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This paper focuses on two aspects of the statistics of cosmological observables that are important for the next
stages of precision cosmology. First, we note that the theory of reduced angular N-point spectra has only been
developed in detail up to the trispectrum case and in a fashion that makes it difficult to go beyond. To fill this
gap, here we present a constructive approach that provides a systematic description of reduced angular N-point
spectra and their covariance matrices, for arbitrary N . Second, we focus on the common practice in the literature
on cosmological observables, which consists in simply discarding a part of the expression, namely, the terms
containing fields evaluated at the observer position. We point out that this is not justified beyond linear order
in perturbation theory, as these terms contribute to all the multipoles of the corresponding spectra and with a
magnitude that is of the same order as the rest of the nonlinear corrections. We consider the possibility that the
reason for neglecting these terms is a conceptual discomfort when using ensemble averages, which originates in
an apparent tension between the ergodic hypothesis and the privileged position of the observer on the light-cone.
We clarify this subtle issue by performing a careful derivation of the relation between the theoretical statistical
predictions and the observational estimators for all N . We conclude that there is no inconsistency whatsoever
in ensemble-averaging fields at and near the observer position, thus clearing the way for consistent and robust
high-precision calculations.
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I. INTRODUCTION

Upcoming surveys such as Refs. [1–5] will significantly
enhance the quantity and quality of the data that we have at
our disposal for understanding the universe. This development
requires a commensurate effort on the theoretical side for
the new observational input to be interpreted correctly. In
particular, one needs to consider analytical expressions for
cosmological observables beyond the linear order in pertur-
bation theory, as is already clearly reflected by the extensive
amount of work on the subject in the case of CMB lensing
[6–17], galaxy number counts [18–32], and cosmological dis-
tances and weak lensing [33–41]. The inclusion of nonlinear
corrections is not only required for increasing the precision of
the basic quantities of interest, such as the power spectrum of
observables, but also for obtaining the leading contributions
to higher-order statistics (e.g., bispectrum, trispectrum, etc.).
The latter contain crucial information about the early universe
and the formation of structure, which will become more
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accessible thanks to the expected advances in observations.
In this paper we will elaborate on two important aspects of
the statistics of cosmological observables for the next stages
of precision cosmology which have not yet been considered
in the literature.

The first issue is the lack of generality in our description
of angular higher-order statistics. Indeed, in the literature, the
rotationally invariant (or “reduced”) angular N-point spectra
of a given observable on the sky are defined only up to the
trispectrum (N = 4) case [42] and built in a rather opaque
way that does not generalize easily to arbitrary N . The N =
3, 4 cases are well studied and measured [43–47] in CMB
observations, whittling down the parameter spaces of the
inflationary models. It is known, however, that the hierarchy
between N-point spectra is not necessarily trivial, e.g., there
exist models with a large trispectrum, but negligible bispec-
trum [48–51]. Therefore, the study of N-point spectra beyond
N = 4 could be relevant for models with both negligible
bispectrum and trispectrum. In any case, it is always desirable
to have a systematic theoretical framework for approaching
a given problem, which is what we will present here. This
is a transparent construction of the reduced angular N-point
spectra, for arbitrary N , their covariance matrices for arbi-
trary N and N ′, as well as a flurry of useful equations for
manipulating them. The central ingredient in this framework
will be the generalization of the “triangular” Wigner 3 − j
symbol to a “multilateral” one, leading in particular to a neat
diagrammatic representation. Our equations will hold for the
idealized case of full sky measurements, but they should not
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be difficult to generalize to the case of partial covering. Note,
finally, that the number of components of the angular spectra
increases rapidly with N , meaning that the new higher-order
statistics we can now work with are practically impossible
to store, let alone manipulate, in their entirety. Nevertheless,
our construction is the indispensable prerequisite for handling
these objects, as it provides the starting point for research
on privileged subsets, limits, shapes and efficient estimators
thereof.

The second issue we want to discuss concerns the consis-
tency and accuracy of the theoretical predictions, especially
at the nonlinear orders in perturbation theory which now need
to be taken into account. The standard approach to analytical
computations of cosmological observables neglects certain
terms, namely, those containing fields evaluated at the ob-
server point. As we will discuss, for linear order perturbation
theory these observer-dependent contributions have no effect
on multipoles l � 2, but we will argue that they do affect
all multipoles at the nonlinear level. This is an important
point, because none of the works on nonlinear effects so
far [6–41] considers these observer-dependent terms. More-
over, at the linear level it has already been established that
the consideration of the full expressions, i.e., including the
observer-dependent terms, has some important advantages,
as it leads to results that are gauge-invariant and respect the
equivalence principle in k-space (absence of spurious infrared
divergences) [52–63].

We identify two possible reasons behind the reticence to-
wards considering these observer-dependent terms in the liter-
ature. The first one is rooted in a common misconception that
observer-dependent terms are synonymous with “monopole,”
because they only affect the later in the power spectrum of
the linear theory (or the s multipole for spin s observables).
Since low multipoles are dominated by cosmic variance, one
is then naturally led to ignore observer-dependent terms.
We will show that this is an artifact of linear perturbation
theory, because observer-dependent terms actually do arise
in nonlinear corrections to all multipoles, and there is no
reason to believe that these contributions are negligible. The
second possible reason for ignoring these terms might be
a discomfort of conceptual nature. Simply put, it is not
clear whether one can consistently ensemble average them to
compute correlation functions and spectra, because, contrary
to the case of source points, one does not probe several
“observer points” observationally for the ergodic hypothesis
to apply. A first shaky aspect of this argument is that the
ensemble averages that are considered in the standard ap-
proach are statistically homogeneous, so this already wipes
out the observationally privileged status of the observer point,
independently of whether one chooses to include the observer-
dependent terms or not. More precisely, we will see that the
above objection to the statistical use of observer-dependent
terms arises from a misunderstanding of the way the ergodic
hypothesis enters the relation between the ensemble averages
of the theorist and the geometrical averages of the observer.
We will perform a careful derivation of that relation under the
standard assumption of statistical homogeneity and isotropy
for the stochastic fluctuations, but without any assumptions
about which points are included in the ensemble averages. We
will then see that the error of this theoretical prediction with

respect to the data averages is nothing but cosmic variance.
Thus, by carelessly ensemble averaging field products at arbi-
trary points on the light-cone, independently of how well we
can probe them observationally, the theorist is not deviating
in any new way from observation other than the fundamental
limitation of cosmic variance. Let us also stress that our result
is completely general, as we will work with the freshly defined
N-point spectra for arbitrary N . The assumption of full sky
measurement will not be problematic here, as the point we
wish to make is of qualitative nature. Also, we will only
consider the spectra of a single observable, but the formalism
generalizes straightforwardly in the case of cross-correlations
of different observables.

The paper is organized as follows. In Sec. II we discuss
some technical aspects regarding cosmological observables
and their theoretical statistical treatment. The reader who is
familiar with cosmological observables can skip this part,
although some of its definitions and equations will be used
later on, so it might be useful to take a quick look anyway.
In Sec. III we discuss the present situation regarding reduced
angular N-point spectra in the literature and then derive our
formulas for defining and handling these objects for arbitrary
N . Section IV focuses on the issue of observer-dependent
terms. We first discuss in more detail the inconsistencies,
and potential inaccuracies, that result from ignoring them in
the spectra of observables. Then, using our definition of the
angular correlation functions and spectra given in the previous
section, we derive the relation between the statistical ones of
the theorist and the geometrical ones of the observer. This
demonstrates that one is allowed to (and one should) take into
account the observer-dependent terms inside ensemble aver-
ages. In Sec. V we derive the expression for the covariance
matrix of two arbitrary reduced angular spectra and determine
the asymptotic behavior of cosmic variance for large l values.
In Sec. VI we discuss a few subtleties one should be aware
of when working with the connected parts of the statistics.
Finally, in Sec. VII we conclude. The Appendices contain
technical derivations to avoid clogging the main text, as well
as the set of Wigner 3 − j symbol identities we will use in this
paper.

II. PRELIMINARY CONSIDERATIONS

A. Angle, redshift, and observables

A cosmological observable associated with some localized
source of light (galaxy, supernovae, etc.) is a function of two
space-time points O(xo; xs), the “observer” point xo and the
“source” point xs, that are constrained to lie on a common
lightlike geodesic, with xs in the past of xo. Thus, for a
given observer at xo, the set of possible light source points
xs detected through light forms the past light-cone of xo.
The numbers xμ

s are not observables, as they are ambiguous
due to the freedom of performing coordinate transformations.
One can of course consider correlation functions of the form
〈O(xo; x1) . . .O(xo; xN )〉, or the associated spectra in k-space,
but these cannot be related to observable information, espe-
cially in the presence of nonnegligible inhomogeneity effects.
One must therefore work directly with the physically unam-
biguous relations, i.e., the relations between observables, so

033004-2



GENERAL AND CONSISTENT STATISTICS FOR … PHYSICAL REVIEW RESEARCH 2, 033004 (2020)

one must parametrize the past-light cone at xo in terms of
observables. One of them is the incoming photon direction
in the sky, n, leading to an angular parametrization of the sky.
Thus, instead of working with the “k-space” spectra, we will
work with the “l-space” ones, which are directly related to
observable quantities. Finally, for the radial parametrization of
the light-cone there are several choices, such as the observed
redshift z or the luminosity/angular distances DL,A. Here we
will consider the former, which is also the most widely used
and model independent. Thus, the observer at xo parametrizes
her light-cone in terms of the observables z and n, and the
physical information lies in the relation between O and (z, n)
that is the function O(xo; z, n).

The quantities z and n are defined with respect to the
observer rest-frame, i.e., a tetrad ea at xo,

go(ea, eb) ≡ ηab, (1)

whose time-component e0 is the observer’s 4-velocity, and
the source 4-velocity us satisfying gs(us, us) ≡ −1. More
precisely, if k denotes the momentum 4-vector of the photon,
then we have

1 + z := g(us, ks)

g(e0, ko)
, ni := − g(ei, ko)√

g(e j, ko) g(e j, ko)
, (2)

where i ∈ {1, 2, 3} is the spatial part of the four-dimensional
index a ∈ {0, 1, 2, 3}. Note that ni is the observed angular
direction, not the propagation direction, hence the minus sign.
These quantities are invariant under space-time coordinate
transformations, as any observable should, since a measure-
ment cannot depend on how we parametrize that manifold. In
the absence of a tetrad, the only available numbers are the
components of k in a coordinate system kμ and the corre-
sponding angles in the spatial part are the ones an observer
uses only if the basis ∂μ is orthonormal, i.e., only if gμν (xo) =
ημν . This is not the case in most of the coordinate systems
used in cosmology, which is why one requires a tetrad to
obtain the correct angles n. Since this field is defined at the
observer position, the corresponding correction of the angles
it induces will appear as observer terms in the expressions of
observables.

The observer tetrad Eq. (1) is defined only up to a Lorentz
transformation ea → � b

a eb, but the boosts alter the observer
4-velocity, so the only ambiguity is the orientation of the
spatial frame ei → R j

i e j , leading to an SO(3) ambiguity
for n,

n → R−1n. (3)

As for the observable O, the theoretical expression must also
be a scalar under coordinate transformations [58],

Õ(x̃o; z, n) ≡ O(xo; z, n), (4)

but it can be a tensor with respect to the Lorentz index a of the
observer tetrad. For instance, ω and n are components of the
Lorentz vector ka := g(ea, ko) at xo

(ka) = −ω(1, ni ), (5)

which is why they transform nontrivially under Lorentz trans-
formations of ea. Since the boost part here is fixed by the
definite observer 4-velocity, we only have to deal with the

SO(3) ambiguity Eq. (3). To that end, we express n in terms
of observed angles (ϑ, ϕ),

n ≡ sin ϑ cos ϕ e1 + sin ϑ sin ϕ e2 + cos ϑ e3, (6)

so that O ≡ O(xo; z, ϑ, ϕ) becomes a function on the unit
sphere S2. The latter is a two-dimensional manifold with coor-
dinates ϑA ∈ {ϑ, ϕ} and with the admissible coordinate trans-
formations being the ones induced by the rotation Eq. (3).1

The generic observable will therefore be a tensor field on that
manifold OA1...An . However, in two dimensions any tensor can
be locally reduced to scalars and pseudoscalars. For instance,
a vector can be decomposed into a scalar v and a pseudoscalar
ṽ via

VA = ∇Av + ε B
A ∇Bṽ, (7)

while a tensor can be decomposed into two scalars T, t and
two pseudo-scalars T̃ , t̃

TAB = SABT + εABT̃ + [∇A∇B − 1
2 SAB∇2

]
t + εC

(A∇B)∇Ct̃,

(8)

where SAB, εAB, and ∇A are the metric, totally antisym-
metric tensor in two-dimensional and covariant derivative
on the 2-sphere S2, respectively. Further decomposing these
(pseudo-)scalars into spherical harmonics leads to the decom-
position of OA1...An into spin-weighted spherical harmonics.
To avoid the introduction of the latter, which complicates
unnecessarily the formalism, here we will assume that our
observables are the (pseudo-) scalars of the above decompo-
sition (up to possible Laplacians). For instance, in the case
of the CMB polarization tensor PAB we would directly work
with its “electric” and “magnetic” components ∇A∇BPAB and
ε C

A ∇B∇CPAB, respectively.
Finally, another important observable is the incoming pho-

ton frequency

ω := −g(e0, ko), (9)

so the most general parametrization of light-based observables
is a spectral distribution O(xo; z, n, ω). In the case of observ-
ables associated with diffuse sources (e.g., the CMB), i.e., that
do not have a particular emission moment and therefore no
associated redshift, then we simply have O(xo; n, ω). For the
sake of simplicity, here we will assume that ω is either fixed,
or that it is integrated over with some given spectral distri-
bution, as in the case of the CMB temperature for instance.
We will therefore work with observable functions of the form
O(xo; z, n), but the inclusion of ω is straightforward and basi-
cally enters our equations exactly as the redshift dependence.
A more detailed account of this subsection’s content, and in
particular of the underlying geometrical constructions, can be
found in Ref. [64].

B. Ensemble averaged N-point correlation functions

The theorist works with tensor fields on the full space-
time manifold which we collectively denote by 
(x). The

1Note that this manifold is a subset of the tangent space at xo and
with a parametrization that is induced by the tetrad basis ea of that
space, so these angles are not space-time coordinates.
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observable O(xo; z, n) is an integrodifferential functional of
these fields

O(xo; z, n) ≡ O(xo; z, n)[
]. (10)

Within cosmological perturbation theory, one splits 
 into a
homogeneous and isotropic “background” solution 
̄ and a
fluctuation φ,


 = 
̄ + φ, (11)

where the latter is subject to a gauge ambiguity. This is the
manifestation of infinitesimal coordinate transformations in
this framework, since the background is kept fixed under
these transformation. The observable O(xo; z, n) should, by
definition, be independent of the choice of gauge, so one can
fix the latter. Moreover, one can use any constraint equations
(e.g., the Poisson equation) to reduce the number of fields
down to those carrying degrees of freedom, which we denote
by φa(x), i.e., the “a” index includes both space-time and
internal indices. Thus, the φa(t0, 	x) data at a given time t0
uniquely determine the ones at any other time t ,

φa(t, 	x) ≡ φa(t, 	x)[φb(t0, 	y)]. (12)

Here it is assumed that the φa also contain the mo-
menta/velocities, for fields obeying second-order equations in
time. Next, to compare with observations, one needs to con-
sider a statistical ensemble of solutions. The φa are therefore
promoted to stochastic fields with a corresponding probability
distribution functional (pdf) associating a probability density
to each field solution φa(x). Since the latter are completely
determined by their configuration at some reference time
φa(t0, 	x), it suffices to define that pdf on these field config-
urations P ≡ P[φ(t0)] (dropping the index a and the position
	x for notational simplicity). One can then define the moments,
i.e., the statistical averages of field products,

〈φa1 (t0, 	x1) . . . φan (t0, 	xn)〉

:=
∫

Dφ(t0) P[φ(t0)] φa1 (t0, 	x1) . . . φan (t0, 	xn), (13)

which completely determine the functional P, and with these
one can define the field correlation functions (FCF),

Fa1...an (x1, . . . , xn) := 〈φa1 (t1, 	x1) . . . φan (tn, 	xn)〉
≡ 〈φa1 (t1, 	x1)[φ(t0)] . . . φan (tn, 	xn)[φ(t0)]〉,

(14)

and use the linearity of the averaging operation to express this
as a functional of Eq. (13). In particular, P is chosen such that

〈φa(x)〉 ≡ 0, (15)

which can be alternatively stated as

〈
(x)〉 ≡ 
̄(x). (16)

With the above definitions one can now perform statistical
averages of arbitrary functionals of the φa(x). In particular,
the theoretical correlation functions (TCF) of the observables
are defined by

Gth
(
xo; {zk, nk}N

k=1

)
:=
〈

N∏
k=1

O(xo; zk, nk )[
]

〉
, (17)

which are therefore ultimately a functional of 
̄ and the FCFs
Eq. (14). Now note that, although strict homogeneity and
isotropy are lost as soon as φ 
= 0, these notions can be rein-
troduced at the statistical level by imposing the corresponding
symmetries on P[φ(t0)]. Thus, we require that, if the two
configurations φa(t0) and φ′

a(t0) are related by an isometry
of the background geometry, then P[φ(t0)] = P[φ′(t0)]. As
a result, the FCFs and TCFs are invariant under isometries,
meaning in particular that Gth is independent of the observer
position 	xo,

Gth
(
xo; {zk, nk}N

k=1

) ≡ Gth
(
to; {zk, nk}N

k=1

)
, (18)

and invariant under a common rotation of its N directions,

Gth(to; {zk, Rnk}N
k=1

) ≡ Gth(to; {zk, nk}N
k=1

)
. (19)

III. THE GENERAL THEORY OF REDUCED ANGULAR
N-POINT SPECTRA

A. The previous implicit approach

Consider some observable on the sky O(n), where for the
purposes of the present discussion we can omit the redshift
dependence. The quantity that is usually considered in theory
is the angular N-point spectrum through ensemble averaging
〈Ol1m1 . . .OlN mN 〉, where Olm are the spherical harmonic com-
ponents. In the standard approach where statistical isotropy is
assumed, that N-point spectrum is invariant under rotations, so
that not all of its components are independent. Its information
can therefore be stored in a rotationally invariant quantity
with fewer indices called the “reduced” angular spectrum.
Assuming for simplicity here 〈Olm〉 = 0, the lowest-order
cases are the angular power spectrum,〈

Ol1m1Ol2m2

〉 = δl1l2δm1,−m2 (−1)m2 Cl1 , (20)

where Cl is the “reduced angular power spectrum,” and the
angular bispectrum〈

Ol1m1Ol2m2Ol3m3

〉 = ( l1 l2 l3
m1 m2 m3

)
Bl1l2l3 , (21)

where Bl1l2l3 is the “reduced angular bispectrum” and the first
factor is the Wigner 3 − j symbol. As one could expect from
isotropy, Cl and Bl1l2l3 have no mk dependence. The relations
Eqs. (20) and (21) can be inverted and, in particular, allow one
to build unbiased estimators for these quantities,

Ĉl := 1

2l + 1

∑
m

OlmO∗
lm,

B̂l1l2l3 =
∑

m1,m2,m3

(
l1 l2 l3
m1 m2 m3

)
Ol1m1Ol2m2Ol3m3 , (22)

i.e.,

〈Ĉl〉 = Cl ,
〈
B̂l1l2l3

〉 = Bl1l2l3 . (23)

One can therefore work exclusively with the invariant and
more compact reduced spectra, both at the theoretical and data
level, instead of the full ones. The theory of the reduced an-
gular N-point spectra is well developed in the literature up to
the trispectrum case [43–47,65–68], based on the pioneering
work in Ref. [42] which considered the following method.
First, one looks for the relation between the full spectrum and
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its reduced counterpart [e.g., Eqs. (20) and (21)] by imposing
on the former the invariance under rotations,〈

Ol1m1 . . .OlN mN

〉
=
∑
m′

k

〈
Ol1m′

1
. . .OlN m′

N

〉
Dl1,m′

1m1 . . . DlN ,m′
N mN , (24)

where Dl,mm′ is the Wigner matrix, all of them here depending
on the same rotation angles. Using the identities of the Wigner
matrices and 3 − j symbols, one must then find the most
general solution to this equation, which is Eqs. (20) and (21)
for the N = 2, 3 cases, respectively. Finally, one must also
invert this relation to obtain its estimator [e.g., Eq. (22)] and,
through that quantity, its explicit definition in terms of en-
semble averages of the observables [e.g., Eq. (23)]. Although
this procedure generalizes straightforwardly to N = 4 [42]
and beyond,2 it becomes quickly very difficult in practice, as
one has to “guess” the relation between the full and reduced
spectrum by inferring it from an increasingly complicated
equation. Moreover, even after finding a solution, one must
still prove that it is the most general one and then invert it,
which is also harder to do for larger values of N . As a result,
the generalization of Eq. (22) for arbitrary N does not exist in
the literature. Finally, with this procedure the reduced spec-
trum is determined only up to an overall normalization, which
can depend on the li numbers, since only the mi numbers are
summed over in the defining Eq. (24).3

B. A new constructive approach

Here we propose a computationally straightforward ap-
proach to the problem. Since the defining property behind the
notion of reduced spectra is rotational invariance, we will first
focus on this geometrical aspect, i.e., before any statistical
considerations. We will therefore be constructing the gener-
alization of the full estimators Eq. (22), which exclusively
depend on observed data, with their statistical counterparts
being obtainable by simply taking the ensemble average as in
Eq. (23). In fact, we will refer to these estimators as the “ob-
servational” reduced spectra, as opposed to the “theoretical”
ones Eq. (17) which are obtained though statistical ensembles
that are observationally unavailable. This is to highlight the
fact that the observational reduced spectra have a significance
of their own, as they amount to all the rotationally invariant
information one can extract out of the observed data. This is
the physical information, as it is independent of the artificial
SO(3) ambiguity of the observer’s spatial reference frame ei

in Eq. (6).

2Following this procedure, in Ref. [69] the authors have found the
analog of Eqs. (20) and (21) for the quadrispectrum case N = 5.
In Ref. [70] one can find a formal expression for arbitrary N , and
also the real space N-point correlation function in terms of the
reduced angular spectrum, but without rigorous demonstration. In
both of these references, however, the inversion to find the estimators
and ensemble-averaged spectra in terms of the observables, i.e., the
analogues of Eqs. (22) and (23), is not given.

3See, for instance, Refs. [66,70], where alternative normalizations
are considered and are essentially related to the li-dependent factors
between the Gaunt and 3 − j coefficients.

We start with the fact that the observer only has access
to a single light-cone xo and therefore to the observables
O(xo; z, n). The building blocks for rotationally invariant
functionals of O(xo; z, n) are the average of the products∏N

k=1 O(xo; zk, nk ) over all possible common rotations of the
directions nk , i.e., the average over the SO(3) group,∫

dR
∏N

k=1 O(xo; zk, R−1nk )∫
dR

, (25)

where dR is the Haar measure on SO(3) and is invariant
under group multiplication. Thanks to this, if one rotates the
nk in Eq. (25) with the same rotation R′, then this can be
reabsorbed in the dummy variable R by the redefinition R →
R′R, thus leaving the average invariant. To turn Eq. (25) into
a well-defined integral, we consider an arbitrary orthonormal
reference frame ei and parametrize R as

R(α, β, γ ) := R3(α) R2(β ) R3(γ ), (26)

where Ri(θ ) denotes the matrix corresponding to a rotation
around ei with angle θ , so that α, β, γ are the Euler angles,

α ∈ [ 0, 2π [, β ∈ [ 0, π ], γ ∈ [ 0, 2π [. (27)

In particular, the inverse matrix is simply

R−1(α, β, γ ) ≡ R(−γ ,−β,−α). (28)

The Haar measure dR on SO(3) now reads

dR(α, β, γ ) ≡ sin β dα dβ dγ , (29)

so the average over SO(3) of some function f (n1, . . . , nN ) is
given by

〈 f (n1, . . . , nN )〉SO(3)

:= 1

8π2

∫ 2π

0
dα

∫ π

0
sin β dβ

×
∫ 2π

0
dγ f (R−1(α, β, γ ) n1, . . . , R−1(α, β, γ ) nN ),

(30)

and thus, the N-point observational correlation functions
(OCF) are defined by

Gob
(
xo; {zk, nk}N

k=1

)
:=
〈

N∏
k=1

O(xo; zk, nk )

〉
SO(3)

. (31)

In particular, the N = 1 case reduces to the average over the
sphere,

Gob(xo; z) ≡ 1

4π

∫
d�O(xo; z, n), (32)

which is shown by picking e3 = n. For N > 1, three out of
the 2N angles in Gob are redundant, since we are free to rotate
at will, or equivalently, to choose the reference frame {ei}3

i=1
arbitrarily. For instance, one can pick (assuming that n1 and
n2 are not parallel)

e3 = n1, e2 = n2 − (n1n2) n1√
1 − (n1n2)2

, e1 = n1 × n2√
1 − (n1n2)2

,

(33)
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thus leaving us with a dependence on the 2N − 3 angles
ϑ2, . . . ϑN and ϕ3, . . . , ϕN that parametrize {nk}N

k=2 in the ei

basis Eq. (6).
Now note that the N-point OCF is a redshift-dependent

function on

SN
2 := S2 × · · · × S2︸ ︷︷ ︸

N times

, (34)

that is symmetric under a common rotation of these N spheres,
just as its theoretical counterpart Eq. (19). In particular,
expressing O inside Gob in terms of the stochastic fields
O ≡ O[
] and using the linearity of averaging, we obtain the
identity 〈

Gob
(
xo; {zk, nk}N

k=1

)〉 ≡ Gth
(
to; {zk, nk}N

k=1

)
, (35)

showing that the Gob are full unbiased estimators of the Gth.
The idea now is to decompose such functions in a basis of
SO(3)-invariant functions on SN

2 . For N = 2 the only SO(3)-
invariant combination of the two vectors is n1n2 ∈ [−1, 1]
and a basis of functions on that interval are the Legendre
polynomials Pl , so

Gob(xo; z1, z2, n1, n2) ≡ Gob
l (xo; z1, z2)(2l + 1)Pl (n1 · n2),

(36)

where

Gob
l (xo; z1, z2) := Olm(xo; z1)O∗

lm(xo; z2)

2l + 1
, (37)

is the observational two-point spectrum and Olm are the
harmonic components of O,

O(xo; z, n) ≡ Olm(xo; z)Ylm(n). (38)

Note that we work with the unit-average normalization of the
spherical harmonics Eq. (A5), which is the natural one in this
context and that we keep the summation over l, m indices im-
plicit for notational simplicity. In the presence of both dummy
and free l, m indices, their nature will be inferable unambigu-
ously by looking at both sides of the equation. The m indices
will always be clearly associated to some l value and therefore
run from −l to l , while the l indices run from s to ∞, where
s is the spin of the observable under consideration.4 For N >

2, the decomposition is performed in detail in Appendix A
for generic functions f (n1, . . . , nN ) and the result is the
following:

Gob
(
xo; {zk, nk}N

k=1

) ≡ Gob
l1...lN |L1...LN−3

(
xo; {zk}N

k=1

)
× Yl1...lN |L1...LN−3

({nk}N
k=1

)
, (39)

where

Gob
l1...lN |L1...LN−3

(
xo; {zk}N

k=1

)
:= W l1...lN |L1...LN−3

m1...mN

N∏
k=1

Olkmk (xo; zk )

(40)

and

Yl1...lN |L1...LN−3

({nk}N
k=1

)
:= W l1...lN |L1...LN−3

m1...mN

N∏
k=1

Ylkmk (nk ), (41)

and where we have defined the following coefficients:

W l1...lN |L1...LN−3
m1...mN

:=
(

l1 l2 L1

m1 m2 −M1

)[N−4∏
k=1

(−1)Lk+Mk
√

2Lk + 1

(
Lk lk+2 Lk+1

Mk mk+2 −Mk+1

)]

× (−1)LN−3+MN−3
√

2LN−3 + 1

(
LN−3 lN−1 lN
MN−3 mN−1 mN

)
. (42)

Although the latter appear as a sum over the Mk indices, they are actually a single product because a Wigner 3 − j symbol
vanishes if the sum of its mk entries is not zero. Also for that reason, on can directly check that these coefficients are nonzero
only if

∑N
k=1 mk = 0.

Equations (39) to (42) are the main result of this section. Note that they can actually also encompass the N = 1, 2 cases if we
define the redundant notation

Gob
l1 (xo; z1) := δ0

l1 Gob(xo; z1), Gob
l1l2 (xo; z1, z2) := (−1)l1δl1l2

√
2l1 + 1 Gob

l1 (xo; z1, z2), (43)

Yl1 (n1) := δ0
l1 , Yl1l2 (n1, n2) := (−1)l1δl1l2

√
2l1 + 1 Pl1 (n1 · n2), (44)

and

W l1
m1

:=
(

l1 0 0
m1 0 0

)
≡ δ

l1
0 δ0

m1
, W l1l2

m1m2
:=
(

l1 l2 0
m1 m2 0

)
≡ (−1)l1+m1

√
2l1 + 1

δl1l2δm1,−m2 . (45)

4For instance, we have s = 0 for CMB temperature maps, while s = 2 for the maps of the electric and magnetic components of the polarization
field.
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The “harmonic” components of the N-point OCF Eq. (40) are the observational N-point spectra which generalize the structures
Eq. (22) to arbitrary N . In particular, for the N = 3, 4 cases we recover the known results [42], up to a different normalization
convention factor (−1)L

√
2L + 1 for N = 4,

Gob
l1l2l3 (xo; z1, z2, z3) ≡

(
l1 l2 l3
m1 m2 m3

) 3∏
k=1

Olkmk (xo; zk ), (46)

Gob
l1l2l3l4|L(xo; z1, z2, z3, z4) ≡ (−1)L+M

√
2L + 1

(
l1 l2 L
m1 m2 −M

)(
L l3 l4
M m3 m4

) 4∏
k=1

Olkmk (xo; zk ). (47)

As for the functions Eqs. (41), they form indeed a basis for SO(3)-invariant functions on SN
2 , as shown in Appendix A. They are

orthonormal Eq. (A25) and therefore we can invert Eq. (39)

Gob
l1...lN |L1...LN−3

(
xo; {zk}N

k=1

) ≡
∫ ( N∏

k=1

d�k

4π

)
Y ∗

l1...lN |L1...LN−3

({nk}N
k=1

)
Gob(xo; {zk, nk}N

k=1

)
. (48)

Observe how the quantities Eqs. (40) and (41) are explicitly SO(3)-invariant, since they only depend on total angular momentum
numbers lk and Lk , making a total of 2N − 3 indices. As noticed earlier, this is indeed the number of independent angles present
in the corresponding correlation functions. Note also that Eqs. (40) and (41) are the very same combinations of the observable
components and spherical harmonics, respectively. As we will see later on, all of the nontrivial contractions of indices will always
be controlled by the coefficients Eq. (42) with no extra factors, which comes from the fact that they are orthonormal in the sense
of Eq. (A23). Thus, contrary to the implicit method described in the previous Sec. III A, here there exists a normalization of the
reduced spectra that appears as naturally privileged for computational convenience.

For the sake of completeness, let us also present the generalization of Eq. (23) by reminding that the TCFs Eq. (17) are
SO(3)-invariant functions on SN

2 [see Eq. (19)], so they can also be decomposed in the basis Eq. (41). Using Eq. (35) and the
linearity of averaging we find

Gth
l1...lN |L1...LN−3

(
to; {zk}N

k=1

)
:=
∫ ( N∏

k=1

d�k

4π

)
Y ∗

l1...lN |L1...LN−3

({nk}N
k=1

)
Gth
(
to; {zk, nk}N

k=1

)
≡ 〈

Gob
l1...lN |L1...LN−3

(
xo; {zk}N

k=1

)〉 ≡ W l1...lN |L1...LN−3
m1...mN

〈
N∏

k=1

Olkmk (xo; zk )

〉
. (49)

Finally, to make contact with the implicit method described in Sec. III A, let us also invert Eq. (49) to obtain the generalization
of Eqs. (20) and (21),〈

N∏
k=1

Olkmk (zk )

〉
≡
∫ [ N∏

k=1

d�k

4π
Y ∗

lkmk
(nk )

]〈
N∏

k=1

O(zk, nk )

〉
≡
∫ [ N∏

k=1

d�k

4π
Y ∗

lkmk
(nk )

]
Gth
({zk, nk}N

k=1

)

≡ Gth
l1...lN |L1...LN−3

({zk}N
k=1

) ∫ [ N∏
k=1

d�k

4π
Y ∗

lkmk
(nk )

]
Yl1...lN |L1...LN−3

({nk}N
k=1

)

≡ W l1...lN |L1...LN−3

m′
1...m

′
N

Gth
l1...lN |L1...LN−3

({zk}N
k=1

) ∫ [ N∏
k=1

d�k

4π
Y ∗

lkmk
(nk )Ylkm′

k
(nk )

]

≡ W l1...lN |L1...LN−3
m1...mN

Gth
l1...lN |L1...LN−3

({zk}N
k=1

)
. (50)

This is the general solution to the equation of the implicit
method Eq. (24) for arbitrary N , up to a lk, Lk-dependent
normalization. This result highlights again the naturalness
of the normalization used here for the reduced angular
spectra, as all the complicated factors entering any of the
above equations always combine to form the multilateral
Wigner symbols exactly. Note also that, with our construc-
tion, the consideration of the full spectra Eq. (50) becomes
superfluous, as one no longer requires them to derive the

reduced ones as in the implicit method of the previous
subsection.

C. Multilateral diagrammatic representation

For N = 3 the coefficients defined in Eq. (42) simply
reduce to the Wigner 3 − j symbol

W l1l2l3
m1m2m3

≡
(

l1 l2 l3
m1 m2 m3

)
. (51)
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l1

l2

l3

l4

l5

l6

l7

L1

L2

L3

L4

FIG. 1. A multilateral illustration for the case N = 7.

This quantity contains a {l1 l2 l3} factor, for which an alter-
native definition from Eq. (A22) is

{l1 l2 l3}

:=
{

1 if there exists a triangle with lengths l1, l2, l3
0 otherwise

,

(52)

hence the common name “triangle delta.” Consequently, the
general coefficient Eq. (42) contains a {l1 . . . lN |L1 . . . LN−3}
factor, defined in Eq. (A24) as a product of certain { ji, jk, jm}
factors. Generalizing the picture laid out in Refs. [42,69] for
the N = 4, 5 cases,5 this quantity Eq. (A24) can be interpreted
as a “multilateral delta” in the following way. Being a product
of N − 2 triangle deltas, it is nonzero only if all of the involved
integers l1, . . . , lk and L1, . . . , LN−3 form their respective
triangles. Moreover, with respect to the triangle ordering in
Eq. (A24), one of the edges of two neighboring triangles must
have the same length Lk , so we can picture the triangles as
being connected by common edges. The resulting shape is
therefore a multilateral with N edges of lengths l1, . . . , lN ,
while the L1, . . . , LN−3 integers correspond to the lengths of
the N − 3 diagonals connected to the vertex where the edges
l1 and lN join (see Fig. 1). Thus, the multilateral delta is not
nonzero for any set of l1, . . . , lN that can form a multilateral,
but only for those whose diagonals also have integer length.
This suggests naming the symbols W ...

... defined in Eq. (42)
the “multilateral Wigner symbols”, with the 3 − j symbols
therefore corresponding to the “triangular” case.

From this multilateral picture one can also directly infer
that the decomposition Eq. (39) is not unique for N > 3,
as was already recognized in Ref. [42] for the case N = 4.

5See also Sec. 2.4.1 of Ref. [70] for the same picture, and for
arbitrary N , but in the case of the flat sky limit where the sphere
S2 is replaced by R2.

Indeed, there is an ambiguity in choosing the vertex with
respect to which the diagonals are drawn. This ambiguity,
modulo symmetries of the 3 − j symbols, corresponds to
alternative orderings of the (lk, mk ) pairs and therefore leads
us to consider permutations of the multilateral Wigner symbol
indices. As shown in detail [42] for the N = 4 case, these
are achieved by taking linear combinations with Wigner 6 − j
symbols, thus allowing one to relate all possible orderings.

IV. OBSERVER TERMS AND ENSEMBLE AVERAGING

A. The issue

An important limitation in cosmology is that, observation-
ally, we have access only to one single realization of the
statistical process under consideration, the universe, and only
from one single vantage point. One therefore requires some
assumptions to relate the theoretical predictions, which are of
statistical nature, to observations. In the standard approach,
we consider stochastic small initial fluctuations in a homo-
geneous and isotropic universe, which evolve under gravity.
We also assume that their probability distribution functional is
homogeneous and isotropic and that averaging over positions
and directions is equivalent to ensemble average, i.e., an er-
godic hypothesis. With these assumptions one can effectively
treat different parts of the universe as different realizations
and relate the theoretical ensemble averages to observational
light-cone averages.

The requirement for the ergodic hypothesis to be applicable
is the observational availability of a large enough number of
source points. Indeed, the common motto in the literature
is that the theorist is allowed to ensemble average a given
product of fields evaluated at source positions, because the
observer probes several of these positions. This viewpoint is
perfectly sufficient as long as one is only interested in the
lowest-order approximation where a cosmological observable
is entirely determined by the value of fields at the source
position. In the era of precision cosmology, however, the
above approximation is no longer valid, because observations
are able to capture several subleading effects which depend
on fields evaluated on the whole line of sight from the source
to the observer (e.g., weak lensing). As one approaches the
observer along its past light-cone, the number of observable
points decreases and therefore, one would naively infer, so
does the degree of applicability of the ergodic hypothesis.
The extreme case is the observer point itself, for which we
can only have a single measurement. Are we then allowed to
perform ensemble averages of fields at, and in the vicinity of,
the observer point, as we implicitly do in Eq. (17)? The aim
of this section is to answer this question and its conclusion is
in the affirmative.

Before demonstrating this statement, however, let us ex-
plain in more detail why this question is relevant for precision
cosmology. To that end, note first that the typical expression
for a cosmological observable O to linear order in perturba-
tion theory is of the form

O(1)(z, n) = Xo + Xlos(z, n) + Xs(z, n), (53)

where Xo and Xs denote field fluctuations evaluated at the
observer and source positions, respectively, while Xlos denotes
an integral over fields evaluated along the background line of
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sight. The quantity that is relevant for comparing with obser-
vations is then, e.g., the corresponding two-point correlation
function, whose second-order contribution is

Gth
(2)(z, z′, n, n′) = 〈O(1)(z, n)O(1)(z′, n′)〉. (54)

Now note that the split Eq. (53) is not unique, as one can
always transfer quantities between the three kinds of contri-
butions by performing integrations by parts. Moreover, since
we parametrize O with the observed redshift z and position in
the sky n, the function O(1)(z, n) is gauge-invariant, because
the full observable O(z, n) has no dependence on coordinates
whatsoever [58]. The split Eq. (53) can then be chosen such
that each of the three terms are separately gauge-invariant. In
practice, however, the expression Eq. (53) often presents itself
with a gauge-dependent observer term Xo, which can therefore
be set to zero with an appropriate choice of gauge, e.g., the
synchronous gauge. Nevertheless, the expressions found in
the literature are often in longitudinal gauge, in which case
Xo 
= 0.

As already mentioned, one can consistently avoid the
presence of observer terms (gauge-invariant or not) by an
appropriate integration by parts, but one then needs to take
into account the resulting extra terms in Xlos and Xs that this
manipulation introduces. Instead, the standard approach in the
literature is to work in the longitudinal gauge and simply
discard Xo as soon as it appears in the computation. The
issue of whether one can ensemble average field values at
the observer position therefore never arises in the standard
practice. As for the line-of-sight terms Xlos, they are ensem-
ble averaged just like the source terms Xs, which implicitly
assumes that ergodicity applies to all points on the light-cone,
independently of how close they are to the observer point.

It is now well understood that discarding the observer terms
Xo as described above leads to several qualitative problems:

(1) In most cases the resulting O(1) is not gauge-invariant
under gauge transformations at the observer because one dis-
cards a gauge-dependent term Xo. However, the gauge trans-
formation of the observable only produces observer terms, by
construction, which is therefore “ok” in this approach, since
one is precisely neglecting such terms to begin with.

(2) Following the construction of Sec. II B, Fourier de-
composing the field configurations φ(t0) and using statistical
homogeneity to eliminate one of the d3k integrals, one obtains

Gth
(
to; {zk, nk}N

k=1

)
≡
∫ ⎛⎝N−1∏

q=1

d3kq

⎞⎠G̃th
(
to, {	kq}N−1

q=1 ; {zk, nk}N
k=1

)
, (55)

where the integrand is a combination of field k-spectra at t0,
multiplied by growth functions and ei	k·	x factors evaluated on
the light-cone. This integrand is generically divergent in the
infrared, a fact which has led to confusion in the literature
[71]. Moreover, the dependence on the infrared cut-off that
has to be introduced to control the divergence in Eq. (55)
breaks the equivalence principle, as the observable correlation
function ends up depending on the uniform gravity mode.
Taking into account Xo precisely cancels the divergent terms,
thus showing that they cannot be associated with physical
effects and that the equivalence principle holds as one would

expect [56,60,63].6 As discussed at the beginning of Sec. II,
the integrand in Eq. (55) is not itself an observable quantity,
but it is interesting to see that the consideration of observer
terms preserves the physical intuition in k-space.

(3) The sky parametrization n does not generically cor-
respond to the one of an actual observer.7 Indeed, the terms
Xo contain corrections that implement the diffeomorphism
relating the observer parametrization n to the one induced by
the local coordinate system around the observer and there-
fore to the gauge that is chosen. In longitudinal gauge the
coordinate-induced frame in the observer’s tangent space is
not orthonormal in the presence of vector and tensor modes,
as the one of an observer should be, so neglecting Xo leads to
spurious contributions to the “lensing” of observables in the
sky.

Nevertheless, it turns out that there is no significant quan-
titative problem today in neglecting Xo to linear order in
perturbation theory. This is because the actual observer ap-
proximates the ensemble average in Eq. (54) with the SO(3)
averages of the data in the sky, denoted by 〈. . . 〉SO(3) in
what follows. Xo is special with respect to this operation,
because it has no angular dependence (if its spin vanishes) and
can therefore be factored out. Consequently, the contribution
〈X 2

o 〉SO(3) ≡ X 2
o is a monopole term (for spin s = 0) in the

corresponding power spectrum, while the cross-terms are
simply zero, e.g.,

〈XoXs(n, z)〉SO(3) ≡ Xo〈Xs(n, z)〉SO(3) ≈ 0. (56)

If O is an observable of nonzero spin s (e.g., for the observer
velocity, where s = 1, or the CMB polarization, where s = 2),
then the 〈X 2

o 〉SO(3) will contribute to the first nontrivial mul-
tipole which is the s multipole. But the overwhelming part
of the relevant information actually lies in the rest of the
spectrum, so ignoring the observer terms of cosmological
observables is indeed irrelevant quantitatively.8

The caveat of the previous argumentation is that this is only
true to linear order in perturbation theory. Indeed, to second
order the solution of the observable will have cross-terms of
the schematic form9

O(2)(z, n) ⊃ XoXs(z, n) + XoXlos(z, n) + . . . , (57)

6For a detailed demonstration and discussion of this cancellation in
the two-point case, we refer the reader to Ref. [56] for the luminosity
distance and to Ref. [63] for the galaxy number density observables.

7See Ref. [64] for a detailed explanation. In particular, note that
while the introduction of the Sachs basis allows one to locally
decompose tensors on the sky in the basis the observer uses, it does
not provide the observer parametrization of the sky itself that is
required to compute correlation functions and spectra as the observer
does.

8Note that for some observables, such as galaxy number density
and luminosity distance, the standard analysis is performed with
correlation functions instead of spectra, in which case all multipoles
contribute to the result and the lower-order ones are not subtracted.
In that case, it has been shown that observer terms can be of the same
order as other relativistic corrections [57,60].

9For a concrete example, see Eqs. (4.2) to (4.5) of Ref. [40] for the
second-order part of the redshift perturbation.
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implying terms of the form

Gth
(3)(z, z′, n, n′) ⊃ 〈XoXs(z, n) Xs(z

′, n′)〉 + . . . (58)

for the next order of the two-point correlation function. Im-
portantly, these contributions will affect all multipoles of
the third-order power spectrum with an amplitude that is a
priori comparable to the standard terms such as ∼〈X 2

s Xlos〉,
etc. Moreover, similar terms will also appear in higher-order
correlation functions. Thus, in the era of precision cosmology
one can no longer ignore the observer terms Xo, in the usual
gauge choices that are considered, meaning that it is relevant
to discuss their inclusion inside ensemble averages.

B. Relating theory and observation

We now wish to derive the relation between the obser-
vational and theoretical N-point functions of observables
Eqs. (31) and (17). We already have Eq. (35), but this is a
theoretical relation, as it involves ensemble averaging, and
simply states that Gob is a full unbiased estimator of Gth.
Rather, we are interested in relating the two N-point functions
as one does in practice, i.e., we need Gob to be evaluated on
a definite field configuration, and this is achieved using the
ergodic hypothesis. In particular, we want to see how the latter
enters the derivation and how it affects the issue of the single
observer point.

We start by recalling Sec. II B and consider the set of
three-dimensional field configurations φa(t0) over which we
sum when performing the ensemble average in Eq. (13). Given
the invariance of P[φ(t0)] under the isometry group, it is
convenient to partition this ensemble into equivalence classes,
where two field configurations are deemed equivalent if they
can be related by an isometry. For the sake of simplicity, let
us consider here the case of flat background space, so that the
isometries form the Euclidean group E := SO(3) � R3, and
let us also use the trivial Cartesian coordinates. Any element
of a given equivalence class can be described as an isometry
of some fixed representative φ̂a(t0),

φa,R,	c(t0, 	x) = M b
a (R) φ̂b(t0, R	x + 	c), (59)

where R is a rotation matrix, 	c a translation vector and
M b

a is the matrix that rotates tensor indices in a. We can
therefore split the functional integration in Eq. (13) into an
integral over the elements of a given class followed by an
integral over all possible classes. By the latter we mean an
integral over suitably chosen representatives φ̂a(t0) such that
the corresponding functional integral is well-defined.10 Since
the pdf is constant over all representatives of a given class, the
integral in Eq. (13) becomes

〈φa1 (t0, 	x1) . . . φan (t0, 	xn)〉

≡
∫

Dφ̂(t0) P[φ̂(t0)] 〈φ̂a1 (t0, 	x1) . . . φ̂an (t0, 	xn)〉E∫
Dφ̂(t0) P[φ̂(t0)]

, (60)

10The existence of such a splitting of the integration is a nontrivial
mathematical assertion, whose proof, if possible, would go beyond
the scope of this paper.

where we now integrate only over the set of representatives,
and

〈X [φ(t0)]〉E :=
∫

d3c

V

∫
dR

8π2
X
[
M b

a (R) φb(t0, R	x + 	c)
]
.

(61)

is the average over the Euclidean group action over the field
configurations, V is the total volume and dR is the SO(3) Haar
measure. As one may expect, the ensemble average therefore
contains a purely geometric average over the symmetry group
of the pdf.

Apart from subsets of measure zero, the configurations
φ̂(t0) appearing in the integral Eq. (60) have a rich spatial de-
pendence. In particular, they are nonperiodic functions which
therefore probe a large variety of local field profiles for large
enough V . In the V → ∞ limit, which we consider here, the
ergodic hypothesis states that this probing is thorough enough
to make the Euclidean average in Eq. (60) independent of the
configuration φ̂(t0). As a result, that average factorizes out of
the integral, thus yielding the relation〈

φa1 (t0, 	x1) . . . φan (t0, 	xn)
〉 erg.= 〈

φa1 (t0, 	x1) . . . φan (t0, 	xn)
〉
E
.

(62)

Now on the right-hand side it is a definite, although generic
field configuration that is considered. We can then generalize
this manipulation straightforwardly to the case of the FCFs
Eq. (14), since the Euclidean group action is independent of
the time variable t , and therefore also to the case of the TCF
Eq. (17),

Gth
(
to; {zk, nk}N

k=1

) erg.=
〈

N∏
k=1

O(xo; zk, nk )[
]

〉
E

≡
∫

d3c

V

∫
dR

8π2

N∏
k=1

×O(xo; zk, nk )
[
M b

a (R) φb(t, R	x+	c)
]
,

(63)

where now we act with E directly on the four-dimensional
fields φa(x) instead of the φa(t0, 	x). Note also that we have
not specified the 
̄ dependence in Eq. (63) for simplicity. The
above expression allows us to make contact with the OCFs
Eq. (31). Let us first redefine the dummy variable 	c → 	c −
R	xo in Eq. (63) and let us also define the notation for shifted
fields

φa,	c(t, 	x) := φa(t, 	x + 	c), (64)

to get

Gth(to; {zk, nk}N
k=1

) erg.=
∫

d3c

V

∫
dR

8π2

N∏
k=1

×O(xo; zk, nk )
[
M b

a (R) φb,	c(t, R(	x−	xo))
]
.

(65)

We next observe that, for a given value of 	c, the fields φa,	c
are rotated by R−1 around 	xo in Eq. (65). But rotating the
fields around 	xo is tantamount to rotating the observed angles
n in the opposite direction, so the SO(3) average on the fields
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translates into an OCF

Gth
(
to; {zk, nk}N

k=1

)
erg.=
∫

d3c

V

∫
dR

8π2

N∏
k=1

O(xo; zk, R−1nk )[φa,	c(t, 	x − 	xo)]

≡
∫

d3c

V
Gob
(
xo; {zk, nk}N

k=1

)
[φa,	c(t, 	x − 	xo)]

≡
∫

d3c

V
Gob
(
xo; {zk, nk}N

k=1

)
[φa(t, 	x − 	xo + 	c)]. (66)

Similarly, translating the fields by 	xo − 	c can be equivalently
expressed as shifting the observer by 	c − 	xo, so we finally
obtain (after renaming 	c → 	xo),

Gth
(
to; {zk, nk}N

k=1

) erg.= 1

V

∫
d3xo Gob

(
to, 	xo; {zk, nk}N

k=1

)
,

(67)

i.e., the average over the action of the Euclidean group on the
fields φa is equivalent to averaging over all observer reference
frames, as in Gob, but also over all observer positions. This
is simply because we have imposed both statistical isotropy
and homogeneity. For instance, the CMB maps one would
obtain from another vantage point of the universe 	x′

o would be
different from the ones we observe on earth today, while the
theoretical power spectrum which we calculate is the same for
all vantage points. Since the relation between the correlation
function and their associated spectra is linear, we have that
Eq. (67) simply translates into

Gth
l1...lN |L1...LN−3

(
to; {zk}N

k=1

)
erg.= 1

V

∫
d3xo Gob

l1...lN |L1...LN−3

(
to, 	xo; {zk}N

k=1

)
. (68)

Equations (67) and (68) are the central result of this section.
The important thing to understand from them is that the
application of the ergodic hypothesis singles out a definite
field configuration on the right-hand side, but it does not single
out the position of the actual observer, since all possible such
positions are taken into account equally inside an average.
Therefore, the applicability of the ergodic hypothesis depends
on the representative field configuration which we choose on
the right-hand side of Eq. (67), completely independently of
how this configuration is probed observationally. In particular,
as stated in the step in which ergodicity is actually used
Eq. (62), what we need is that field configuration to have a
rich profile, which is a decent assumption to make about the
configuration of the actual universe.

What we also see, however, is that the use of ergodicity is
necessary, but not sufficient to relate theory and observations
yet, because the information from several 	xo that is required
in Eqs. (67) and (68) is not observationally available. Rather,
the step which actually singles out the observer point is the
approximation of the 	xo averages in the right hand-sides of
Eqs. (67) and (68) by the value at the actual observer position,

Gth
(
to; {zk, nk}N

k=1

) erg.≈ Gob
(
xo; {zk, nk}N

k=1

)
(69)

and

Gth
l1...lN |L1...LN−3

(
to; {zk}N

k=1

) erg.≈ Gob
l1...lN |L1...LN−3

(
xo; {zk}N

k=1

)
,

(70)

respectively. Approximating an average over some set by a
single value within that set is of course the crudest possible
estimator of that average. One expects this estimation to be
accurate enough only if the values of the considered set exhibit
a relatively small dispersion around the average value. But
this dispersion in 	xo space cannot be measured for the very
same reason that brought us to this approximation in the
first place, i.e., the observational unavailability of data at
other observation points. Nevertheless, as we will see in the
next subsection, the variance of Gob with respect to the 	xo

dependence is equal to its theoretical analog, the statistical or
“cosmic” variance, through the ergodic hypothesis. Thus, the
error one makes in Eq. (69) or Eq. (70) is precisely cosmic
variance, which is indeed negligible on small enough scales
(see Sec. V B).

Equations (69) and (70) allow to relate theory and obser-
vation, as both sides can be computed in their respective do-
mains. Finally, another way of interpreting the result Eq. (67)
is by combining it with Eq. (35) to obtain〈

Gob
(
xo; {zk, nk}N

k=1

)〉 erg.= 1

V

∫
d3xo Gob

(
xo; {zk, nk}N

k=1

)
,

(71)

i.e., the ergodic hypothesis and statistical homogeneity equate
the ensemble averaging with the translational averaging of a
generic configuration. Thus, under these assumptions, while
estimating Gth with Gob first appears as a double approxima-
tion, i.e., the measurement of a single universe realization and
from a single viewpoint, these two turn out to be the very same
approximation.

C. Unambiguous covariance matrix and cosmic variance

Equation (71) shows that, assuming ergodicity and statis-
tical homogeneity, ensemble averaging Gob is tantamount to
averaging it over 	xo with a generic configuration of the fields.
The last open question is therefore whether these two types of
averaging are also equal when it comes to the variance asso-
ciated with the estimation Eq. (69). The statistical covariance
matrix is

Covstat.(to; αN ; α′
N ′ )

:= 〈[Gob(xo; αN ) − Gth(αN )][Gob(xo; α′
N ′ ) − Gth(α′

N ′ )]〉
≡ 〈Gob(xo; αN ) Gob(xo; α′

N ′ )〉 − Gth(αN ) Gth(α′
N ′ ), (72)

where αN collectively denotes the set {zk, nk}N
k=1 for notational

simplicity, while the spatial one is

Covspat.(to; αN ; α′
N ′ ) := 1

V

∫
d3xo[Gob(xo; αN ) − Gth(αN )]

× [Gob(xo; α′
N ′ ) − Gth(α′

N ′ )]

erg.= 1

V

∫
d3xo Gob(xo; αN ) Gob(xo; α′

N ′ )

− Gth(αN ) Gth(α′
N ′ ). (73)
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The former leads to the notion of cosmic variance, so, if
both of them are the same, we would have shown that our
indiscriminate use of ensemble averaging leads to no new
uncertainties between theory and observation. This is simply
achieved by noting that a product of two OCFs can be ex-
pressed as a partial SO(3) average of a single OCF,

Gob(xo; αN ) Gob(xo; α′
N ′ )

≡ 1

(8π2)2

∫
dR
∫

dR′
N∏

k=1

O(xo; zk, R−1nk )

×
N ′∏

k′=1

O(xo; z′
k′ , R′−1n′

k′ )

R→RR′
≡ 1

(8π2)2

∫
dR
∫

dR′
N∏

k=1

O(xo; zk, R′−1R−1nk )

×
N ′∏

k′=1

O(xo; z′
k′ , R′−1n′

k′ )

≡ 1

8π2

∫
dR Gob

(
xo; {zk, R−1nk}N

k=1, {z′
k′ , n′

k′ }N ′
l=1

)
. (74)

Inserting this in Eqs. (72) and (73) and using Eqs. (67) and
(35) we find that both covariances are equal,

Covspat.
erg.= Covstat. =: Cov, (75)

and that

Cov(to; αN ; α′
M ) ≡ 1

8π2

∫
dR Gth

({zk, R−1nk}N
k=1, {z′

l , n′
l}M

l=1

)
− Gth(αN ) Gth(α′

M ). (76)

Thus, the absolute “1-sigma” error of the estimator Eq. (69),

�(to; αN ) :=
√

Cov(to; αN ; αN ), (77)

is unambiguously cosmic variance. We see that our derivation
provides a refined understanding of that notion, which is not
usually expressed in cosmology textbooks. Given our statisti-
cal assumptions, cosmic variance is the error due to the fact
that we observe a single realization of the universe and from
a single vantage point 	xo. In accordance with the discussion
of the previous subsection, if either of these two conditions
were dropped, then there would be no cosmic variance. On
one hand, if we had simultaneous access to the data of a single
realization from all possible 	xo, then the ergodic hypothesis
Eq. (67) would allow us to match the theoretical predictions
exactly.11 On the other hand, if we could observe all possible
universe realizations, even from a single viewpoint 	xo, then
we would be able to compute directly the theoretical N-point
functions, which are independent of 	xo. In the first case we are
technically setting �spat. → 0, whereas in the second one it is
rather �stat. → 0.

11Here we neglect the fact that this information would also require
a time ∼V 1/3 to be collected by a main observer and therefore
analyzed.

In the next section we will see that, although cosmic
variance is always nonzero in practice, the associated relative
uncertainty on the spectra must tend to zero when lk → ∞
as a consequence of statistical isotropy and the central limit
theorem. Technically, this corresponds to �stat. becoming
negligible compared to Gth for large enough lk values, with
statistical homogeneity and the ergodic hypothesis then im-
plying that so does �spat., as we just saw in Eq. (75). This
is the reason why, in practice, one can still obtain statistical
cosmological information even from a single observational
point.

V. COVARIANCE IN l-SPACE

A. The covariance matrix of angular N-point spectra

From now on we drop the dependence on to for notational
simplicity. Here we wish to derive the expression for the co-
variance matrix of the reduced N-point and N ′-point spectra,
i.e., the harmonic analog of Eq. (76). To that end, we first note
that Cov(to; αN ; α′

N ′ ) is a function on SN
2 × SN ′

2 that is invariant
under independent rotations on each of these two components,
so we can decompose each of the corresponding arguments in
the basis Eq. (41). The harmonic components are then found
by projecting twice

Covl1...lN |L1...LN−3;l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({zk}N
k=1; {z′

k′ }N ′
k′=1

)
:=
∫ ( N∏

k=1

d�k

4π

)(
N ′∏

k′=1

d�′
k′

4π

)
×Y ∗

l1...lN |L1...LN−3

({nk}N
k=1

)
Y ∗

l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({n′
k′ }N ′

k′=1

)
× Cov

({zk, nk}N
k=1; {z′

k′ , n′
k′ }N ′

k′=1

)
. (78)

To express this in terms of the reduced theoretical spectra, we
use Eq. (76) and decompose the TCFs in the basis Eq. (41). By
proceeding exactly as in Appendix A to eliminate the SO(3)
average in Eq. (76), and using the orthonormality relations
Eqs. (A5) and (A23), we find

Covl1...lN |L1...LN−3;l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({zk}N
k=1; {z′

k′ }N ′
k′=1

)
≡ W l1...lN |L1...LN−3

m′′
1 ...m′′

N
W

l ′′1 ...l ′′N l ′1...l
′
N ′ |L′′

1 ...L′′
N+N ′−3

m′′
1 ...m′′

N m′
1...m

′
N ′

W
l ′1...l

′
N ′ |L′

1...L
′
N ′−3

m′
1...m

′
N ′

× Gth
l ′′1 ...l ′′N l ′1...l

′
N ′ |L′′

1 ...L′′
N+N ′−3

({zk}N
k=1, {z′

k′ }N ′
k′=1

)
− Gth

l1...lN |L1...LN−3

({zk}N
k=1

)
Gth

l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({z′
k′ }N ′

k′=1

)
. (79)

Now the second product of Wigner symbols can be simplified
using Eq. (B5) iteratively, then Eq. (B6) and finally Eq. (B1)
to find ∑

m′
k

W
l ′′1 ...l ′′N l ′1...l

′
N ′ |L′′

1 ...L′′
N+N ′−3

m′′
1 ...m′′

N m′
1...m

′
N ′

W
l ′1...l

′
N ′ |L′

1...L
′
N ′−3

m′
1...m

′
N ′

≡ {l ′
1 . . . l ′

N ′ |L′
1 . . . L′

N ′−3}δl ′′N L′′
N−2

δ0L′′
N−1

δl ′1L′′
N

×
(

N ′−3∏
k=1

δL′
kL′′

N+k

)
W

l ′′1 ...l ′′N |L′′
1 ...L′′

N−3

m′′
1 ...m′′

N
. (80)
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1
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L′′
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l′3

L′
N ′−3

L′
N ′−4

L′
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L′
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FIG. 2. The type of diagram composing the covariance matrix of the N-point and N ′-point spectra.

We therefore obtain

Covl1...lN |L1...LN−3;l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({zk}N
k=1; {z′

k′ }N ′
k′=1

)
≡ A

l ′′1 ...l ′′N |L′′
1 ...L′′

N−3

l1...lN |L1...LN−3

× Gth
l ′′1 ...l ′′N l ′1...l

′
N ′ |L′′

1 ...L′′
N−3l ′′N 0l ′1L′

1...L
′
N ′−3

({zk}N
k=1, {z′

k′ }N ′
k′=1

)
− Gth

l1...lN |L1...LN−3

({zk}N
k=1

)
Gth

l ′1...l
′
N ′ |L′

1...L
′
N ′−3

({z′
k′ }N ′

k′=1

)
, (81)

where we have defined the following contraction of multilat-
eral Wigner symbols of equal order

Al1...lN |L1...LN−3

l ′1...l
′
N |L′

1...L
′
N−3

:= W l1...lN |L1...LN−3
m1...mN

W
l ′1...l

′
N |L′

1...L
′
N−3

m1...mN , (82)

which is rotationally invariant, as it does not depend on mk

indices. From Eq. (81) we see that the covariance matrix
of the N-point and N ′-point spectra is controlled by the
squeezed (N + N ′)-point spectrum, as depicted in Fig. 2,
which arises from gluing together an N-point and an N ′-point
diagram. Therefore, the squeezed (N + N ′)-point spectrum
here is already proportional to {l ′

1 . . . l ′
N ′ |L′

1 . . . L′
N ′−3}, which

is why we were able to discard that factor coming from
Eq. (80).

The coefficients defined in Eq. (82) form a symmetric
square matrix in the space of reduced N-point spectra and in
Eq. (81) we see that this matrix acts on the N-point component
of the squeezed (N + N ′)-point spectrum. Comparing with the
analogous expression for the correlation functions Eq. (76),
we thus see that the A matrix Eq. (82) implements the oper-
ation of partial SO(3) average on invariant functions in har-
monic space. Finally, note that one can extend Eq. (81) to the
cases N, N ′ = 1, 2 by using a redundant notation analogous to
Eqs. (43), (44), and (45).

B. Cosmic variance in the large lk limit

Let us consider the case N = N ′, where the covariance
matrix quantifies the typical error of the Gth ≈ Gob(	xo) ap-
proximation that is cosmic variance, so that the l-space analog

of Eq. (77) reads

�l1···lN |L1···LN−3

({zk}N
k=1

)
:=
√

Covl1...lN |L1...LN−3;l1...lN |L1...LN−3

({zk}N
k=1; {zk}N

k=1

)
. (83)

We now note that this quantity has a simple asymptotic
behavior at large lk , which is completely determined by the
central limit theorem [72]. Indeed, thanks to the assumption
of statistical isotropy, the Olm(	xo) for a given value of l
are 2l + 1 independent and equally distributed random vari-
ables. Thus, the product

∏N
k=1 Olkmk (	xo) for given lk values

consists of O(
∏N

k=1 lk ) independent and equally distributed
random variables. The observational spectrum component
Gob

l1···lN |L1···LN−3
(	xo) then corresponds to a weighted sum of

these products over their mk indices Eq. (40). However,
since the multilateral Wigner symbol Eq. (42) is zero unless∑N

k=1 mk = 0, the sum actually only contains O(
∏N−1

k=1 lk )
independent and equally distributed random variables. Finally,
noting that Gob(	xo) is technically a sample average and Gth

is its ensemble average, the central limit theorem [72] states
that

�l1···lN |L1···LN−3

∣∣
lk�1 ∝ 1√∏N−1

k=1 lk

Gth
l1···lN |L1···LN−3

. (84)

Consequently, the relative cosmic variance tends to zero as
lk → ∞. In particular, this means that Gob

l1···lN |L1···LN−3
(	xo) tends

to the 	xo-independent result Gth
l1···lN |L1···LN−3

, without the need
to perform the average over 	xo as in Eq. (68), thus justifying
the approximation Eq. (69) for small enough scales. This is
therefore how one can obtain accurate statistical cosmological
information from a single vantage point for sufficiently large
lk . Following the discussion at the end of Sec. IV, this loss of
the 	xo information in the lk → ∞ limit is a consequence of
statistical homogeneity and the ergodic hypothesis.
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VI. CONNECTED ANGULAR N-POINT SPECTRA

A. Definitions, modified ergodic relation
and covariance matrices

Here we focus on the part that is usually of most interest:
the connected component of a given correlation function or
associated spectrum. This is a nonlinear combination of the
full statistics G, so one should expect the linear ergodic
relations Eqs. (67) and (68) to be modified. Here we will
illustrate this modification by considering the case of the
connected two-, three-, and four-point functions. We start by
defining the observable fluctuations, in the observational and
theoretical cases, as the deviation of the observable from the
respective one-point functions

�obO(	xo; z, n) := O(	xo; z, n) − Gob(	xo; z), (85)

�thO(	xo; z, n) := O(	xo; z, n) − Gth(z), (86)

or, in terms of the harmonic components,

�obOlm(	xo; z) := Olm(	xo; z) − δ0
l δ

0
mGob(	xo; z), (87)

�thOlm(	xo; z) := Olm(	xo; z) − δ0
l δ

0
mGth(z). (88)

We note in particular that, by construction, the observa-
tional monopole is identically zero, while the theoretical one
captures precisely the difference between the two one-point
functions

�obO00(	xo; z) ≡ Gob(	xo, z) − Gob(	xo, z) ≡ 0, (89)

�thO00(	xo; z) ≡ Gob(	xo, z) − Gth(z) 
= 0. (90)

The connected two-, three-, and four-point functions can then
be defined by

C�(z1, z2, n1, n2) := 〈��O(z1, n1) ��O(z2, n2)〉�, (91)

B�(z1, z2, z3, n1, n2, n3) := 〈��O(z1, n1) ��O(z2, n2) ��O(z3, n3)〉�, (92)

T �(z1, z2, z3, z4, n1, n2, n3, n4) := 〈��O(z1, n1) ��O(z2, n2) ��O(z3, n3) ��O(z4, n4)〉�
−〈��O(z1, n1) ��O(z2, n2)〉�〈��O(z3, n3) ��O(z4, n4)〉�
−〈��O(z1, n1) ��O(z3, n3)〉�〈��O(z2, n2) ��O(z4, n4)〉�
−〈��O(z1, n1) ��O(z4, n4)〉�〈��O(z2, n2) ��O(z3, n3)〉�, (93)

where here the star is a placeholder for “ob” and “th,” the corresponding averages are respectively 〈. . . 〉SO(3) and 〈. . . 〉 and we
have omitted the 	xo dependencies in the “ob” case for notational simplicity. Clearly, the these functions are invariant under a
common rotation of their arguments, so we can compute their harmonic components by projecting on the basis Eq. (41). Using
the connected analog of Eq. (36) and also Eqs. (A15), (B5), (B6), and the 3 − j symbol symmetries, we recover the known
expressions for the reduced power spectrum, bispecrum, and trispectrum estimators [42]12

Cob
l (	xo; z1, z2) ≡ �obOlm(	xo; z1) �obO∗

lm(	xo; z2)

2l + 1
, (94)

Bob
l1l2l3 (	xo; z1, z2, z3) ≡

(
l1 l2 l3
m1 m2 m3

) 3∏
k=1

�obOlkmk (	xo; zk ), (95)

T ob
l1l2l3l4|L(	xo; z1, z2, z3, z4) ≡ (−1)L+M

√
2L + 1

(
l1 l2 L
m1 m2 −M

)(
L l3 l4
M m3 m4

) 4∏
k=1

�obOlkmk (	xo; zk )

− (−1)l1+l3
√

(2l1 + 1)(2l3 + 1) δl1l2δl3l4δL0C
ob
l1 (	xo; z1, z2)Cob

l3 (	xo; z3, z4)

− (−1)l1+l2
√

2L + 1 {l1 l2 L} δl1l3δl2l4C
ob
l1 (	xo; z1, z3)Cob

l2 (	xo; z2, z4)

− (−1)L
√

2L + 1 {l1 l2 L} δl1l4δl2l3C
ob
l1 (	xo; z1, z4)Cob

l2 (	xo; z2, z3). (96)

The theoretical counterparts are then obtained by replacing “ob” → “th” and ensemble averaging, again in accordance with the
N = 2, 3, 4 results of Ref. [42].

Let us now see how the linear ergodic relation Eq. (68) looks like in terms of the connected parts. First, because of Eq. (89),
the observational spectra vanish identically whenever at least one of their lk entries is zero, i.e., they have vanishing “monopoles”
by construction. In contrast, this is not the case for the theoretical spectra Eq. (90). As a concrete example, let us consider the
relation between the connected two-point correlation functions, by expressing them in terms of the full functions and using

12Note that Eq. (96) agrees with Eqs. (26) and (20) of Ref. [42], as the normalization convention is different by an overall factor of
(−1)L

√
2L + 1.
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Eq. (67)

Cth(z1, z2, n1, n2) ≡ Gth(z1, z2, n1, n2) − Gth(z1) Gth(z2)
erg.= 1

V

∫
d3xo Gob(	xo; z1, z2, n1, n2) − Gth(z1) Gth(z2)

≡ 1

V

∫
d3xo[Cob(	xo; z1, z2, n1, n2) + Gob(	xo; z1) Gob(	xo; z2)] − Gth(z1) Gth(z2)

erg.= 1

V

∫
d3xo Cob(	xo; z1, z2, n1, n2) + Cov(z1; z2), (97)

where Cov(z1; z2) is the covariance matrix of the one-point function with itself [see Eq. (73)]. Alternatively, in harmonic space,

Cth
l (z1, z2)

erg.= 1

V

∫
d3xo Cob

l (	xo; z1, z2) + δl0Cov(z1; z2). (98)

The difference with Eq. (68) in the connected case is a monopole term, which is also exactly the multipole for which the
observational spectrum vanishes identically Cob

0 (z1, z2) ≡ 0. Therefore, a better display of Eq. (98) could be

Cth
l>0(z1, z2)

erg.= 1

V

∫
d3xo Cob

l>0(	xo; z1, z2), Cth
0 (z1, z2)

erg.= Cov(z1; z2). (99)

Thus, the ergodic relation Eq. (68) still holds for the components containing physical information Cob
l 
= 0, while the left-

over equation relates the covariance matrix of the one-point function to the monopole of the theoretical power spectrum. As a
result, the absolute one-sigma error Eq. (77) associated with the one-point function approximation,

Gob(xo; z) ≈ Gth(z) ± �(z), (100)

is simply

�(z) :=
√

Cov(z; z)
erg.=
√

Cth
0 (z, z). (101)

This picture generalizes to the case of higher N , as one can check by expressing �thOlm in terms of �obOlm in the theoretical
spectra Bth and T th. One finds that the resulting equation splits into two sets of equations: the nonmonopole ones, i.e., the ones
where none of the lk is zero and for which Eq. (68) still holds, and the ones relating the theoretical monopoles to the covariance
matrix and higher order analogues (skewness, kurtosis, etc.) of lower-N spectra. For this reason, from now on all of our
equations will hold up to monopole terms, so that we do not have to deal with this subtlety.

The next nontrivial case is the trispectrum, where one now subtracts products of two-point functions. For the purposes of
our point it suffices to describe it schematically as

T th
({nk, zk}4

k=1

) ≡
〈

4∏
k=1

�thO(	xo; zk, nk )

〉
− Cth(z1, z2, n1, n2)Cth(z3, z4, n3, n4) − . . . , (102)

where the ellipses here denote the other two possible orderings of the two-point function arguments. In complete analogy with
the derivation in the N = 2 case Eq. (97), using Eq. (67) we find

T th
({nk, zk}4

k=1

) ≡ Gth
({nk, zk}4

k=1

)− Gth(z1, z2, n1, n2) Gth(z3, z4, n3, n4) − · · · + mon.

erg.= 1

V

∫
d3xo Gob

(
	xo; {nk, zk}4

k=1

)− Gth(z1, z2, n1, n2) Gth(z3, z4, n3, n4) − · · · + mon.

≡ 1

V

∫
d3xo

[
Cob
(
	xo; {nk, zk}4

k=1

)+ Gob(	xo; z1, z2, n1, n2) Gob(	xo; z3, z4, n3, n4) + . . .
]

− Gth(z1, z2, n1, n2) Gth(z3, z4, n3, n4) − · · · + mon.

erg.= 1

V

∫
d3xo Cob

(
	xo; {nk, zk}4

k=1

)+ Cov(z1, z2, n1, n2; z3, z4, n3, n4) + · · · + mon., (103)

so the difference is again a covariance matrix, but now the one of the two-point function with itself. In harmonic space we then
find

T th
l1l2l3l4|L(z1, z2, z3, z4)

erg.= 1

V

∫
d3xo T ob

l1l2l3l4|L(	xo; z1, z2, z3, z4) + (−1)l1+l3
√

(2l1 + 1)(2l3 + 1) δl1l2δl3l4δL0Covl1;l3 (z1, z2; z3, z4)

+ (−1)l1+l2
√

2L + 1 {l1 l2 L} δl1l3δl2l4 Covl1;l2 (z1, z3; z2, z4)

+ (−1)L
√

2L + 1 {l1 l2 L} δl1l4δl2l3 Covl1;l2 (z1, z4; z2, z3) + mon., (104)
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where we recognize the same structure as in Eq. (96) by construction and we have the covariance matrix of the two-point spectra

Covl;l ′ (z1, z2; z3, z4)
erg.= 1

V

∫
d3xo Gob

l (	xo; z1, z2) Gob
l ′ (	xo; z3, z4) − Gth

l (z1, z2) Gth
l ′ (z3, z4). (105)

A first important difference with the two-point case Eq. (98) is that the extra terms here affect multipoles of arbitrary magnitude,
although only a small subset, the one of pairwise equal lk’s. A second important difference is that the components of T ob with
pairwise equal lk’s are not identically zero in general, i.e., the equations no longer split as in the monopole case. One must
therefore take Eq. (104) as it is and infer that the analog of the single-observer approximation Eq. (70) in this case is actually

T ob
l1l2l3l4|L(	xo; z1, z2, z3, z4)

erg.≈ T th
l1l2l3l4|L(z1, z2, z3, z4) − (−1)l1+l3

√
(2l1 + 1)(2l3 + 1) δl1l2δl3l4δL0Covl1;l3 (z1, z2; z3, z4)

− (−1)l1+l2
√

2L + 1 {l1 l2 L} δl1l3δl2l4 Covl1;l2 (z1, z3; z2, z4)

− (−1)L
√

2L + 1 {l1 l2 L} δl1l4δl2l3 Covl1;l2 (z1, z4; z2, z3) + mon. (106)

Finally, just as the two-point case Eq. (98) with l = 0 provides the cosmic variance of the 1-point function for free, the
four-point case Eq. (104) with l1 = l2 =: l , l3 = l4 =: l ′ and L = 0 provides the cosmic variance for the power spectrum.
However, here T ob

lll ′l ′|0 
= 0, but rather [use Eq. (96) and properties of the 3 − j symbols],

T ob
lll ′l ′|0(	xo; z1, z2, z3, z4) ≡ −δll ′

[
Cob

l (	xo; z1, z3)Cob
l (	xo; z2, z4) + (z3 ↔ z4)

]
, (107)

so, inserting this in Eq. (104), using Eq. (106) and isolating the covariance matrix, we find

Covl;l ′ (z1, z2, z3, z4) ≡ (−1)l+l ′

√
(2l + 1) (2l ′ + 1)

[
δll ′
[
Cth

l (z1, z3)Cth
l (z2, z4) + (z3 ↔ z4)

]+ T th
lll ′l ′|0(z1, z2, z3, z4)

]+ mon. (108)

This generalizes the result of Ref. [42], worked out for the CMB where there is no redshift dependence, to the case of
generic redshifts along the light-cone. In particular, the cosmic variance of the power spectrum, i.e., the absolute 1-sigma
error Eq. (77) in the approximation

Cob
l (	xo; z, z′) ≈ Cth

l (z, z′) ± �l (z, z′), (109)

is

�2
l (z, z′) := Covl;l (z, z′, z, z′) ≡ 1

2l + 1

[[
Cth

l (z, z′)
]2 + Cth

l (z, z)Cth
l (z′, z′) + T th

llll|0(z, z′, z, z′)
]+ mon. (110)

Finally, for Gaussian statistics and equal redshifts, we recover the well-known result13

�l (z, z)|Gauss. =
√

2

2l + 1
Cth

l (z, z). (111)

Given the discussion of Sec. V B and comparing Eq. (110) with Eq. (84), we find that here the central limit theorem
essentially states that the trispectrum decays faster with growing l than the C2

l terms.

B. Mind the monopole when using relative fluctuations

Until now we have considered the “absolute” fluctuations �obO and �thO, but in practice the most convenient
ones to work with are the relative ones (if Gth(z) 
= 0),

δobO(	xo; z, n) := �obO(	xo; z, n)

Gob(	xo; z)
, δthO(	xo; z, n) := �thO(	xo; z, n)

Gth(z)
. (112)

This introduces a nonlinear difference between the observational and theoretical definitions and will affect the covariance
matrices of the corresponding spectra. Indeed, consider for instance the case of the relative power spectra

C̃ob
l (	xo; z1, z2) := δobOlm(	xo; z1) δobO∗

lm(	xo; z2)

2l + 1
≡ Cob

l (	xo; z1, z2)

Gob(	xo; z1) Gob(	xo; z2)
, (113)

C̃th
l (z1, z2)

erg.= 1

V

∫
d3xo

δthOlm(	xo; z1) δthO∗
lm(	xo; z2)

2l + 1
≡ Cth

l (z1, z2)

Gth(z1) Gth(z2)
, (114)

which are denoted using tilded letters to distinguish them from the absolute ones Cob
l and Cth

l . The corresponding covariance ma-
trix is given by

C̃ovl;l ′ (z1, z2, z3, z4)
erg.= 1

V

∫
d3xo

[
C̃ob

l (	xo; z1, z2) − C̃th
l (z1, z2)

][
C̃ob

l ′ (	xo; z3, z4) − C̃th
l ′ (z3, z4)

]
(115)

13See e.g., [73] for the case of the CMB power spectrum.
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and one would naively expect this to be simply

C̃ovl;l ′ (z1, z2, z3, z4) = Covl;l ′ (z1, z2, z3, z4)

Gth(z1) Gth(z2) Gth(z3) Gth(z4)
+ mon., (116)

where here Covl;l ′ is the covariance matrix of the absolute two-point spectrum Eq. (108). In particular, one would then infer
the analog of Eq. (111) for the corresponding cosmic variance in the equal redshift Gaussian case,

�̃l (z, z)|Gauss. =
√

2

2l + 1
C̃th

l (z, z). (117)

However, as we will now show, Eqs. (116) and (117) are actually only approximate, because to obtain them one must wrongly
assume that Gob(	xo; z) = Gth(z) or, according to Eq. (89), that the monopole of the observable is zero at 	xo for all z,

δthO00(	xo, z) = 0. (118)

Indeed,

Covl;l ′ (z1, z2, z3, z4)
erg.= 1

V

∫
d3xo

[
Cob

l (	xo; z1, z2)Cob
l ′ (	xo; z3, z4)

]− Cth
l (z1, z2)Cth

l ′ (z3, z4) + mon. (119)

≡ 1

V

∫
d3xo Gob(	xo; z1) Gob(	xo; z2) Gob(	xo; z3) Gob(	xo; z4) C̃ob

l (	xo; z1, z2) C̃ob
l ′ (	xo; z3, z4)

− Gth(z1) Gth(z2) Gth(z3) Gth(z4) C̃th
l (z1, z2) C̃th

l ′ (z3, z4) + mon.

≡ Gth(z1) Gth(z2) Gth(z3) Gth(z4)[C̃ovll ′ (z1, z2, z3, z4) + R̃ll ′ (z1, z2, z3, z4)] + mon., (120)

where the remainder term R̃ll ′ depends on the monopole
δthO00(	xo; zk ) that comes from converting the Gob(	xo, zk ) into
Gob(zk ) and which cannot go through the integral over 	xo,
because of its dependence on that variable. The remainder
term is therefore controlled by a combination of monopoles
of the theoretical power spectrum, bispectrum and trispectrum
which, unlike the extra “mon.” terms described in the previous
section, contribute here to all l values, not just to l = 0. Thus,
it is important to know whether one compares absolute quan-
tities or relative ones, because the corresponding covariance
matrices are different and therefore so will be the results of
the corresponding Fisher forecasts.

VII. CONCLUSION

In this paper we have addressed two potentially important
issues for the next stages of precision cosmology. First, we
have developed the general theory of the rotationally invariant
(“reduced”) angular N-point spectra. The method employed
so far [42] is not suited for obtaining expressions for arbitrary
N , because it requires solving some increasingly compli-
cated algebraic equation as N grows. As a result, one must
work out each N case separately and the present literature
contains a detailed description only up to the N = 4 case
[42]. We have presented an alternative construction which
provides all the relevant definitions and relations associated
with reduced angular N-point spectra straightforwardly and
for all N . This includes the covariance matrix of these spectra
for arbitrary N and N ′, which is controlled by a squeezed
(N + N ′)-point spectrum and leads to a cosmic variance of
the N-point spectrum that decays as l (N−1)/2 for large lk
numbers. Our construction is based on the introduction of the
“multilateral” Wigner symbols, which generalize the Wigner
3 − j symbols of triangles to polygons. With these we have

built an orthonormal harmonic basis for N-point correlation
functions on the sphere, such that the reduced spectra appear
as the coefficients in this basis. We have also discussed a
corresponding diagrammatic representation, generalizing the
one of Refs. [42,69] for the cases N = 4, 5, which was also
considered in Ref. [70] in the flat sky limit. Even though
the determination of a generic N-point spectrum might be
prohibitive numerically, our general framework allows easily
for specialization, e.g., to squeezed spectra with only one l
varying while the others are fixed to some low value.

The second important part of the paper consists in mo-
tivating and justifying the consideration of observer terms
of cosmological observables inside the ensemble averages of
correlation functions and spectra. Through a careful derivation
of the relation between theoretical predictions (“Gth”) and
observations (“Gob”), under the assumptions of statistical
homogeneity and isotropy and ergodicity, we have shown
that no special treatment of the observer point is required
whatsoever on the theoretical side. Ensemble averaging field
products at this point does not introduce any inconsistencies,
nor does it imply any new assumptions or uncertainties. This
motivates us to consider the full analytical expressions of cos-
mological observables in calculations, especially at nonlinear
order in perturbations where observer terms are intertwined
with source and line-of-sight contributions in a nontrivial
way, as we argued in Sec. IV A. Thus, with this conceptual
ambiguity being lifted, we can now safely state that a rigorous
treatment of cosmological observables should include the
observer terms, or at least a check of the magnitude of their
contribution in the final result if they are neglected.

We have also taken advantage of the present framework to
discuss some subtle aspects of working with the connected
part of spectra, as one usually does, when relating theory
to observation. When working directly with fluctuations of
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observables around their average (one-point function) value,
as is often the case in cosmology, the difference between full
and connected spectra is simply a sum of products of spectra
with N > 1. However, here we pointed out that the notion
of fluctuation is different in the theoretical and observational
cases, since the one-point functions are different (ensemble
versus sky average). As a result, the relation between the-
oretical and observational connected spectra involves extra
“monopole” terms. Moreover, if one works with relative,
instead of absolute, fluctuations of observables, then one must
take into account additional corrections which now affect all
multipoles, not just the monopoles. A direct consequence
of this fact is that the covariance matrices computed with
the relative and absolute fluctuations are not proportional
to each other, but have an additional remainder term. Thus,
this can lead to different results in the corresponding Fisher
analyses, depending on whether one uses absolute or relative
observational fluctuations.

Finally, and remarkably, the fact that the observational
and theoretical one-point functions are not equal in general
might also be relevant in the context of parameter estimation
involving CMB data. Indeed, the standard treatment of the
CMB temperature is to simply neglect cosmic variance and
therefore consider these two quantities as equal T̄ := 〈T 〉 =
〈T 〉SO(3)(	xo). This is justified by the high precision of the
average CMB temperature measurement [74] and, most im-
portantly, by the smallness of the associated relative cosmic
variance C0 ∼ 10−5, which sets the fundamental uncertainty
floor. In principle, however, one should consider T̄ (or ωγ ) as
an extra cosmological parameter to be varied in the likelihood
analysis. Through a careful Fisher analysis that incorporates
the above-mentioned subtleties [75], the impact of an indepen-
dent T̄ on the other cosmological parameters and their errors
is estimated in Ref. [76].
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APPENDIX A: HARMONIC DECOMPOSITION OF
SO(3)-INVARIANT FUNCTIONS ON SN

2

Consider a function f on SN
2 that satisfies

f (n1, . . . , nN ) ≡ f (Rn1, . . . , RnN ), (A1)

for arbitrary rotations R. We can then average over the SO(3)
group on the right-hand side [see Eq. (30)],

f (n1, . . . , nN ) ≡ 〈 f (n1, . . . , nN )〉SO(3). (A2)

We then decompose each one of the nk dependencies into
spherical harmonics

f (n1, . . . , nN ) ≡ f l1...lN
m1...mN

Yl1m1 (n1) . . .YlN mN (nN ), (A3)

where

f l1...lN
m1...mN

:=
∫ [ N∏

k=1

d�k

4π
Y ∗

lkmk
(nk )

]
f (n1, . . . , nN ). (A4)

The summation over l, m indices will be kept implicit for
notational simplicity. In what follows, we will encounter both
dummy and free l, m indices, so their nature will be inferable
by looking at both sides of the equation. The m indices will
always be clearly associated to some l value and therefore run
from −l to l , while the l indices run from 0 to ∞. Also, note
that we use the less conventional normalization of spherical
harmonics,

1

4π

∫
d�Ylm(n)Y ∗

l ′m′ (n) ≡ δll ′δmm′ . (A5)

Equation (A2) now reads

f (n1, . . . , nN ) ≡ f l1...lN
m1...mN

× 1

8π2

∫
dR

N∏
k=1

Ylkmk (R−1nk ),

(A6)

where the Haar measure dR is given in Eq. (29). We can then
extract the R-dependence out of the spherical harmonics by
using their transformation property under rotations,

Ylm
(
R−1(α, β, γ ) n

) ≡ Ylm′ (n) Dl,m′m(α, β, γ ), (A7)

where the Dl are the Wigner matrices forming the (2l + 1)-
dimensional irreducible representation of SO(3),

Dl (R) Dl (R
′) ≡ Dl (RR′), Dl (R) D†

l (R) ≡ I. (A8)

We thus have

f (n1, . . . , nN ) ≡ I l1...lN
m′

1...m
′
N ,m1...mN

f l1...lN
m1...mN

N∏
k=1

Ylkm′
k
(nk ), (A9)

where

I l1...lN
m′

1...m
′
N ,m1...mN

:= 1

8π2

∫ 2π

0
dα

∫ π

0
sin β dβ

×
∫ 2π

0
dγ

N∏
k=1

Dlk ,m′
kmk (α, β, γ ). (A10)

In the N = 2 case, we can use the identity

D∗
l,mm′ ≡ (−1)m+m′

Dl,−m−m′ , (A11)

and the orthonormality relation

1

8π2

∫ 2π

0
dα

∫ π

0
sin β dβ

∫ 2π

0
dγ Dl1,m1m′

1
(α, β, γ )

× D∗
l2,m2m′

2
(α, β, γ )

≡ 1

2l1 + 1
δl1l2δm1m2δm′

1m′
2
, (A12)

to obtain

I l1l2
m′

1m′
2,m1m2

≡ (−1)m1+m′
1

2l1 + 1
δl1l2δ−m1m2δ−m′

1m′
2
, (A13)

and thus

f (n1, n2) ≡ fl (2l + 1)Pl (n1n2), (A14)
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where the Pl are the Legendre polynomials, arising from the
identity

Pl (n1n2) ≡ 1

2l + 1
Ylm(n1)Y ∗

lm(n2), (A15)

and

fl := (−1)m f ll
m,−m

2l + 1
. (A16)

In the case of observable products, we obtain the well-known
results Eqs. (36) and (37). For the case of most interest N > 2,
we need to use iteratively the “Clebsch-Gordan” composition
rule,

Dl1,m1m′
1
Dl2,m2m′

2
=
(

l1 l2 L
m1 m2 −M

)(
l1 l2 L
m′

1 m′
2 −M ′

)
× (2L + 1)(−1)M+M ′

DL,MM ′ , (A17)

to reduce the product in Eq. (A10) down to a single pair, in
which case we can use again Eqs. (A11) and (A12). The result
is

I l1...lN
m′

1...m
′
N ,m1...mN

≡ W l1...lN |L1...LN−3

m′
1...m

′
N

W l1...lN |L1...LN−3
m1...mN

, (A18)

where the coefficients on the right-hand side are given in
Eq. (42). Going back to Eq. (A9), this finally implies the
decomposition

f (n1, . . . , nN ) ≡ fl1...lN |L1...LN−3Yl1...lN |L1...LN−3 (n1, . . . , nN ),
(A19)

where

fl1...lN |L1...LN−3 := W l1...lN |L1...LN−3
m1...mN

f l1...lN
m1...mN

(A20)

and

Yl1...lN |L1...LN−3 (n1, . . . , nN ) := W l1...lN |L1...LN−3
m1...mN

N∏
k=1

Ylkmk (nk ).

(A21)

The latter form a basis for SO(3)-invariant functions on SN
2 .

Indeed, we have just shown that they generate that space, so
we must still show that they are orthogonal under the natural
scalar product. Using the identity Eq. (B5), where

{l1 l2 l3} :=
{

1 if l1 ∈ {|l2 − l3|, . . . , l2 + l3}
0 otherwise , (A22)

one obtains

W l1...lN |L1...LN−3
m1...mN

W
l1...lN |L′

1...L
′
N−3

m1...mN

≡ {l1 . . . lN |L1 . . . LN−3}
N−3∏
k=1

δLkL′
k , (A23)

where we have defined

{l1 . . . lN |L1 . . . LN−3} := {l1 l2 L1}
(

N−4∏
k=1

{Lk lk+2 Lk+1}
)

× {LN−3 lN−1 lN }, (A24)

and therefore the orthonormality relation∫ ( N∏
k=1

d�k

4π

)
Yl1...lN |L1...LN−3 (n1, . . . , nN )

×Y ∗
l ′1...l

′
N |L′

1...L
′
N−3

(n1, . . . , nN )

≡ {l1 . . . lN |L1 . . . LN−3}
N∏

k=1

δlk l ′k
N−3∏
k=1

δLkL′
k . (A25)

Finally, one can use this to invert Eq. (A19),

fl1...lN |L1...LN−3 ≡
∫ ( N∏

k=1

d�k

4π

)
Y ∗

l1...lN |L1...LN−3
(n1, . . . , nN )

× f (n1, . . . , nN ). (A26)

APPENDIX B: SOME IDENTITIES FOR WIGNER
3 − j SYMBOLS

Here we display all the identities satisfied by the Wigner
3 − j symbols that are used in this paper.

(1) Special cases:(
l1 0 0
m1 0 0

)
≡ δ

l1
0 δ0

m1
,(

l1 l2 0
m1 m2 0

)
≡ (−1)l1+m1

√
2l1 + 1

δl1l2δm1,−m2 . (B1)

(2) Column exchange symmetry:
even permutations(

l1 l2 l3
m1 m2 m3

)
≡
(

l2 l3 l1
m2 m3 m1

)
≡
(

l3 l1 l2
m3 m1 m2

)
,

(B2)

odd permutations(
l1 l2 l3
m1 m2 m3

)
≡ (−1)l1+l2+l3

(
l2 l1 l3
m2 m1 m3

)
≡ (−1)l1+l2+l3

(
l1 l3 l2
m1 m3 m2

)
, (B3)

(3) m-sign flip symmetry(
l1 l2 l3

−m1 −m2 −m3

)
≡ (−1)l1+l2+l3

(
l1 l2 l3
m1 m2 m3

)
,

(B4)

(4) Sum identities(
l1 l2 l3
m1 m2 m3

)(
l1 l2 l ′

3
m1 m2 m′

3

)
≡ 1

2l3 + 1
{l1 l2 l3} δl3l ′3δm3m′

3
, (B5)

(−1)m

(
L l l
M m −m

)
≡ √

2l + 1 (−1)lδL
0 δ0

M . (B6)
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