
duality transformations of the generalized KH model within
the advocated parameter range, we have related these modes
to an accidental near degeneracy in a duality-related �−less
model, in which the degeneracy of the pure Kitaev-Heisenberg
type is not lifted by the �′ term. As a by-product, this effort
has suggested a fully equivalent simpler model description of
α-RuCl3 within the same KH model, but with the leading term
J <0, subleading positive K ≈�′, finite J3, and negligible �.

A different and substantially more radical simplification
advocated in this work is the rewriting of the generalized KH
model in the natural crystallographic axes of the honeycomb
lattice. We have verified that for the advocated realistic param-
eter ranges of α-RuCl3, the model in this language has only
three substantial terms: the leading ferromagnetic easy-plane
J1, antiferromagnetic J3, and a sizable off-diagonal term Jz±.
The latter term favors the observed out-of-plane tilting of
spins in the zigzag phase and its role in strong quantum effects
and magnon interactions deserves further investigation.

Thus, one of the key results of the rethinking endeavor
undertaken in this work is that the relevant physics of α-RuCl3

is not related to a model with a dominating Kitaev term,
but must be understood and revisited as that of the J1-J3

FM-AFM model with the dominant easy-plane J1 and a strong
off-diagonal exchange Jz±/|J1|≈0.5.

Altogether, the provided consideration of the α-RuCl3

phenomenologies and its effective model unequivocally sug-
gests that the physics of this material is not affiliated with a
proximate spin-liquid state. The only proximity in the phase
diagram that is present in this case and may be worth explor-
ing is that to an incommensurate phase, which is continuously
connected to a ferromagnetic one. For the much-discussed
spectral properties of α-RuCl3, the conclusion of this work
also unambiguously points toward the physics of the strongly
interacting and mutually decaying magnons, not to that of the
fractionalized excitations.
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APPENDIX A: LSWT DETAILS

The “spin-ice” form of the Hamiltonian (2) in the crystal-
lographic {x0, y0, z0} axes of the honeycomb plane is given by
Eq. (23). Its parameters are related to that of the generalized
KH model in the cubic axes (2) via

J1 = J + 1

3
(K − � − 2�′),

�J1 = J + 1

3
(K + 2� + 4�′),

2J±± = −1

3
(K + 2� − 2�′),

√
2Jz± = 2

3
(K − � + �′). (A1)

The rotation to the local reference frame of spins for the field-
induced polarized paramagnetic state with the subsequent
Holstein-Primakoff and Fourier transformations in (23) yield
the LSWT Hamiltonian

H = 1

2

∑
k

x†
kHkxk, (A2)

where xk = (ak, bk, a†
−k, b†

−k ), and ak and bk are bosonic
magnon operators on two sublattices of the honeycomb lattice.
The form of the Hamiltonian in the polarized phase for the
principal in-plane field directions is

H =

⎛⎜⎝Ak Bk 0 Ck
B∗

k Ak C−k 0
0 C∗

−k Ak Bk
C∗

k 0 B∗
k Ak

⎞⎟⎠, (A3)

where for H ‖a

Ak = gμBH − 3S(J1 + J3),

Bk = 3S

2

[
J1(1 + �)γk + 2J3γ

(3)
k + 2J±±γ ′

k

]
,

Ck = −3S

2
[J1(1 − �)γk + 2J±±γ ′

k − 2iJz±γ ′′
k ], (A4)
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and for H ‖b

Ak = gμBH − 3S(J1 + J3),

Bk = 3S

2

[
J1(1 + �)γk + 2J3γ

(3)
k − 2J±±γ ′

k

]
,

Ck = 3S

2

[
J1(1 − �)γk − 2J±±γ ′

k + 2iJz±γ ′
k

]
, (A5)

where the hopping functions are given by

γk = 1

3

3∑
α=1

eikδα , γ
(3)

k = 1

3

3∑
α=1

eikδ(3)
α , (A6)

γ ′
k = 1

3

3∑
α=1

cos ϕ̃αeikδα , γ ′′
k = 1

3

3∑
α=1

sin ϕ̃αeikδα , (A7)

and δα are the vectors connecting nearest-neighbor sites along
the {Z, X, Y} bonds, respectively (see Fig. 1).

The LSWT spectrum is given by the standard procedure for
a bosonic Hamiltonian [80], which requires diagonalization
of gHk, where g is a diagonal matrix {1, 1,−1,−1}. For Hk
in Eq. (A3) this diagonalization can be done analytically and
the eigenvalues are given by the solutions of the biquadratic
equation

λ4 − 2kλ2 + c = 0, (A8)

where

k = A2
k + |Bk|2 − |Ck|2 + |C−k|2

2
,

c = (
A2

k − |Bk|2
)2 − A2

k(|Ck|2 + |C−k|2)

+ ∣∣Ck|2|C−k|2 − B2
kC−kC∗

k − (B∗
k )2C∗

−kCk. (A9)

These expressions simplify for the high-symmetry k points.
First, the magnon spectrum at the � point, k=0, for both field
directions is

ε1,2 =
√

(Ak ± Bk )2 − |Ck|2. (A10)

In particular, the lowest mode as a function of magnetic field
is given by

ε1,k=0 =
√

gμBH[gμBH − 3J1S(1 − �)]. (A11)

Translation to the generalized KH interactions via (A1) yields
Eq. (4) in Sec. II A.

For the field H ‖a, the important high-symmetry points are
the M points, kM(M ′ ) = (π/

√
3,±π ). The matrix elements in

Eq. (A4) for these points, with the help of the transformation
bk →bke±iπ/3, simplify to

Ak = gμBH − 3S(J1 + J3),

Bk = S

2
[J1(1 + �) − 6J3 + 2J±±],

Ck = −S

2
[J1(1 − �) + 2J±± + 2

√
3iJz±], (A12)

and the magnon energies are given by the same Eq. (A10).
From Eqs. (A10) and (A12), one obtains a transition field from
the polarized to zigzag phase by finding Hc that corresponds to
closing of the gap at the M points, ε1,k =0, resulting in Eq. (5).

For the field in the b direction, the gap closes at the Y point
and the matrix elements for kY = (2π/

√
3, 0) in Eq. (A5) are

given by

Ak = gμBH − 3S(J1 + J3),

Bk = S

2
[J1(1 + �) − 6J3 + 4J±±],

Ck = S

2
[J1(1 − �) + 4J±± − 4iJz±]. (A13)

The solution for the gap closure gives the critical field in the b
direction [Eq. (6)].

APPENDIX B: SELF-CONSISTENT CALCULATION
OF THE NÉEL TEMPERATURE

The spin Green’s function in the self-consistent RPA ap-
proximation is given by [55,60,69]

〈S−
k S+

−k〉ω = 2〈S〉
∑

μ

(
u2

μk

ω − ε̃μk
− v2

μk

ω + ε̃μk

)
, (B1)

where uμk and vμk are parameters of the generalized Bo-
golyubov transformation that diagonalizes the spin-wave
bosonic Hamiltonian, μ numerates bosonic branches in the
zigzag phase, and ε̃μk =2〈S〉εμk [see Eq. (9)].

A self-consistent condition on the ordered moment is ob-
tained from Sz

i = 1
2 − S−

i S+
i using spectral representation in

Eq. (B1), resulting in

〈S〉 = 1

2
− 2〈S〉

N

∑
μ,k

(
u2

μkn(̃εμk ) − v2
μkn(−̃εμk )

)
, (B2)

where n(ω) is the Bose distribution function.
At T →TN , the ordered moment 〈S〉→0 and (B2) yields

the ordering temperature

1

TN
= 2

N

∑
μ,k

u2
μk + v2

μk

εμk
. (B3)

Note that the outlined approach is valid only for S = 1
2 , with

the formalism becoming more complicated for larger spins
[60].

APPENDIX C: J-J3 PHASE DIAGRAM FOR FIXED {K, �,�′}
A useful insight can be provided by using a “strict” form

of the proposed constraints and examining the remaining
low(er)-dimensional parameter space for its phase diagram.
This approach can also help to alleviate a concern that the 2D
projections from a higher-dimensional parameter space with
the dimensions higher than 3D can give a false perception
of the phase diagram. This is because such 2D projections
simply demonstrate the largest possible extent of the allowed
parameters, which can be significantly different for different
lower-dimensional “cuts” of the higher-dimensional object.

Here, we use our constraints on ESR/THz gap, �Hc, and
tilt angle α, by strictly fixing them to the values that are
close to, or motivated by, the experiments. Thus, we fix �tot =
9 meV, �Hc =1 T, and α=35◦ according to the discussions
in Secs. II A–II D. Since, quasiclassically, these quantities
depend only on K , �, and �′ combinations, this specific
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FIG. 16. The J-J3 phase diagram for J <0 and J3 >0 at fixed
{K, �, �′}={−7.567, 4.276, 2.362} meV (see text). The highlighted
regions are the zigzag (ZZ), ferromagnetic (FM), and incommensu-
rate phases (IC).

choice of constraints yields the following set of {K, �, �′}=
{−7.567, 4.276, 2.362} meV. We will refer to it as to the
“point 0 set” below.

Of the 5D parameter space, only J and J3 parameters
remain. This allows us to explore the 2D J-J3 phase diagram
for the relevant ranges of J <0 and J3 >0, presented in
Fig. 16. The highlighted regions correspond to the zigzag
(ZZ), ferromagnetic (FM), and incommensurate (IC) phases.
Our last constraint that can be made rigid is to fix H (a)

c =
H (a)

c (K, �, �′, J03) to its experimental value of H (a)
c,exp = 7 T

(see Sec. II C). This binds J03 =J + 3J3 from Eq. (7), yielding
J03 =4.768 meV and restricting J and J3 to the straight line
shown in Fig. 16.

Altogether, this consideration illustrates that the values of
|J| and J3 that are needed to stabilize the zigzag phase are
larger than is typically assumed (see Table I). Another impor-
tant observation is that the empirically constrained parameter
sets put α-RuCl3 in the proximity of an incommensurate
phase. As is discussed in Sec. IV, this phase is reminiscent of
that in the phase diagram of the J1-J2-J3 model on the honey-
comb lattice and is continuously connected to a ferromagnetic
state.

APPENDIX D: OFF-DIAGONAL TERMS IN EQ. (12)

There are five distinct bonds regarding the values of J̃xz
i j ,

J̃yz
i j , or their combinations. Keeping explicit the angles ϕ and

θ , which are defined as polar and azimuthal angles relative to
cubic axes, the real-space three-magnon couplings in Eq. (12)

for the bonds X, Y, Z are given by

abX : J̃xz
i j = −(� sin ϕ + �′ cos ϕ) cos 2θ

+ (K cos2 ϕ + �′ sin 2ϕ) sin θ cos θ,

J̃yz
i j = (� cos ϕ − �′ sin ϕ) sin θ

− (K sin ϕ cos ϕ − �′ cos 2ϕ) cos θ,

abY : J̃xz
i j = −(� cos ϕ + �′ sin ϕ) cos 2θ

+ (K sin2 ϕ + �′ sin 2ϕ) sin θ cos θ,

J̃yz
i j = −(� sin ϕ − �′ cos ϕ) sin θ

+ (K sin ϕ cos ϕ + �′ cos 2ϕ) cos θ,

cdX : J̃xz
i j = (� sin ϕ + �′ cos ϕ) cos 2θ

− (K cos2 ϕ + �′ sin 2ϕ) sin θ cos θ,

J̃yz
i j = (� cos ϕ − �′ cos ϕ) sin θ

− (K sin ϕ cos ϕ − �′ cos 2ϕ) cos θ,

cdY : J̃xz
i j = (� cos ϕ + �′ sin ϕ) cos 2θ

− (K sin2 ϕ + �′ sin 2ϕ) sin θ cos θ,

J̃yz
i j = −(� sin ϕ − �′ cos ϕ) sin θ

+ (K sin ϕ cos ϕ + �′ cos 2ϕ) cos θ,

adZ(bcZ) : J̃xz
i j = [(K − � sin 2ϕ) sin θ cos θ

+ �′(cos ϕ + sin ϕ) cos 2θ ]sign(i − j),

J̃yz
i j = −� cos 2ϕ cos θ − �′(cos ϕ − sin ϕ) sin θ,

(D1)

where a, b, c, d are the four sublattices of the zigzag state, and
X, Y, Z are the three types of bonds, the bonds ab and cd can
be of X and Y type (see Fig. 13).

The overall real-space coupling strength introduced in
Eq. (17) can be written explicitly as

Ṽeff = 1
6 (|ṼabX| + |ṼabY| + |ṼcdX| + |ṼcdY| + 2|ṼadZ|). (D2)

The out-of-plane tilt angle α of the zigzag structure relative
to the basal plane of the honeycomb lattice is related to the
polar and azimuthal angles as

tan α =
√

2
cos ϕ + sin ϕ + tan θ

cos ϕ + sin ϕ − 2 tan θ
. (D3)

For all relevant values of � considered in this work ϕ=π/4
(see also Ref. [27]), so the spins are perpendicular to one of
the bonds and

tan α =
√

2 + tan θ

1 − √
2 tan θ

. (D4)

This also considerably simplifies the expressions in Eq. (D1).
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