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Rapid fair sampling of the XY spin Hamiltonian with a laser simulator
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Coupled oscillators such as lasers, optical parametric oscillators, and Bose-Einstein-condensate polaritons
can rapidly and efficiently dissipate into a stable phase-locked state that can be mapped onto the minimal
energy (ground state) of classical spin Hamiltonians. However, for degenerate or near-degenerate ground-state
manifolds, statistical fair sampling is required to obtain complete knowledge of the minimal-energy state, which
needs many repetitions of simulations under identical conditions. We show that with dissipatively coupled lasers
such fair sampling can be achieved rapidly and accurately by exploiting the many longitudinal modes of each
laser to form an ensemble of identical but independent simulators, acting in parallel. We fairly sampled the
ground-state manifold of square, triangular, and kagome lattices by measuring their coherence function and
identifying manifolds composed of single, doubly degenerate, and highly degenerate ground states, respectively.
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I. INTRODUCTION

Various combinatorial optimization problems that occur,
for example, in social networks, neural networks, manage-
ment of large data sets, artificial intelligence, spin glass, drug
discovery, protein folding, and traveling salesmen, are con-
sidered to be computationally hard problems [1,2]. Such opti-
mization problems can be mapped into classical spin systems
(Ising or XY Hamiltonian), where they are reduced to finding
the global minimum of the spin Hamiltonian [3–6]. There
has been significant interest in building efficient simulators
that are based on physical systems, and recently, some have
been realized. These include simulators that involve coupled
lasers [7,8], Bose-Einstein-condensate (BEC) polaritons [3],
and optical parametric oscillators (OPOs) [2,5,9,10]. Their
success relies on finding efficiently and rapidly the ground
state of the spin Hamiltonian [3,10]. However, if the ground
state is degenerate or nearly degenerate, the ground-state
manifold must be fairly sampled in order to obtain the full
knowledge of the minimal-energy state of the system, requir-
ing many repetitions of the simulations under exactly the same
conditions [6,11–13].

Generally, fair sampling corresponds to the ability to sam-
ple all the populated states of a complex system in accor-
dance with the correct distribution function, e.g., thermal
[11,12,14]. Our system is assumed to anneal into one of sev-
eral (or many) degenerate ground states with equal probabil-
ity, so fair sampling corresponds to accurately sampling these
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degenerate ground states, which in turn provides knowledge
of the ground-state manifold.

Under the assumption of constant field amplitudes, the
coupled lasers are well approximated as Kuramoto phase
oscillators [15]. Then the phases of the lasers can be mapped
to the classical XY spins, and the ground state of the clas-
sical XY Hamiltonian can be analogous to the phase-locked
steady state of the coupled lasers [7]. Unlike finding the
ground state of spin systems by cooling externally, in coupled
lasers the internal dissipation caused by coupling drives the
lasers into a globally stable phase-locked state (minimal-
loss state), identical to the ground state of the classical XY
spin Hamiltonian [7,8]. The dissipatively coupled lasers were
formed in a degenerate cavity laser arrangement for observing
dissipative topological defects in a discrete one-dimensional
ring of phased-locked lasers and for relating their formation
to the Kibble-Zurek mechanism [8]. The phase-locking states
of the lasers were determined by detecting the far-field in-
tensity distributions of both positively and negatively (nearest
neighbors) coupled lasers and could not be compared to the
ground state of a XY spin Hamiltonian. The advantages of
dissipative mechanisms were also demonstrated in OPOs and
BEC polaritons simulators [2,3,10].

In this work, we present and characterize a simulator for
the XY spin Hamiltonian based on linearly coupled lasers that
rapidly performs statistical fair sampling of its ground-state
manifold by exploiting massive parallelism that is available
with the lasers. Specifically, each laser has approximately 250
longitudinal modes that form an ensemble of approximately
250 identical but independent simulators of the XY spin
Hamiltonian. This provides a massive parallelism that enables
rapid and accurate fair sampling of the ground-state manifold.
We directly measure the statistical average of spin ordering
(magnetization) of the ground-state manifold by measuring
coherence between the lasers in different lattice geometries
having single, double, and many degenerate ground states.
For a triangular lattice with positive coupling, we measure
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the long-range uniform coherence function, indicating a non-
degenerate single ground state, which could also be inferred
from the sharp peaks that were observed in the far-field
diffraction pattern [7,8]. For a triangular lattice with negative
coupling, we measure an oscillatory coherence function, indi-
cating a doubly degenerate ground state, which could not be
directly inferred from the far-field diffraction pattern. Finally,
for a kagome lattice with negative coupling, we measure an
exponentially decaying coherence function, which manifests
the degenerate ground states due to geometric frustration [7].

When the internal phases of each laser are varied, the
coherence function is modified into a directional coherence
function, corresponding to new stripe phase ordering. All
these experimental results agree with a theoretical model
based on statistical fair sampling of the ground-state manifold.
We also observe and explain an intriguing ensemble average
difference of π between the phases of nearest-neighbor lasers
that are negatively coupled, even in triangular lattices.

II. EXPERIMENTAL ARRANGEMENT AND PROCEDURES

The experimental arrangement, lattice configurations, and
representative results are presented in Fig. 1. Our coupled
lasers in lattices are formed in a degenerate cavity shown
schematically in Fig. 1(a) (yellow shaded region). It is com-
posed of two mirrors, two lenses in a 4f telescope, a mask
containing several hundred circular holes in different lattice
geometries, and a Nd:yttrium aluminum garnet gain medium
pumped by a 100-μs pulsed xenon flash lamp. The intracavity
4f telescope ensures that any field distribution at the mask
plane is imaged onto itself after every round trip. Accordingly,
each hole on the mask defines an independent individual
laser [7,8,16]. Each laser lases with a nearly pure single
Gaussian transverse mode (forced by a 200-μm-diameter
circular aperture located in the Fourier plane of the intra-
cavity telescope) and approximately 250 longitudinal modes
that are common to all lasers due to the degenerate cavity
condition. The number of lasing longitudinal modes in the
degenerate cavity can be determined by the ratio of the total
laser bandwidth (∼32 GHz) over the free spectral range
of the cavity (spacing between the successive longitudinal
modes, ∼128 MHz), which yields ∼250 longitudinal modes
(as verified experimentally in [17]).

It should be noted that due to gain competition only ∼250
longitudinal modes lase inside the laser cavity, indicating
some coupling between them. However, the gain is located
in the near-field plane, where all ground states have the same
intensity distributions and hence the same gain. Thus, there is
no distinction between the ground states, and it does not bias
the sampling of ground-state manifold. Conversely, biasing
in sampling occurs when a nonlinear element is located at
the far-field plane, where different ground states have dif-
ferent intensity distributions and hence different nonlinear
responses [18].

We verified that lasers are independent by showing
that each laser is incoherent with all the other lasers
(see Appendix A). Coupling between adjacent lasers is intro-
duced by shifting mirror M1 a distance d of quarter-Talbot
length away from the mask [19]. Such a distance results in
negative coupling between adjacent lasers, corresponding to
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FIG. 1. Experimental arrangement, lattice geometries, and repre-
sentative results. (a) Schematic of a degenerate cavity laser (shaded
in yellow) that forms and phase locks lasers in different lattice
geometries, together with a Mach-Zehnder interferometer (shaded
in orange) for analyzing the coherence between the lasers. (b) Ex-
perimentally measured interference pattern when a single reference
laser interferes with itself and with all the other lasers in the square
lattice. Experimental near-field intensity patterns for (c) the trian-
gular lattice with positive coupling, (d) the triangular lattice with
negative coupling, and (e) the kagome lattice with negative coupling.
(f) Landscape with a single ground state, corresponding to the in-
phase locked triangular lattice. (g) Landscape with two degenerate
ground states, corresponding to vortex and antivortex states of the
out-of-phase locked triangular lattice. (h) Landscape with highly
degenerate ground states, corresponding to 2n states (n is the number
of triangles) in the out-of-phase locked kagome lattice. Note that for
n = 2, only one state out of four states is shown. Different colors of
the lasers denote different values of the phases. Cyan = 0, yellow
= 2π/3, and pink = −2π/3. M1 and M2 denote high-reflectivity
and partial-reflectivity cavity mirrors, and M3 and M4 denote high-
reflectivity mirrors. L1, L2, L3, L4, L5, and L6 indicate plano-convex
lenses, BS is the beam splitter, and CCD indicates the camera.

antiferromagnetic ordering of classical XY spins [20]. Al-
ternatively, d of half-Talbot length combined with Fourier
filtering provides positive coupling between adjacent lasers,
corresponding to ferromagnetic ordering [21].

The coherence between the lasers is described as [22]

Vi j =
√

〈cos(φi j )〉2 + 〈sin(φi j )〉2, (1)

where φi j = φi − φ j , φi and φ j are the phases of lasers i and
j mapped to the orientation angle of spins i and j, and 〈·〉
denotes averaging over the ensemble of simulators, which is
achieved simultaneously with our coupled lasers.
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FIG. 2. Positively coupled lasers in a triangular lattice.
(a) Ensemble-averaged far-field diffraction pattern, indicating long-
range in-phase ordering. (b) The coherence calculated from the
interference pattern measured by the Mach-Zehnder interferometer,
also indicating long-range phase ordering. (c) The phases of lasers
calculated from the measured interference pattern, indicating long-
range in-phase ordering throughout the lattice. The yellow arrow in
(b) denotes the location of the reference laser (it is the same in other
figures).

The coherence between the lasers [Eq. (1)] is measured
using a Mach-Zehnder interferometer, shown in Fig. 1(a) (or-
ange shaded region). The output of lasers from the degenerate
cavity splits into two channels at the first beam splitter. In one
channel, the output of all the lasers is imaged directly onto
the CCD camera. In the other channel, a single reference laser
is selected using a pinhole with a size of 50 μm, and then
its light is expanded so that it fully overlaps and interferes
with the light of all the lasers with a second beam splitter on
the camera. Thus, a single selected reference laser interferes
with itself and with all the other lasers. A small tilt between
the two channels provides few interference fringes for each
laser [exemplified in Fig. 1(b) for a square lattice] from which
the fringe visibility (coherence) and shift (phase difference)
are obtained for all lasers by digital Fourier analysis. The
measured coherence function is normalized such that the
coherence of the reference laser with itself is 1. We also
measure the far-field diffraction pattern of the lasers in the
lattice that corresponds to the ensemble-averaged structure
factor of the lattice [7] where sharp Bragg peaks indicate
long-range phase ordering between the lasers.

III. FAIR SAMPLING OF THE GROUND-STATE
MANIFOLD

Using the experimental arrangement shown in Fig. 1, we
performed a series of experiments to demonstrate fair sam-
pling of the ground-state manifold in square, triangular, and
kagome lattices. We first phase locked about 320 lasers with
positive coupling in a triangular lattice [Fig. 1(c)]. The results
in Fig. 2 represent an ensemble averaging over about 250
independent realizations, each corresponding to a different
longitudinal mode.

Figure 2(a) shows the far-field diffraction pattern of the
lasers, where the sharp Bragg peaks indicate long-range in-
phase ordering. The measured coherence [Fig. 2(b)] of the
lasers also evidences long-range phase ordering and barely
decays with distance from the reference laser. There are six
straight directions with respect to the reference laser, in which,
by symmetry, the coherence decay should be identical. For the

π  π 00 10.5 0 10.5
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FIG. 3. Negatively coupled lasers in a triangular lattice.
(a) Ensemble-averaged far-field diffraction pattern containing two
states (vortex and antivortex). (b) The coherence calculated from the
measured interference pattern, showing high coherence every three
lasers in the ensemble average. (c) The phases of lasers calculated
from the measured interference pattern, showing a phase difference
of π (from the reference laser) between nearest neighbors in the
ensemble average.

statistical analysis, the coherence is averaged over all these
six directions (see Fig. 6 below and Appendix D) to quantify
the accuracy of fair sampling. Finally, Fig. 2(c) shows the
measured phases of the lasers (relative to the reference laser),
confirming in-phase ordering throughout the lattice. The ob-
served long-range in-phase ordering shows that the entire
ensemble of experiments (realized by multiple longitudinal
modes) converged to the same nondegenerate ground state,
as expected from its single minimal-loss manifold illustrated
in Fig. 1(f). This convergence is analogous to perfect ferro-
magnetic spin ordering of XY spins. We obtained long-range
(out-of-phase) ordering also for a square lattice with negative
coupling [Fig. 1(b)] that has the same single minimal-loss
manifold (see Appendix B).

Next, we investigated the triangular lattice of about 320
negative coupled lasers. Figure 3(a) shows the far-field
diffraction pattern, which is composed of six sharp Bragg
peaks that indicate long-range phase ordering. Three of these
Bragg peaks correspond to a vortex state illustrated as the left
ground state in Fig. 1(g), and other three peaks correspond
to an antivortex state illustrated as the right ground state
in Fig. 1(g) [7,21,23]. These two degenerate ground states
have (by symmetry) equal probability to be populated by the
ensemble of experiments realized by the multiple longitudinal
modes, as indicated by the equal intensity of their Bragg peaks
in the diffraction pattern in Fig. 3(a).

The coexistence of the two degenerate ground states has
remarkable consequences for the measured coherence func-
tion that oscillates where the coherence with respect to the
reference laser revives every three lasers [Fig. 3(b)]. This
surprising behavior can be understood by noting that for
the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
lasers, the vortex and antivortex states differ by ±2π/3. So
their interference fringes are shifted and, as a result of en-
semble averaging, reduce the coherence to 50%. However, for
the next-next-nearest-neighbor (NNNN) laser these two states
have the same relative phase, yielding a coherence of 100%
(and then the same 50%, 50%, 100% coherence periodicity is
repeated). Figure 3(c) shows the ensemble-averaged phases of
the lasers, indicating a phase difference of π (from the refer-
ence laser) between the nearest neighbors. This is analogous
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FIG. 4. Negatively coupled lasers in a kagome lattice.
(a) Ensemble-averaged far-field diffraction pattern, containing
many vortex and antivortex states. (b) The coherence calculated
from the measured interference pattern, showing exponential
decaying behavior in the ensemble average. (c) The phases of the
lasers calculated from the measured interference pattern, showing
a phase difference of π (from the reference laser) between nearest
neighbors in the ensemble average.

to XY spin systems, where XY spins oriented at +2π/3 and
−2π/3 yield a spin with magnitude one half oriented at π in
the ensemble averaging.

The XY spin Hamiltonian on a kagome lattice [Fig. 1(e)]
exhibits highly nontrivial features such as geometric frustra-
tion that arises due to massive degeneracy in its ground state
[7,24,25]. The degeneracy scales exponentially with the sys-
tem size; thus, performing fair sampling is a computationally
hard problem [6]. The results for fair sampling in a kagome
lattice with about 350 negatively coupled lasers are shown
in Fig. 4.

Figure 4(a) shows the ensemble-averaged far-field diffrac-
tion pattern that consists of large-area Bragg lobes (rather than
sharp peaks), indicating the lack of long-range phase ordering,
in agreement with the theoretical results [7,25]. Specifically,
in a kagome lattice, each triangle of lasers can randomly
find either the vortex or the antivortex degenerate ground
state with equal probability, thereby suppressing long-range
phase ordering. Figure 4(b) shows a rapid decay of coherence,
indicating again the lack of long-range phase ordering. There
are four “diagonal” directions in which, by symmetry, the
coherence decay should be identical and other directions (e.g.,
horizontal and vertical) in which decay is more rapid due to
the absence of lasers. Within the four diagonal directions,
the exact symmetry is broken by the nonuniformity of the
laser amplitudes and coupling between them. The statistical
analysis of these nonuniformities (see Appendix D) quantifies
the accuracy in which our results agree with fair sampling.
The coherence function can be quantitatively determined by
calculating the probability distribution of states that have
relative phase differences ±2π/3 or 0 with respect to the
reference laser. For example, for NN, equal-probability states
with relative phases of ±2π/3 reduce the coherence to 50%.
For NNN and NNNN, the coherence is reduced to 25% and
12.5%, respectively [26]. More generally, at a distance n from
the reference laser, the coherence continues to drop exponen-
tially as 1/2n. Figure 4(c) shows the ensemble-averaged phase
ordering, indicating a π phase difference (from the reference
laser) between the nearest neighbors, analogous to the XY
spin system.

π  π 00 10.5 0 10.5

(a) (b) (c)

FIG. 5. Negatively coupled lasers in a kagome lattice with a
large-diameter intracavity Fourier aperture. (a) Ensemble-averaged
far-field diffraction pattern. (b) The coherence calculated from the
measured interference pattern. (c) The phases of the lasers calculated
from the measured interference pattern.

We also investigated the coherence of the kagome lattice
when the intracavity Fourier aperture has a large diameter, so
that each laser is no longer a pure TEM00 mode and contains
fine internal features which diffract faster and can generate
NNN coupling. The results, shown in Fig. 5, differ dramati-
cally from those without NNN coupling in Fig. 4. Figure 5(a)
presents the ensemble-averaged far-field diffraction pattern,
which now consists of sharp, narrow lines indicating long-
range phase ordering only along certain directions. Figure 5(b)
shows the measured coherence that decays slowly along cer-
tain directions, confirming such anisotropic long-range phase
ordering. Figure 5(c) shows the ensemble-averaged phases,
which again indicate the relative phase difference of π (from
the reference laser) between nearest neighbors. This intrigu-
ing, highly directional phase ordering is also observed in our
numerical simulations (see Appendix C 1) and is accompanied
by spontaneous intensity-pattern formation as in the stripe
phase of ultracold atoms [27].

Finally, we have quantified the coherence as a function
of distance from the reference laser and compared the ex-
perimental results to the analytical ones, as shown in Fig. 6
(and in Appendix C 2). The distance from the reference laser
is defined such that NN, NNN, and higher-order lasers are
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FIG. 6. The ensemble-averaged normalized coherence as a func-
tion of distance from the reference laser. (a) Normalized coherence
for the positively coupled lasers (inverted blue and red triangles) and
negatively coupled lasers (blue and red triangles) in a triangular lat-
tice. For the positive coupling, the coherence is monotonic, whereas
for the negative coupling the coherence shows an oscillatory behavior
in agreement with the analytical results. (b) In a negatively coupled
kagome lattice, normalized coherence decays exponentially for NN
coupling (blue and red stars) but decays much slower with NNN
coupling (green stars).
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along a straight line in symmetric directions. For example,
in triangular (kagome) lattices there are six (four) symmetric
directions. The coherence as a function of distance from the
reference laser is averaged over all these directions in each
lattice geometry. Figure 6(a) shows the normalized coherence
as a function of the distance from the reference laser for
positively and negatively coupled lasers in a triangular lat-
tice. For the positively coupled lasers, the coherence decays
slowly and monotonically (blue and red inverted triangles).
As is evident, the ensemble averaging does not reduce the
coherence, indicating a single nondegenerate ground state.
For the negatively coupled lasers, both the analytical and
experimental coherences show an oscillatory behavior as a
function of distance from the reference laser (blue and red
triangles), where the coherence revives every three lasers.
This loss and revival of the ensemble-averaged coherence with
distance from the reference laser indicates two degenerate
ground states.

Figure 6(b) shows the normalized coherence as a function
of the distance from the reference laser in a kagome lattice
with NN and NNN negative coupling. For NN negative cou-
pling, the ensemble-averaged coherence decays exponentially,
in agreement with the analytical results [26] (blue and red
stars). The exponential decay indicates massive degeneracy
in the ground state that scales exponentially with the system
size due to geometric frustration [7]. For NNN coupling,
the ensemble-averaged coherence decays much slower as
a function of the distance from the reference laser (green
stars), indicating a reduced number of degenerate ground
states.

Equal sampling of the ground states in the negatively
coupled triangular lattice and the kagome lattice should lead
to a 0.5 normalized coherence for NN lasers. We analyze the
measured coherence for all six (four) NNs in the triangular
(kagome) lattices and find the average normalized coherence
is 0.53 (0.53) and its standard deviation is 0.05 (0.06) (see
Figs. 6 and 11). Within these deviations that are due to
aberrations and noise in the experimental arrangement, our
results are consistent with ideal fair sampling (for more details
on the NNN coherence, see Appendixes C and D).

IV. CONCLUDING REMARKS

We presented a simulator based on dissipatively coupled
lasers for rapid and efficient fair sampling of magnetic order-
ing of the XY spin Hamiltonian with ground-state degeneracy.
The simulator exploited 250 longitudinal modes of each laser
to form an ensemble of 250 identical but independent simu-
lators to provide massive parallelism in performing statistical
fair sampling. We investigated the ground-state manifold in
different geometries such as square, triangular, and kagome
lattices. For negative (positive) coupling, we observed a single
ground state for the square (triangular) lattice, two degenerate
ground states for the triangular lattice, and geometrically frus-
trated highly degenerate ground states for the kagome lattice.
For these cases, the corresponding spatial coherence functions
are either nearly uniform or oscillatory or exponentially de-
caying. Under certain conditions, we also observed highly
directional phase ordering in a kagome lattice, indicating
reduced ground-state degeneracy.

In this work, we tested the fair sampling by analyzing
the ensemble-averaged coherence function. The results of our
statistical analysis are in good agreement with the theoreti-
cal predictions, thus verifying our approach indeed performs
fair sampling. Our simulator with rapid fair sampling of the
ground-state manifold could potentially be exploited to ad-
dress various combinatorial optimization problems. We plan
to extend our work to study the effects of defects on the
ensemble-averaged coherence in two-dimensional lattices and
their influence on the ground-state manifolds.

Our experimental arrangement can also be exploited to
solve optimization problems by using problem-specific near-
field and far-field masks to obtain desired near-field amplitude
distribution and desired coupling between the lasers. The
desired near-field amplitude distribution can also be imple-
mented by means of an electronically controlled spatial light
modulator as one of the cavity mirrors [28], and arbitrary
coupling between the lasers can be implemented with an
optical vector multiplication arrangement to form a coupling
matrix [29,30]. Fair sampling is especially important for com-
putationally hard problems that are mapped onto spin systems
with many degenerate or near-degenerate ground states.
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APPENDIX A: UNCOUPLED LASERS IN THE
SQUARE LATTICE

Here we show that without coupling the lasers in the lattice
are independent of each other. The lattices of lasers are formed
in a degenerate cavity, as shown in Fig. 1(a) (shaded in yellow)
in the main text. The results for the square lattice are shown
in Fig. 7. Figure 7(a) shows the near-field intensity pattern
of the lasers arranged in the square lattice, where the output
from each laser is a Gaussian TEM00 mode. Figure 7(b)
shows the ensemble-averaged far-field diffraction pattern that
consists of a broad Gaussian distribution, which indicates
that the lasers are independent of each other [7]. We also
measured the interference pattern using the Mach-Zehnder
interferometer shown in Fig. 1(a) (shaded in orange), where
light from a single reference laser can interfere with itself
and with the light from all other lasers. The results, shown
in Fig. 7(c), indicate that fringes appear at only one laser site
[see the inset in Fig. 7(c)], where the light from the reference
laser interferes only with itself. The corresponding coherence
(fringe visibility) obtained by digital Fourier analysis is shown
in Fig. 7(d) as a single spot, indicating that the selected laser
is coherent only with itself and not with the other uncoupled
lasers. These results confirm that the lasers in the lattice are
independent and fully incoherent.

APPENDIX B: COUPLED LASERS IN THE
SQUARE LATTICE

Here we show the effect of coupling on the square lattice
of lasers. We introduce coupling between the lasers by means
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FIG. 7. Experimental results for the uncoupled lasers in a square
lattice. (a) The near-field intensity pattern of lasers. (b) The far-field
diffraction pattern of lasers. (c) The interference pattern when the
output light from a single laser interferes with itself and with the light
from all other lasers. (d) The coherence calculated from the measured
interference pattern.

of Talbot diffraction [21] and then detect the effect on the
output intensity distribution and coherence. The results are
presented in Fig. 8. Figure 8(a) shows the ensemble-averaged
far-field diffraction pattern which is composed of sharp Bragg
peaks with darkness in the center, indicating a long-range
out-of-phase ordering. Figure 8(b) shows the interference
pattern, where fringes were detected at all the laser sites,
indicating long-range phase ordering. The analyzed coherence
shown in Fig. 8(c) also indicates long-range phase ordering,
where it barely decays with distance from the reference laser
(center laser). Finally, Fig. 8(d) shows the measured phases of
the lasers (relative to the reference laser), confirming out-of-
phase ordering throughout the lattice. All these results were
obtained with ensemble averaging over 250 independent real-
izations, each corresponding to a different longitudinal mode.
Accordingly, the detected long-range out-of-phase ordering
provides evidence that the entire ensemble of experiments
(realizations) occupies the same nondegenerate ground state.
This is equivalent to perfect antiferromagnetic spin ordering
of XY spins.

APPENDIX C: NUMERICAL SIMULATIONS AND
ANALYTICAL RESULTS

1. Numerical simulations

Here we describe the numerical simulations that were used
to verify the experimental results of negatively coupled lasers

(a) (b)
Far field Interference 
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Fringe visibility
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Phases
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0 10.5 − 0

FIG. 8. Experimental results for the negatively coupled lasers in
a square lattice. (a) The far-field diffraction pattern of the laser lattice.
(b) The interference pattern when the output light from a single
reference laser interferes with itself and with the light from all other
lasers. (c) The coherence calculated from the measured interference
pattern. (d) The phases of the lasers calculated from the measured
interference pattern.

in a kagome lattice, shown in Figs. 4 and 5. The simulations
were performed with an algorithm that combines the Fox-Li
algorithm [31] and Gerchberg-Saxton algorithm [32]. The pa-
rameters for the simulations were the same as those used in the
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FIG. 9. Simulated phase and far-field diffraction pattern of nega-
tively coupled lasers in a kagome lattice for two different far-field
aperture radii R. The top row shows the simulated phases of the
lasers, and the bottom row shows the corresponding simulated far-
field diffraction patterns.
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FIG. 10. Normalized coherence as a function of distance from
the reference laser. The experimental visibility (blue dots) was fitted
with a Gaussian decaying function (red line with squares) to extract
the decay of coherence due to aberrations and noise.

experiment. The simulation results were averaged over 100
realizations (corresponding to 100 independent longitudinal
modes) to perform fair sampling. The simulated results are
shown in Fig. 9 for small and large far-field aperture radii R.
The top row shows the simulated phases of the lasers, and
the bottom row shows the corresponding far-field diffraction
patterns. Note that the phases correspond to individual lasers,
not the relative phase between the lasers.

For small aperture R = 1, Fig. 9(a) shows that the phase
distribution in each laser is almost uniform (almost pure
TEM00 mode). The far-field diffraction pattern [Fig. 9(c)]
shows large-area Bragg lobes with diffusive lines similar to
those in Fig. 4(a), indicating the lack of long-range phase
ordering. For large aperture R = 1.2, the phase distribution
in each laser is mostly nonuniform (no longer a pure TEM00

mode). The far-field diffraction pattern [Fig. 9(d)] shows
sharp lines similar to those in Fig. 5(a), indicating long-range
phase ordering only along certain directions.

2. Analytical results

Here we describe the method to calculate the decay of the
coherence function shown in Fig. 6(a) for the triangular lattice
of lasers. We attribute the decay of the measured coherence to
aberrations and noise in our experimental arrangement [8]. We
first fitted the measured coherence of positively coupled lasers
(in-phase ordered) with a Gaussian decay function

f (x) = ae−bx2
, (C1)
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FIG. 11. The normalized coherence as a function of different
realizations. (a) For NN lasers in a negatively coupled triangular
lattice, the normalized coherence varies within the standard deviation
of 5%. (b) For NN and NNN lasers in a negatively coupled kagome
lattice, the normalized coherences vary within standard deviations of
6% and 8%.

where a = 1, b = 5.54 × 10−3, and x is the distance from
the selected laser. The fitted curve is shown in Fig. 10. We
multiplied the uniform coherence function [ f (x) = 1] of
the in-phase ordered triangular lattice and oscillatory coher-
ence function of the out-of-phase ordered triangular lattice
[ f (x) = 1, 0.5, 0.5, 1, . . . ] by this Gaussian decaying func-
tion [Eq. (C1)], yielding the analytical results in Fig. 6(a).
Furthermore, the decay of the coherence function for the
kagome lattice shown in Fig. 6(b) was analytically calculated
by finding the probability distribution of states that have
relative phase differences of ±2π/3 or 0 with respect to the
reference laser and was found to decay exponentially as 1/2n,
where n denotes the distance from the reference laser.

APPENDIX D: STATISTICAL ANALYSIS

We performed a statistical analysis to quantify the agree-
ment of our results with the predictions of ideal fair sam-
pling. We started by obtaining the normalized coherence as
a function of the number of realizations for NN and NNN
and then calculated the standard deviation with respect to the
theoretical values of coherences. Note that each realization
consists of averaging over ∼250 independent simulations,
using 250 longitudinal laser modes. The results are presented
in Fig. 11. As is evident, for NN lasers in a triangular
lattice, the normalized coherence varies within the standard
deviation of 5% [shown in Fig. 11(a)]. A similar variation is
also observed for NNN lasers. For NN and NNN lasers in
a kagome lattice, the normalized coherences vary within the
standard deviations of 6% and 8%, respectively [as shown in
Fig. 11(b)]. These analyses confirm that our results agree with
the ideal fair sampling within a few percent of deviation from
the theoretical values of coherence.
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