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Phase transitions are typically accompanied by nonanalytic behaviors of the free energy, which can be
explained by considering the zeros of the partition function in the complex plane of the control parameter and
their approach to the critical value on the real axis as the system size is increased. Recent experiments have
shown that partition function zeros are not just a theoretical concept. They can also be determined experimentally
by measuring fluctuations of thermodynamic observables in systems of finite size. Motivated by this progress,
we investigate here the partition function zeros for the Curie-Weiss model of spontaneous magnetization using
our recently established cumulant method. Specifically, we extract the leading Fisher and Lee-Yang zeros of
the Curie-Weiss model from the fluctuations of the energy and the magnetization in systems of finite size. We
develop a finite-size scaling analysis of the partition function zeros, which is valid for mean-field models and
which allows us to extract both the critical values of the control parameters and the critical exponents, even for
small systems that are away from criticality. We also show that the Lee-Yang zeros carry important information
about the rare magnetic fluctuations as they allow us to predict many essential features of the large-deviation
statistics of the magnetization. This finding may constitute a profound connection between Lee-Yang theory and
large-deviation statistics.
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I. INTRODUCTION

In their seminal works on statistical physics, Lee and Yang
developed a rigorous theory of phase transitions by consider-
ing the zeros of the partition function in the complex plane
of the control parameter [1–4]. Specifically, they showed how
the partition function zeros with increasing system size will
move onto the real value of the control parameter for which a
phase transition occurs. These ideas provide a detailed under-
standing of phase transitions in a wide range of many-body
systems from such diverse fields as protein folding [5–7],
percolation [8–11], and Bose-Einstein condensation [12–16].
It has also been realized that Lee-Yang theory applies not only
to equilibrium phase transitions; the framework is also use-
ful to describe nonequilibrium situations such as space-time
phase transitions in glass formers [17–20] or dynamical phase
transitions in quantum many-body systems after a quench
[21–23]. Moreover, Lee-Yang theory has been extended to
quantum phase transitions [24].

On top of this, several recent works have shown that
partition function zeros are not just a theoretical concept
[18,25–29]. They can also be experimentally determined in
engineered nanostructures [30–33]. In one approach, the parti-
tion function zeros are found by measuring the fluctuations of
thermodynamic observables in systems of finite size [18,32].
This approach has been used to extract the dynamical Lee-
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Yang zeros of an open quantum system by measuring the full
counting statistics of tunneling events [32,34]. Theoretically,
the method has been applied to space-time phase transitions
in glass formers and open quantum systems [18–20] as well
as equilibrium phase transitions in molecular zippers [7]
and the Ising model [35]. The partition function zeros are
extracted from the high cumulants of a fluctuating observable,
such as energy or magnetization, which can be measured
(or simulated) without knowing the partition function [7,18–
20,35]. The cumulant method appears to be very general;
however, further work is needed to fully understand its scope
and potential applications.

FIG. 1. Curie-Weiss model and its graph representation. (a) The
Curie-Weiss model follows from a mean-field approximation of the
Ising model in which each spin is coupled to the average magnetic
field produced by all spins in the lattice. (b) As a result of the mean-
field approximation, the Curie-Weiss model can be represented by
a complete graph showing how all spins interact with each other as
indicated by lines.
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The purpose of this work is to investigate the Curie-Weiss
model of spontaneous magnetization using the cumulant
method. The model follows from a mean-field approximation
of the Ising model (Fig. 1) and it is attractive because it can be
treated with a combination of analytical and numerically exact
methods without resorting to simulations [36,37]. As such, it
provides an important test bed for the cumulant method and it
allows us to benchmark our results against numerically exact
calculations and thereby improve our understanding of the
method. In doing so, we also uncover several interesting prop-
erties of the Curie-Weiss model, including its scaling behavior
close to criticality and the large-deviation statistics of the rare
fluctuations of the magnetization. In particular, we extract
the leading partition function zeros from the fluctuations of
the energy and the magnetization in the system at finite
size. We can then determine their convergence points in the
thermodynamic limit based on a finite-size scaling analysis,
which we develop for the Curie-Weiss model. In this way, we
extract both the critical exponents and the critical point of the
system, even if the control parameters are fixed and the system
is away from criticality. Finally, we show how the partition
function zeros encode important information about the rare
fluctuations of the magnetization and they allow us to make
predictions of many essential features of the large-deviation
statistics. This finding suggests that a profound connection
between Lee-Yang theory and large-deviation statistics may
exist.

The rest of our work is organized as follows. In Sec. II
we recall how the Curie-Weiss model follows from a mean-
field approximation of the Ising model and we describe some
known results about its thermodynamic properties. In Sec. III
we discuss the Lee-Yang theory of phase transitions, including
the partition function zeros in the complex plane of the control
parameter and their approach to the critical value in the ther-
modynamic limit. We also introduce our cumulant method,
which we use to extract the leading partition function zeros
from the fluctuations of thermodynamic observables in the
Curie-Weiss model. In Sec. IV we develop a scaling analysis
of the partition function zeros, which is important in the
following sections, where we determine the critical exponents
and the convergence points of the partition function zeros with
increasing system size. Here we need to pay special attention
to the mean-field nature of the Curie-Weiss model, which
changes the scaling analysis compared to the Ising model in
two and three dimensions.

Sections V and VI contain our main results. First, we show
how the Fisher zeros in the complex plane of the inverse
temperature together with the critical exponent of the heat
capacity can be extracted from the energy fluctuations, which
in principle can be either measured or simulated. Importantly,
the fluctuations can be obtained at a single fixed temperature,
which may be below or above the critical temperature. As
such, our method may enable experimental investigations
of phase transitions that would otherwise be hard to reach,
for instance, at very low temperatures. Second, we extract
the Lee-Yang zeros in the complex plane of the magnetic
field from the fluctuations of the magnetization. Again, based
on finite-size scaling arguments, we can extract the critical
exponent of the magnetization as well as the convergence
points of the Lee-Yang zeros in the thermodynamic limit.

In Sec. VII we connect Lee-Yang theory to the field of
large-deviation statistics by showing that the magnetic-field
zeros carry important information about the rare fluctuations
of the magnetization. Section VIII contains a summary, our
conclusions, and an outlook for future work.

II. CURIE-WEISS MODEL

We consider the Curie-Weiss model, which follows from a
mean-field approximation of the Ising model, describing a d-
dimensional lattice of interacting classical spins in an external
magnetic field h [36,37]. The total energy corresponding to a
given spin configuration {σi} reads

UIsing({σi}) = −J
∑
〈i, j〉

σiσ j − h
∑

i

σi, (1)

where the spin on site i is defined as σi = ±1, the angular
brackets indicate summation over neighboring spins, and J
is the strength of the spin interactions. In one and two di-
mensions, the Ising model can be solved analytically, while
the problem in three dimensions remains unsolved. In higher
dimensions, the solution is eventually given by the mean-field
result that we discuss here.

To arrive at the mean-field description of the Ising model,
we replace the sum over neighboring spins

∑
〈i, j〉 σiσ j by

the approximation z
2N

∑
i, j σiσ j , where z is the number of

neighbors for each spin (the coordination number) and N is the
total number of lattice sites. The factor of 1/2 is included to
avoid double counting, and the factor of 1/N ensures that the
total energy is extensive in the thermodynamic limit of large
lattices. In the following, we absorb the coordination number
into the interaction strength by redefining it as Jz → J , which
stays finite in the limit z → ∞, where the mean-field solution
becomes exact. With these approximations, the energy of the
Curie-Weiss model becomes [36,37]

U ({σi}) = − J

2N

N∑
i, j=1

σiσ j − h
N∑

i=1

σi, (2)

which can also be written as

U ({σi}) = − J

2N
M2 − hM (3)

in terms of the total magnetization M = ∑N
i=1 σi.

The Curie-Weiss model can be described by a complete
graph as illustrated in Fig. 1(b). The model is attractive as
it is analytically tractable, but it comes with the caveat that
even spins that are far apart interact with each other. To review
the phase behavior of the Curie-Weiss model, we consider the
partition function

Z (β, h) =
∑
{σi}

e−βU ({σi}), (4)

where β = 1/kBT is the inverse temperature. The partition
sum can be written as

Z (β, h) =
N∑

n=0

(
N

n

)
e(βJ/(2N ))(N−2n)2+βh(N−2n), (5)
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where the magnetization M = N − 2n is given by the number
n of spins pointing down and the binomial coefficient yields
the number of such spin configurations.

For large system sizes, we can replace the sum by an
integral and write the partition function as [36,37]

Z (β, h) � N

2

∫ 1

−1
dm e−βNg(m), (6)

where m = M/N is the magnetization per site and we have
obtained the effective free energy per site

g(m) � −hm − Jm2

2

+β−1

[
1 + m

2
ln

(
1 + m

2

)
+ 1 − m

2
ln

(
1 − m

2

)]
(7)

using Stirling’s approximation of the binomial coefficient.
The integral representation of the partition function is useful
as it enables a saddle-point approximation for large lattice
sizes, where we can express it as

Z (β, h) ≈
∑

i

e−βNg(mi ) (8)

in terms of the stable saddle points mi = mi(β, h), which
minimize the effective free energy g′(mi ) = 0 and yield the
equilibrium magnetization by solving the equation

mi = tanh(βh + βJmi ). (9)

The number of solutions depends on the temperature and the
magnetic field. Without a magnetic field, there is only one
solution m0 = 0 at high temperatures β < 1/J . In this case,
the free energy F = U − T S is dominated by the entropy S
and the system is in the disordered phase with no spontaneous
magnetization. However, as the temperature is lowered, two
nontrivial and stable solutions at m±1 � ±√

3(1 − 1/βJ )/βJ
develop smoothly from the one at m0 = 0, which becomes
unstable. Thus, at low temperatures, where the free energy is
dominated by the internal energy, the system is in an ordered
phase with nonzero spontaneous magnetization. Hence, the
Curie-Weiss model undergoes a continuous phase transition
at the Curie temperature

βc = 1/J. (10)

Below the Curie temperature, the system also exhibits a first-
order phase transition as a function of the magnetic field, since
the average magnetization exhibits a discontinuity at zero
magnetic field hc = 0. Finally, in the thermodynamic limit,
the free energy per site becomes

f (β, h) = F (β, h)

N
= − ln Z

βN
≈ min

m
{g(m)}. (11)

We note that the free energy can also be found using a
Hubbard-Stratonovich transformation [37,38].

III. CUMULANT METHOD

Phase transitions, such as the one described above, are
signaled by singularities in the free energy. To understand

how such nonanalytic behaviors can develop from the parti-
tion function, which is analytic for finite systems, Lee and
Yang investigated the zeros of the partition function in the
complex plane of the external control parameter [1–4]. For the
Curie-Weiss model, the control parameter could be the inverse
temperature or the magnetic field (β or h) and we denote it
by q. Since the partition sum is an entire function, it can be
factorized as

Z (q) = Z (0)ecq
∏

k

(1 − q/qk ), (12)

where qk are the zeros in the complex plane of the control
parameter and c is a constant. The zeros cannot be real, since
the partition function is a sum of exponentials. Moreover,
they come in complex conjugate pairs qk and q∗

k since the
partition sum is real for real values of the control parameter.
If the control parameter is the magnetic field, the partition
function zeros are called Lee-Yang zeros, while for the inverse
temperature, they are typically referred to as Fisher zeros. In
the works by Lee and Yang, they showed that the partition
function zeros in the thermodynamic limit approach the real
value of the control parameter for which a phase transition
occurs. These ideas now form a rigorous foundation of phase
transitions in statistical physics. However, for a long time,
partition function zeros were considered a purely theoretical
concept, and only recently they have been experimentally
determined [30–33].

In one approach, the partition function zeros are deter-
mined from the fluctuations of thermodynamic observables
in small systems [7,18–20,35]. Here we briefly discuss this
method before applying it to the Curie-Weiss model. We first
note that the free energy (or the logarithm of the partition sum)
delivers the cumulants of the observable � that is conjugate to
the control parameter

〈〈�n〉〉 = ∂n
q ln Z. (13)

If the control parameter is the magnetic field, the conjugate
variable is the magnetization, and if it is the inverse tempera-
ture, the conjugate variable is the energy.

Now, using the factorization of the partition function in
terms of its zeros, we readily find the relation [7,18,35]

〈〈�n〉〉 = −
∑

k

(n − 1)!

(qk − q)n
, n > 1, (14)

between the cumulants and the partition function zeros. Im-
portantly, the high cumulants are mainly determined by the
complex conjugate pairs of zeros q0 and q∗

0 that are closest to
the real axis, since they dominate the sum. The contributions
from subleading zeros are suppressed with the distance to q
and the cumulant order n. The high cumulants can then be
approximated by only including the leading zeros in the sum
and writing them as

〈〈�n〉〉 � −(n − 1)!
2 cos[n arg(q0 − q)]

|q0 − q|n , n � 1. (15)
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Finally, we can determine the leading partition function zeros
by inverting this expression as [7,18,35][

2 Re[q0 − q]

|q0 − q|2
]

=
⎡
⎣1 −μ(+)

n
n

1 −μ
(+)
n+1

n+1

⎤
⎦

−1[
(n − 1)μ(−)

n

nμ
(−)
n+1

]
, (16)

where μ(±)
n ≡ 〈〈�n±1〉〉/〈〈�n〉〉 is the ratio of two cumulants

of consecutive orders. Importantly, from this expression, one
can extract the leading partition function zeros from mea-
surements (or simulations) of four high cumulants of the
thermodynamic observable �.

In the following, we extract the leading partition function
zeros from the fluctuations of the energy and the magnetiza-
tion in the Curie-Weiss model at finite size. By doing so with
increasing system size, we can determine the convergence
point in the thermodynamic limit. However, to do so, we need
a scaling analysis of the partition function zeros and their
approach to the real axis.

IV. FINITE-SIZE SCALING

To develop our scaling analysis, we start with the Ising
model in d dimensions, before employing the mean-field
approximation. For a rectangular lattice of linear size L, the
number of sites is N = Ld . The Privman-Fisher scaling ansatz
for the singular part of the free energy per site and the
correlation length then reads [39–44]

f (t, h, L) = L−dỸ (c1tL1/ν, c2hL�/ν ) (17)

and

ξ (t, h, L) = LX̃ (c1tL1/ν, c2hL�/ν ), (18)

where � = B + γ is expressed in terms of the universal
critical exponents B and γ that characterize the scaling of the
magnetization and the susceptibility, respectively, the critical
exponent related to the correlation length is denoted by ν, and
c1,2 are system-dependent nonuniversal parameters. Above,
we have absorbed the factors of β into the free energy and
the magnetic field by redefining them as f → β f and h →
βh, and we have introduced the reduced temperature t =
|T − Tc|/Tc, where Tc is the critical temperature. This ansatz
holds for systems below the upper critical dimension d < dc,
where dc = 4 for the Ising universality class, and it would not
apply for the mean-field approximation of the Ising model.
In particular, the hyperscaling relation dν = 2 − α, where α

is the critical exponent of the specific heat, is embedded in
this ansatz, but it breaks down for d > dc. To address this
issue, Kenna and Berche showed that a modified hyperscaling
relation can be formulated as [45]

dν = (2 − α), (19)

where = 1 for d < dc and = d/dc otherwise. Accordingly,
we modify the Privman-Fisher ansatz as [45,46]

f (t, h, L) = L−dỸ (c1tL /ν, c2hL �/ν ) (20)

and

ξ (t, h, L) = L X̃ (c1tL /ν, c2hL �/ν ). (21)

From this ansatz we can obtain the critical behavior of thermo-
dynamic observables of the mean-field models and hypercubic

lattices with d > 4. For instance, with h = t = 0, the singular
part of the specific heat is given as

cv ∝ ∂2
t f (t, 0, L)|t=0 ∝ L−d L2 /ν ∝ L α/ν, (22)

while the magnetic susceptibility reads

χ ∝ ∂2
h f (0, h, L)|h=0 ∝ L−d L2 �/ν ∝ L γ /ν, (23)

having used the two modified hyperscaling relations: Eq. (19)
and dν = (2B + γ ) = (2� − γ ). Next we consider the
finite-size scaling of the energy fluctuations close to the
critical point. To this end, we make an ansatz for the proba-
bility distribution of the singular part of the total energy Us,
following Binder [47],

P(Us, L) = aLx p̃(bLxUs, L /ξ ), (24)

where x is the scaling exponent, the scaling function is
denoted by p̃, and a and b are constants. The moments of
the singular part of the energy follow from the probability
distribution as

〈U n
s 〉 =

∫
dUsU

n
s P(Us, L), (25)

from which we obtain scaling relations of the form

〈U n
s 〉 = L−nxvn(L /ξ ). (26)

Using the relation between moments and cumulants,

〈〈U n〉〉 = 〈U n〉 −
n−1∑
m=1

(
n − 1
m − 1

)
〈〈U m〉〉〈U n−m〉, (27)

we obtain a similar scaling behavior for the cumulants

〈〈U n
s 〉〉 = L−nxun(L /ξ ), (28)

where the factor un is important to obtain the correct scaling
behavior in the thermodynamic limit as we show below. (We
note that the cumulants may also have a contribution from the
nonsingular part of the free energy. However, that will not be
important for the high cumulant orders that we consider.) We
now proceed by considering the singular part of the specific
heat capacity in the thermodynamic limit,

cV = kBβ2

N
〈〈U 2

s 〉〉 ∝ ξα/ν. (29)

Next we use that 〈〈U 2
s 〉〉 = L−2xu2(L /ξ ) ∝ Ldξα/ν , which

implies that u2(L /ξ ) ∝ (L /ξ )−α/ν , since both sides should
scale in the same way with ξ . Consequently, we find the
relation −2x = d + α/ν between the scaling exponents. Fur-
thermore, employing the modified hyperscaling relation, we
obtain that x = − /ν and thus 〈〈U n〉〉 = Ln /νun(L/ξ ). Since

= d/4, we finally arrive at the scaling relation

〈〈U n
s 〉〉 ∝ NnσU , (30)

where σU = 1/4ν is a critical exponent that describes the
scaling of the energy cumulants. Moreover, since ν = 1/2
for mean-field models, we expect to find σU = 1/2. For high
cumulant orders, we expect the cumulants to be determined
by the singular parts given by Eq. (30). Thus, comparing this
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FIG. 2. Fisher zeros and critical exponents. (a) Leading Fisher zeros (blue circles) in the complex plane of the inverse temperature with
increasing system size N = 64, 128, . . . , 1024. The Fisher zeros are obtained from the energy cumulants of order n = 11, 12, 13, 14 at the
inverse temperature βJ = 1.1 (black circle). The convergence point βc in the thermodynamic limit is indicated with a red circle. We also show
numerically exact results for the Fisher zeros (red circles), which lie on top of the extracted Fisher zeros. (b) From the finite-size scaling of
the imaginary part of the Fisher zeros, we obtain the critical exponent σU � 0.5361, which is close to the exact value σU = 1/2. (c) Having
determined the critical exponent, we can extrapolate the convergence point of the Fisher zeros in the thermodynamic limit, which is close to
the exact result Re[βcJ] = 1.

scaling relation with the expression in Eq. (14), we expect that
the leading Fisher zeros should obey the scaling relations

|β0 − βc| ∝ N−σU ,

Im[β0] ∝ N−σU .
(31)

Thus, with these relations, we can extract the critical exponent
σU from the size dependence of the leading Fisher zeros.
Subsequently, we can use the same relations to accurately
extrapolate the position of the leading Fisher zeros in the
thermodynamic limit and thereby determine the temperature
at which a phase transition will occur. For the magnetization,
we again make the ansatz

P(M, L) = aLx p̃(bLxM, L /ξ ). (32)

Using a similar argument as above, we obtain scaling relations
for the magnetization cumulants

〈〈Mn〉〉 ∝ NnσM , (33)

having expressed x = − �/ν in terms of the critical exponent
of the magnetization δ and defined σM = δ/(1 + δ) [11]. For
the Lee-Yang zeros, we then find

|h0 − hc| ∝ N−σM ,

Im[h0] ∝ N−σM ,
(34)

which we can use to determine the critical exponent σM from
the Lee-Yang zeros as well as their convergence point in the
thermodynamic limit. Since δ = 3 for mean-field models, we
expect to find σM = 3/4. We note that the same relation for
the Lee-Yang zeros of the Curie-Weiss model was reported in
Ref. [11].

V. FISHER ZEROS AND CRITICAL EXPONENTS

We are now ready to determine the Fisher zeros for the
Curie-Weiss model from the energy fluctuations in the system
at finite size. We first note that the cumulants are obtained as

logarithmic derivatives of the partition function with respect
to q = −β such that

〈〈U n〉〉 = ∂n
−β ln Z. (35)

In the following, we evaluate the high cumulants numerically
using the partition function for finite system sizes. We then
extract the leading Fisher zeros from the energy fluctuations
using Eq. (16), which in this case reads

[
2 Re[β − β0]

|β − β0|2
]

=
⎡
⎣1 − κ (+)

n
n

1 − κ
(+)
n+1

n+1

⎤
⎦

−1[
(n − 1)κ (−)

n

nκ
(−)
n+1

]
, (36)

where κ (±)
n ≡ 〈〈U n±1〉〉/〈〈U n〉〉 is the ratio of subsequent en-

ergy cumulants. Importantly, this relation makes it possible
to extract the Fisher zeros from cumulants that have been
obtained (in an experiment or from simulations) at a single
fixed temperature, which can be below or above the critical
temperature. As such, our method may potentially enable
experimental investigations of phase transitions that are hard
to reach, for instance, at very low temperatures.

In Fig. 2(a) we show the leading Fisher zeros in the
complex plane of the inverse temperature, extracted from the
high cumulants of the energy. With increasing system size, the
zeros approach the real line, which they eventually reach in the
thermodynamic limit. We compare the extracted Fisher zeros
with numerically exact results and find very good agreement.
However, it should be stressed that our method does not rely
on an explicit expression for the partition function, but it can
be directly applied to cumulants of the energy fluctuations,
which can be experimentally measured. To extrapolate the ex-
act convergence point on the real axis, we proceed in Fig. 2(b)
with a scaling analysis of the imaginary part of the Fisher
zeros. From this analysis we obtain the critical exponent σU,
which comes close to the exact value of σU = 1/2 since it
is known that α = 0 for the Curie-Weiss model [37]. Finally,
in Fig. 2(c) we use the scaling relations for the Fisher zeros to
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FIG. 3. Lee-Yang zeros and critical exponents. (a) Leading Lee-Yang zeros (blue circles) in the complex plane of the magnetic field with
increasing system size N = 64, 96, . . . , 512. The Lee-Yang zeros are extracted from magnetization cumulants of order n = 11, 12, 13, 14 with
the external field h/J = 0.002 and the inverse temperature β = βc. The convergence point in the thermodynamic limit is indicated with a red
circle, hc. (b) From the finite-size scaling of the imaginary part of the Lee-Yang zeros (blue circles), we obtain the critical exponent σM �
0.7434, which is close to the exact value of σM = 3/4. (c) Both real and imaginary parts of the Lee-Yang zeros vanish in the thermodynamic
limit, signaling a phase transition at hc = 0.

determine the convergence points in the thermodynamic limit.
The imaginary part essentially vanishes in the thermodynamic
limit, while the real part comes very close to the exact critical
value of βcJ = 1. We stress that these results are obtained at
a single fixed temperature below the critical temperature, and
unlike the conventional use of Binder cumulants [47–49], we
do not need to tune the temperature across the critical value
to extract the critical exponents. In Fig. 6 near the end of the
paper, we discuss error estimates, including the influence of
system size, temperature, and cumulant orders.

VI. LEE-YANG ZEROS AND CRITICALITY

Next we turn to the Lee-Yang zeros in the complex plane
of the magnetic field. In this case, we extract the Lee-Yang
zeros from the cumulants of the magnetization, which are
obtained as logarithmic derivatives of the partition function
with respect to q = βh as

〈〈Mn〉〉 = ∂n
h ln Z/βn. (37)

We can then extract the leading Lee-Yang zeros from the
magnetization cumulants using the cumulant method given by
Eq. (16), which takes the explicit form

[
2β Re[h0 − h]

β2|h0 − h|2
]

=
⎡
⎣1 −ω(+)

n
n

1 −ω
(+)
n+1

n+1

⎤
⎦

−1[
(n − 1)ω(−)

n

nω
(−)
n+1

]
, (38)

where ω(±)
n ≡ 〈〈Mn±1〉〉/〈〈Mn〉〉 again is the ratio of two cumu-

lants of subsequent orders.
In Fig. 3(a) we show the extracted Lee-Yang zeros in

the complex plane of the magnetic field. The system is at
the critical temperature β = βc and the zeros approach the
critical value at hc = 0 on a straight line that is perpendicular
to the real axis, signaling a first-order phase transition as a
function of the magnetic field [50–52]. Again, we perform a
scaling analysis of the imaginary part of the Lee-Yang zeros
in Fig. 3(b) to determine the critical exponent σM, which
comes close to the exact value of σM = 3/4, since it is known
that δ = 3 for the Curie-Weiss model [37]. With the critical

exponent at hand, we can finally extrapolate the position of
the leading Lee-Yang zeros in the thermodynamic limit and
we indeed find that they converge to the value of hc � 0.

In Fig. 4 we show the Lee-Yang zeros above, below, and
at the critical temperature. At low temperatures, the Lee-Yang
zeros converge to the real axis, corresponding to a first-order
phase transition at h = 0. Above the critical temperature, the
Lee-Yang zeros remain complex in the thermodynamic limit,
since there is no phase transition.

VII. LARGE-DEVIATION STATISTICS

Having determined the partition function zeros for the
Curie-Weiss model, we will now see how they relate to
the large-deviation statistics of the magnetization. Recently,
we showed that the large-deviation statistics of the energy

FIG. 4. Lee-Yang zeros above, at, and below the critical temper-
ature. For the sake of clarity, the results for different temperatures
have been shifted horizontally as indicated by dashed lines. Above
the critical temperature, the zeros remain complex and there is no
phase transition. By contrast, below and at the critical temperature,
the Lee-Yang zeros reach hc � 0, corresponding to a sharp phase
transition.
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fluctuations close to a first-order phase transition are encoded
in the convergence points of the Fisher zeros [7]. We now in-
vestigate if similar relations hold between the rare fluctuations
of the magnetization and the Lee-Yang zeros. Such relations
would suggest that a profound connection between Lee-Yang
theory and large-deviation statistics may exist. To proceed, we
first write the probability density for the magnetization as

P(M ) =
∑
{σi}

e−βU ({σi})

Z (β, h)

∫ π

−π

dχ

2π
exp

[
iχ

(∑
i

σi − M

)]
,

(39)

where we have used an integral form of the Kronecker delta.
Shifting the argument of the partition function as h → h +
iχ/β, we can write the distribution as [7]

P(M ) = 1

2π

∫ π

−π

dχ
Z (β, h + iχ/β )

Z (β, h)
e−iχM , (40)

having used that

Z (β, h + iχ/β ) =
∑
{σi}

e−βU ({σi}) exp

(
iχ

∑
i

σi

)
. (41)

Using the substitution κ = h + iχ/β, we obtain an expression
for the probability distribution reading

P(M ) = β

2π i

∫ h+iπ/β

h−iπ/β

dκ
Z (β, κ )

Z (β, h)
eMβ(h−κ ). (42)

Furthermore, writing the partition function in terms of the free
energy as ln Z = −βF , we find the expression

P(m) = β

2π i

∫ h+iπ/β

h−iπ/β

dκ eN�(κ,m), (43)

having defined the exponent of the integrand as

�(κ, m) = β[ f (h) + hm] − β[ f (κ ) + κm], (44)

where f ≡ F/N and m ≡ M/N are the free energy and the
magnetization per site. In the thermodynamic limit, we can
now evaluate the large deviation function as

ln P(m)

N
� �(κ0, m), (45)

where κ0 = κ0(m) solves the saddle-point equation
∂κ�(κ, m) = 0. In general, it is challenging to solve the
saddle-point equation. However, we can follow our recent
work on Lee-Yang theory and make the ansatz [7]

�(κ, m) � M + mβ(h − κ ) − m̄β
√

(hc − κ )(h∗
c − κ ),

(46)

where hc and h∗
c are the convergence points of the Lee-Yang

zeros in the thermodynamic limit and M and m̄ are (unknown)
constants. Here the expectation is that the free energy in the
thermodynamic limit has square-root branch points at the
convergence points of the Lee-Yang zeros, for instance, as in
the case of an eigenvalue crossing of a transfer matrix. Under
these assumptions, we can solve the saddle-point equation and
we then find an expression for the large-deviation statistics

reading

ln P(m)

N
= M + mβ[h − Re(hc)] − β|Im(hc)| m̄2 + m2

√
m̄2 − m2

(47)

in terms of the Lee-Yang zeros and the applied magnetic field.
Thus, for the three different temperatures used in Fig. 4, we
can insert the extracted convergence points and adjust the
unknown parameters so that the analytic expression matches
the numerically exact results.

Figure 5 shows the results of this procedure. Despite be-
ing a crude approximation, Eq. (47) captures many essential
features of the large-deviation statistics. In Fig. 5(a) the tem-
perature is above the critical temperature and the Lee-Yang
zeros remain complex in the thermodynamic limit. In the left
panel, we first fix the parameter m̄, which controls the tails of
the distribution. (The vertical shift of the curves is controlled
by M, which is adjusted in each panel.) Having fixed this
parameter, we can apply a magnetic field and we then see how
the analytical expression nicely captures the exact results in
the middle and right panels with an increasing magnetic field.

As the temperature is lowered, the Lee-Yang zeros even-
tually reach the real axis and the large-deviation statistics
develop a nearly flat plateau. In Fig. 5(b) we show exact
results for the large-deviation statistics at the critical tempera-
ture together with the straight line predicted by our analytical
approximation. In this case, the approximation captures the
flat plateau of the distribution. On the other hand, it does not
describe the tails of the distribution, which are governed by the
fluctuations around the spin configurations with a positive or a
negative average magnetization. As the temperature is further
decreased, the Lee-Yang zeros remain real; however, the dis-
tribution of the magnetization now becomes bimodal, which is
not accounted for by our approximation, which only captures
the convex hull of the large-deviation statistics. Technically,
we evaluate the large-deviation statistics using a Legendre
transformation, which can only produce an upper-convex
function (with our sign convention) [53]. On the other hand,
it is well known that systems with long-range interactions,
including mean-field models, may have nonconcave entropies
and, as a result, the large-deviation statistics can be bimodal
[54,55]. For the Curie-Weiss model, all spins interact however
far apart, and as a result, the large-deviation function becomes
bimodal below the critical temperature. We expect that for
spin lattices with short-range interactions, for example, the
Ising model [56–59], the large-deviation function will be
upper convex also below the critical temperature.

VIII. CONCLUSION

We have investigated the Curie-Weiss model of sponta-
neous magnetization using our recently established cumulant
method. In particular, we have shown how the Fisher zeros
and the Lee-Yang zeros of the Curie-Weiss model can be
extracted from the fluctuations of the energy and the mag-
netization, respectively, in systems of finite size. Importantly,
since these observables are measurable, our method provides
a direct link from experiments (or simulations) to the deter-
mination of partition function zeros of critical systems. Based
on a finite-size scaling analysis, we have determined both the
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FIG. 5. Large-deviation statistics of the magnetization. Numerically exact results are shown in red (light gray), while the approximation
in Eq. (47) is shown in blue (dark gray), using the convergence points extracted in Fig. 6. In row (a) we have used m̄ = 1.085 to fit the tails
of the distribution, while M is used to shift the curves vertically. The temperature (from top to bottom) is above, at, and below the critical
temperature. The magnetic field increases from left to right.

critical point and the critical exponents of the Curie-Weiss
model from the approach of the partition function zeros to
the real axis. Our method can be employed with fixed control
parameters and there is no need to tune the system across
the phase transition. For this reason, our method may enable
experimental investigations of phase transitions that may be
hard to reach, for instance, at very low temperatures or very
high pressures. Finally, we have shown that the Lee-Yang
zeros carry important information about the rare fluctuations
of the magnetization. Specifically, the convergence points of
the Lee-Yang zeros in the thermodynamic limit capture many

essential features of the large-deviation statistics of the mag-
netization, including its dependence on the magnetic field.
This finding suggests that a profound connection between
Lee-Yang theory and large-deviation statistics may exist.

Our work is an important test of the cumulant method
and it illustrates that the method indeed has a broad scope of
potential applications. In future work, it would be interesting
to apply the method to dynamical phase transitions in quantum
many-body systems after a quench [21–23] and to quantum
phase transitions in the ground state of interacting quantum
systems [24].
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FIG. 6. Error analysis for the Fisher zeros with different system sizes, temperatures, and cumulant orders. The red bands indicate the
standard error σ/

√
m, where σ denotes the standard deviation and m = 7 is the number of different sets of high-order cumulants used to

extract the Fisher zeros, i.e., n = 11, . . . , 14; 12, . . . , 15; . . . ; 17, . . . , 20. The mean values over the cumulant sets are indicated by blue points
at the inverse temperatures βJ = 0.9, 0.92, 0.95, 0.97, 0.99, 1, 1.01, 1.03, 1.05, 1.08, 1.1. Each panel consists of two different sets of system
sizes in order to investigate finite-size effects. (a) The critical exponent σU is extracted from log-log plots of the imaginary part of the Fisher
zeros as a function of the system size. (b) The critical point is estimated to be Re[βcJ] ≈ 1.009 76 by averaging over the small system sizes
and Re[βcJ] ≈ 1.002 60 for the large system sizes. (c) The convergence point of the imaginary part of the Fisher zeros yields Im[βcJ] ≈ 0 to
a good approximation for both sizes.

ACKNOWLEDGMENTS

We thank A. Acharya, K. Brandner, F. Brange, J. P. Garra-
han, and R. Kenna for insightful discussions. We acknowledge
the computational resources provided by the Aalto Science-IT

project. A.D. acknowledges support from the Vilho, Yrj and
Kalle Visl Foundation of the Finnish Academy of Science and
Letters through the grant for doctoral studies. The work was
supported by the Academy of Finland (Projects No. 308515
and No. 312299).

[1] T. D. Lee and C. N. Yang, Statistical theory of equations of state
and phase transitions. II. Lattice gas and Ising model, Phys. Rev.
87, 410 (1952).

[2] C. N. Yang and T. D. Lee, Statistical theory of equations of state
and phase transitions. I. Theory of condensation, Phys. Rev. 87,
404 (1952).

[3] R. A. Blythe and M. R. Evans, Lee-Yang Zeros and Phase
Transitions in Nonequilibrium Steady States, Phys. Rev. Lett.
89, 080601 (2002).

[4] I. Bena, M. Droz, and A. Lipowski, Statistical mechanics of
equilibrium and nonequilibrium phase transitions: The Yang-
Lee formalism, Int. J. Mod. Phys. B 19, 4269 (2005).

[5] J. Lee, Exact Partition Function Zeros of the Wako-Saitô-
Muñoz-Eaton Protein Model, Phys. Rev. Lett. 110, 248101
(2013).

[6] J. Lee, Exact partition function zeros of the Wako-Saitô-
Muñoz-Eaton β hairpin model, Phys. Rev. E 88, 022710
(2013).

[7] A. Deger, K. Brandner, and C. Flindt, Lee-Yang zeros and
large-deviation statistics of a molecular zipper, Phys. Rev. E 97,
012115 (2018).

[8] P. F. Arndt, S. R. Dahmen, and H. Hinrichsen, Directed perco-
lation, fractal roots and the Lee-Yang theorem, Physica A 295,
128 (2001).

[9] S. M. Dammer, S. R. Dahmen, and H. Hinrichsen, Yang-Lee
zeros for a nonequilibrium phase transition, J. Phys. A: Math.
Gen. 35, 4527 (2002).

[10] M. Krasnytska, B. Berche, Y. Holovatch, and R. Kenna, Viola-
tion of Lee-Yang circle theorem for Ising phase transitions on
complex networks, Europhys. Lett. 111, 60009 (2015).

[11] M. Krasnytska, B. Berche, Y. Holovatch, and R. Kenna, Parti-
tion function zeros for the Ising model on complete graphs and
on annealed scale-free networks, J. Phys. A: Math. Theor. 49,
135001 (2016).

[12] P. Borrmann, O. Mulken, and J. Harting, Classification of
Phase Transitions in Small Systems, Phys. Rev. Lett. 84, 3511
(2000).

[13] O. Mülken, P. Borrmann, J. Harting, and H. Stamerjohanns,
Classification of phase transitions of finite Bose-Einstein con-
densates in power-law traps by Fisher zeros, Phys. Rev. A 64,
013611 (2001).

[14] W. van Dijk, C. Lobo, A. MacDonald, and R. K. Bhaduri, Fisher
zeros of a unitary Bose gas, Can. J. Phys. 93, 830 (2015).

[15] K. P. Gnatenko, A. Kargol, and V. M. Tkachuk, Time correlation
functions and Fisher zeros for q-deformed Bose gas, Europhys.
Lett. 120, 30004 (2017).

[16] K. P. Gnatenko, A. Kargol, and V. M. Tkachuk, Two-time
correlation functions and the Lee-Yang zeros for an interacting
Bose gas, Phys. Rev. E 96, 032116 (2017).

[17] G. Biroli and J. P. Garrahan, Perspective: The glass transition,
J. Chem. Phys. 138, 12A301 (2013).

[18] C. Flindt and J. P. Garrahan, Trajectory Phase Transitions,
Lee-Yang Zeros, and High-Order Cumulants in Full Counting
Statistics, Phys. Rev. Lett. 110, 050601 (2013).

033009-9

https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRevLett.89.080601
https://doi.org/10.1142/S0217979205032759
https://doi.org/10.1103/PhysRevLett.110.248101
https://doi.org/10.1103/PhysRevE.88.022710
https://doi.org/10.1103/PhysRevE.97.012115
https://doi.org/10.1016/S0378-4371(01)00064-4
https://doi.org/10.1088/0305-4470/35/21/303
https://doi.org/10.1209/0295-5075/111/60009
https://doi.org/10.1088/1751-8113/49/13/135001
https://doi.org/10.1103/PhysRevLett.84.3511
https://doi.org/10.1103/PhysRevA.64.013611
https://doi.org/10.1139/cjp-2014-0585
https://doi.org/10.1209/0295-5075/120/30004
https://doi.org/10.1103/PhysRevE.96.032116
https://doi.org/10.1063/1.4795539
https://doi.org/10.1103/PhysRevLett.110.050601


AYDIN DEGER AND CHRISTIAN FLINDT PHYSICAL REVIEW RESEARCH 2, 033009 (2020)

[19] J. M. Hickey, C. Flindt, and J. P. Garrahan, Trajectory phase
transitions and dynamical Lee-Yang zeros of the Glauber-Ising
chain, Phys. Rev. E 88, 012119 (2013).

[20] J. M. Hickey, C. Flindt, and J. P. Garrahan, Intermittency and
dynamical Lee-Yang zeros of open quantum systems, Phys.
Rev. E 90, 062128 (2014).

[21] M. Heyl, A. Polkovnikov, and S. Kehrein, Dynamical Quantum
Phase Transitions in the Transverse-Field Ising Model, Phys.
Rev. Lett. 110, 135704 (2013).

[22] A. A. Zvyagin, Dynamical quantum phase transitions (review
article), Low Temp. Phys. 42, 971 (2016).

[23] M. Heyl, Dynamical quantum phase transitions: A review, Rep.
Prog. Phys. 81, 054001 (2018).

[24] A. Lamacraft and P. Fendley, Order Parameter Statistics in the
Critical Quantum Ising Chain, Phys. Rev. Lett. 100, 165706
(2008).

[25] B.-B. Wei and R.-B. Liu, Lee-Yang Zeros and Critical Times
in Decoherence of a Probe Spin Coupled to a Bath, Phys. Rev.
Lett. 109, 185701 (2012).

[26] B.-B. Wei, S.-W. Chen, H.-C. Po, and R.-B. Liu, Phase transi-
tions in the complex plane of physical parameters, Sci. Rep. 4,
5202 (2014).

[27] A. R. Kuzmak and V. M. Tkachuk, Detecting the Lee-Yang
zeros of a high-spin system by the evolution of probe spin,
Europhys. Lett. 125, 10004 (2019).

[28] A. R. Kuzmak and V. M. Tkachuk, Probing the Lee-Yang zeros
of a spin bath by correlation functions and entanglement of two
spins, J. Phys. B 52, 205501 (2019).

[29] A. Krishnan, M. Schmitt, R. Moessner, and M. Heyl, Measuring
complex-partition-function zeros of Ising models in quantum
simulators, Phys. Rev. A 100, 022125 (2019).

[30] C. Binek, Density of Zeros on the Lee-Yang Circle Obtained
from Magnetization Data of a Two-Dimensional Ising Ferro-
magnet, Phys. Rev. Lett. 81, 5644 (1998).

[31] X. Peng, H. Zhou, B.-B. Wei, J. Cui, J. Du, and R.-B. Liu,
Experimental Observation of Lee-Yang Zeros, Phys. Rev. Lett.
114, 010601 (2015).

[32] K. Brandner, V. F. Maisi, J. P. Pekola, J. P. Garrahan, and C.
Flindt, Experimental Determination of Dynamical Lee-Yang
Zeros, Phys. Rev. Lett. 118, 180601 (2017).

[33] N. Fläschner, D. Vogel, M. Tarnowski, B. S. Rem, D.-S.
Lühmann, M. Heyl, J. C. Budich, L. Mathey, K. Sengstock,
and C. Weitenberg, Observation of dynamical vortices after
quenches in a system with topology, Nat. Phys. 14, 265 (2018).

[34] V. F. Maisi, D. Kambly, C. Flindt, and J. P. Pekola, Full
Counting Statistics of Andreev Tunneling, Phys. Rev. Lett. 112,
036801 (2014).

[35] A. Deger and C. Flindt, Determination of universal critical ex-
ponents using Lee-Yang theory, Phys. Rev. Research 1, 023004
(2019).

[36] P. Gaspard, Fluctuation relations for equilibrium states with
broken discrete symmetries, J. Stat. Mech. (2012) P08021.

[37] S. Friedli and Y. Velenik, Statistical Mechanics of Lattice
Systems: A Concrete Mathematical Introduction (Cambridge
University Press, Cambridge, 2017).

[38] S. R. A. Salinas, Introduction to Statistical Physics (Springer,
New York, 2001).

[39] L. P. Kadanoff, Scaling laws for Ising models near Tc, Phys.
Phys. Fiz. 2, 263 (1966).

[40] C. Domb and J. L. Lebowitz, Phase Transitions and Critical
Phenomena (Academic, New York, 1983).

[41] V. Privman and M. E. Fisher, Universal critical am-
plitudes in finite-size scaling, Phys. Rev. B 30, 322
(1984).

[42] Finite Size Scaling and Numerical Simulation of Statistical
Systems, edited by V. Privman (World Scientific, Singapore,
1990).

[43] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996).

[44] J. G. Brankov, D. M. Danchev, and N. S. Tonchev, Theory of
Critical Phenomena in Finite-Size Systems (World Scientific,
Singapore, 2000).

[45] R. Kenna and B. Berche, Fisher’s scaling relation above
the upper critical dimension, Europhys. Lett. 105, 26005
(2014).

[46] B. Berche, R. Kenna, and J.-C. Walter, Hyperscaling above the
upper critical dimension, Nucl. Phys. B 865, 115 (2012).

[47] K. Binder, Finite size scaling analysis of Ising model block
distribution functions, Z. Phys. B 43, 119 (1981).

[48] K. Binder and D. P. Landau, Finite-size scaling at first-order
phase transitions, Phys. Rev. B 30, 1477 (1984).

[49] K. Binder and E. Luijten, Monte Carlo tests of renormalization-
group predictions for critical phenomena in Ising models, Phys.
Rep. 344, 179 (2001).

[50] K. Huang, Statistical Mechanics (Wiley, New York, 1987).
[51] M. Biskup, C. Borgs, J. T. Chayes, L. J. Kleinwaks, and

R. Kotecký, General Theory of Lee-Yang Zeros in Models
with First-Order Phase Transitions, Phys. Rev. Lett. 84, 4794
(2000).

[52] W. Janke and R. Kenna, The strength of first and second order
phase transitions from partition function zeroes, J. Stat. Phys.
102, 1211 (2001).

[53] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[54] H. Touchette, Simple spin models with non-concave entropies,
Am. J. Phys. 76, 26 (2008).

[55] H. Touchette, Methods for calculating nonconcave entropies,
J. Stat. Mech. (2010) P05008.

[56] N. A. Alves, J. R. D. de Felicio, and U. H. E. Hansmann,
Partition function zeros and leading-order scaling correction of
the 3D Ising model from multicanonical simulations, J. Phys.
A: Math. Gen. 33, 7489 (2000).

[57] A. García-Saez and T.-C. Wei, Density of Yang-Lee zeros in the
thermodynamic limit from tensor network methods, Phys. Rev.
B 92, 125132 (2015).

[58] Z. Xu and A. del Campo, Probing the Full Distribution of Many-
Body Observables By Single-Qubit Interferometry, Phys. Rev.
Lett. 122, 160602 (2019).

[59] N. Goldenfeld, Lectures on Phase Transitions and the Renor-
malization Group (CRC, Boca Raton, 2018).

033009-10

https://doi.org/10.1103/PhysRevE.88.012119
https://doi.org/10.1103/PhysRevE.90.062128
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1063/1.4969869
https://doi.org/10.1088/1361-6633/aaaf9a
https://doi.org/10.1103/PhysRevLett.100.165706
https://doi.org/10.1103/PhysRevLett.109.185701
https://doi.org/10.1038/srep05202
https://doi.org/10.1209/0295-5075/125/10004
https://doi.org/10.1088/1361-6455/ab3d6b
https://doi.org/10.1103/PhysRevA.100.022125
https://doi.org/10.1103/PhysRevLett.81.5644
https://doi.org/10.1103/PhysRevLett.114.010601
https://doi.org/10.1103/PhysRevLett.118.180601
https://doi.org/10.1038/s41567-017-0013-8
https://doi.org/10.1103/PhysRevLett.112.036801
https://doi.org/10.1103/PhysRevResearch.1.023004
https://doi.org/10.1088/1742-5468/2012/08/P08021
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1103/PhysRevB.30.322
https://doi.org/10.1209/0295-5075/105/26005
https://doi.org/10.1016/j.nuclphysb.2012.07.021
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevB.30.1477
https://doi.org/10.1016/S0370-1573(00)00127-7
https://doi.org/10.1103/PhysRevLett.84.4794
https://doi.org/10.1023/A:1004836227767
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1119/1.2794350
https://doi.org/10.1088/1742-5468/2010/05/P05008
https://doi.org/10.1088/0305-4470/33/42/302
https://doi.org/10.1103/PhysRevB.92.125132
https://doi.org/10.1103/PhysRevLett.122.160602

