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Quantum Hall effect and Landau levels in the three-dimensional topological insulator HgTe
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We review low- and high-field magnetotransport in 80-nm-thick strained HgTe, a material that belongs to the
class of strong three-dimensional topological insulators. Utilizing a top gate, the Fermi level can be tuned from
the valence band via the Dirac surface states into the conduction band and allows studying Landau quantization
in situations where different species of charge carriers contribute to magnetotransport. Landau fan charts,
mapping the conductivity o.(V,, B) in the whole magnetic field-gate voltage range, can be divided into six
areas, depending on the state of the participating carrier species. Key findings are (i) the interplay of bulk holes
(spin degenerate) and Dirac surface electrons (nondegenerate), coexisting for Er in the valence band, leads to
a periodic switching between odd and even filling factors and thus odd and even quantized Hall voltage values.
(ii)) We found a similar though less pronounced behavior for coexisting Dirac surface and conduction band
electrons. (iii) In the bulk gap, quantized Dirac electrons on the top surface coexist at lower B with nonquantized
ones on the bottom side, giving rise to quantum Hall plateau values depending—for a given filling factor—on the
magnetic field strength. In stronger B fields, Landau level separation increases; charge transfer between different
carrier species becomes energetically favorable and leads to the formation of a global (i.e., involving top and
bottom surfaces) quantum Hall state. Simulations using the simplest possible theoretical approach are in line
with the basic experimental findings, describing correctly the central features of the transitions from classical to

quantum transport in the respective areas of our multicomponent charge carrier system.
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I. INTRODUCTION

The quantum Hall effect (QHE) [1] and Shubnikov—de
Haas (SdH) oscillations with zero resistance states [2] are hall-
marks of two-dimensional electron (2DES) or hole (2DHS)
systems, realized, e.g., in semiconductor heterostructures [3]
or in graphene [4]. These phenomena are closely connected
to the discrete Landau level (LL) spectrum of charge carriers
in quantizing magnetic fields. These Landau levels are spaced
by the cyclotron energy 7w, (7 is the reduced Planck constant
and w, the cyclotron frequency) and form, as a function of
magnetic field and Landau level index 7, the Landau fan chart.
In conventional two-dimensional systems one type of charge
carrier, i.e., electrons or holes, prevails, giving rise to one Lan-
dau fan chart and a regular sequence of SdH peaks or quantum
Hall plateaus, which occur in equidistant steps on an inverse
magnetic field scale, 1/B. A more complicated situation arises
when two-dimensional electron and hole systems coexist as
in heterojunctions with a broken gap (type III heterojunction),
e.g., in InAs/GaSb quantum wells [5]. This gives rise to hy-
bridization [6] and a complicated interplay between LLs [7].
With the advent of three-dimensional (3D) topological insula-
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tors (TIs) [8—11] a new class of two-dimensional electron sys-
tems appeared on the scene where the two-dimensional charge
carrier system consisting of Dirac fermions forms a closed
surface “wrapped” around the insulating bulk. In contrast
to a conventional two-dimensional electron gas, these Dirac
surface states are non—spin degenerate and have their spin
orientation locked to their momentum. The unusual topology
of the two-dimensional Dirac system creates a manifold of
possibilities of how the charge carriers on the top and bottom
surfaces interact for different positions of Fermi level and
magnetic field strength. For a Fermi-level position in the
conduction band, e.g., three different charge carrier species
with different densities and mobilities exist: bulk electrons,
which are spin degenerate, and nondegenerate Dirac surface
electrons on the top and bottom surfaces. Here, we ignore
charge carriers on the side facets, parallel to the applied mag-
netic field, which play only a minor role in the context of the
present investigations. While SdH oscillations and the QHE
have been observed in various TI materials [12—17], strained
HgTe, a strong topological insulator [18], is insofar special,
as it features unprecedented high mobilities © with uB > 1
at magnetic fields as low as 0.1 T. This material thus serves
as a model system to explore Landau quantization and mag-
netotransport in a situation where different types of charge
carriers exist together. However, the physics discussed below
is also valid for other topological insulator materials in which
different kinds of charge carriers coexist at the Fermi level.
The first observation of the QHE in strained films of HgTe
was reported in Ref. [12], which also presents calculations of

Published by the American Physical Society


https://orcid.org/0000-0002-1295-5598
https://orcid.org/0000-0002-9630-9787
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.033003&domain=pdf&date_stamp=2020-07-01
https://doi.org/10.1103/PhysRevResearch.2.033003
https://creativecommons.org/licenses/by/4.0/

J. ZIEGLER et al.

PHYSICAL REVIEW RESEARCH 2, 033003 (2020)

the band dispersion of the surface states on the top and bottom
surfaces. Corresponding ab initio calculations computing the
band gap in which the TI surface states reside as a function
of strain (i.e., lattice mismatch between HgTe and substrate)
were presented in Ref. [19]. Typical band gaps for HgTe on
CdTe are of the order of 20 meV. Since in the initial exper-
iment the position of the Fermi level Er was unknown, we
explored the QHE effect and SAH oscillations systematically
as a function of a top gate voltage [13]. The top gate enables
tuning the Fermi level from the valence band, through the
gap region with gapless surface states into the conduction
band. As the QHE is also observed when the Fermi level
is supposedly in the conduction band, Briine et al. claimed
that due to screening effects the Fermi level is pinned in
the band gap so that only Dirac surface states exist at Ep
[20]. However, the underlying “phenomenological effective
potential for the sake of keeping the Fermi level within the
bulk gap is not proper” [21]. Below we show not only that
the Fermi level can be easily tuned from the valence band
into the conduction band, but we provide a comprehensive
picture of Landau quantization and quantum Hall effect in the
multicarrier system of a topological insulator.

II. CHARACTERIZATION OF SAMPLES

The 80-nm-thick HgTe material, investigated here, has
been grown by molecular beam epitaxy on (013)-oriented
(GaAs); similar wafers have been used previously to study
magnetotransport [13], cyclotron resonance [22], or quantum
capacitance [23]. A m-phase shift of quantum capacitance
oscillations [23], geometric resonances in antidot arrays [24],
and the subband spectrum of HgTe nanowires made of this
material [25] confirm the topological nature of the surface
states. As shown in Fig. 1(a), the heterostructure includes
a 20-nm-thick Cd,Hg;_,Te buffer layer on either side and
a 40-nm-thick CdTe cap layer to protect the pristine HgTe
surfaces. A top gate stack consisting of 30 nm of SiO,, 100
nm of Al,O; and Ti/Au enables control of the charge carrier
density and thus of the Fermi level via gating. Thus, the
Fermi energy Er can be tuned from the valence band (VB)
into the bulk gap and further into the conduction band (CB)
[13,21,23]. For magnetotransport measurement we use a stan-
dard Hall bar geometry of length 1100 xem and width 200 pm,
sketched in Fig. 1(b), and temperatures of T = 50 mK; the
magnetic field B points perpendicular to the sample plane.
We use a low ac current of 10 nA flowing through the Hall
bar to prevent heating of the carriers. To measure longitudinal
and transversal resistivities oy, and py,, respectively, we use
standard low-frequency lock-in techniques.

Figure 1(c) shows low-field SdH oscillations taken at
different gate voltages, i.e., Fermi level positions. At V, =
—1.5V the Fermi level is in the valence band while for +1 V
it is in the bulk gap; a simplified band structure is shown
in Fig. 2(a) for guidance. Figure 1(d) displays the typical V,
dependence of the resistivity p,,, measured at B = 0, and of
the Hall resistance p,,, taken at 0.5 T. The traces are very
similar to the ones we reported previously [13,23-26]. The
Pxx trace exhibits a maximum at V, = —0.15 V near the charge
neutrality point (CNP, at V, = 0.25 V), and two characteristic
weak humps at 0.4 and 1.25 V. The latter are due to enhanced
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FIG. 1. (a) Scheme of the heterostructure cross section. (b)
Sketch of the 200-um-wide and 1100-um-long Hall bar. (¢) Lon-
gitudinal resistivity p..(B) at different V, for Er in the conduction
band (2, 1.5 V), gap (1 V), and valence band (-0.5, —1.5 V).
(d) V, dependence of p,, (left axis, light blue) at B = 0 and p,, (right
axis, dark blue) at B = 0.5 T. The vertical arrows show the charge
neutrality point (CNP), top of the bulk valence (Ey ), and bottom of
the conductance band (E(¢), respectively. Here, Ey and Ec mark the
gate voltage at which bulk hole and bulk electron densities vanish,
respectively. (e) Electron n,(V,) and hole densities p,(V,) extracted
from the Hall slope, two-carrier Drude model, and SdH oscillations.
The analysis follows Ref. [13] and yields positions of the valence
and conduction band edges at V,(Ey) = 0.45V and V,(E¢) = 1.2V,
respectively, marked in (d). (f) Pictorial of the capacitively coupled
layers in the 3D TI sample which form the basis of our electrostatic
model. (g) Electron n,(V,) and hole densities p,;(V,) as calculated
with our electrostatic model. The densities which can be directly
compared with (e) are shown as solid lines, the ones which are not
directly accessible as dashed lines.

scattering of surface electrons and bulk carriers at the band
edges, i.e., valence band (VB, marked by Ey on the V, axis)
and conduction band (CB, marked E¢) [13]. Near the CNP
the Hall resistance py, changes sign as the majority charge
carrier type changes from electrons to holes when Er enters
the VB. Closer examination of magnetotransport data using
the Drude model and the periodicity of SdH oscillations, as
in Refs. [13,23], reveals partial densities and precise values of
Ey and E¢. The result of such analysis is shown in Fig. 1(e).
Above Ey, electron densities n, are extracted from the slope
of the Hall resistance (n'd') and from the periodicity of
the SAH oscillations. SdH oscillation periods reveal different
carrier densities, depending on whether the data are taken at
low (n5H-1°%) or high magnetic fields (nShighy yWhile ntall
and pJdt-hieh represent the total charge carrier density of the
system (and therefore coincide), nde'l"W represents the top

surface electrons only [13,23]. The reason for the latter is
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FIG. 2. (a) Schematic band structure of strained HgTe. Conduc-
tion and valence band edges are marked by Ec and Ey, the Dirac
point, which is located in the valence band, by Epg. The topological
Dirac surface states are shown in blue. Note that the position of
Ep within the band structure is usually different for top and bottom
surfaces. (b) The quantum Hall effect in strained 80-nm HgTe, shown
for different gate voltages V,, can stem from surface electrons in the
gap (with additional contributions from bulk electrons in the CB)
and bulk holes in the VB. This is reflected by the changing sign
of the Hall slope when tuning the gate voltage V, across the charge
neutrality point.

that the SdH oscillations of the bottom side electrons are at
these small magnetic fields not yet sufficiently resolved, in
contrast to the ones on the top surface. We will address this
topic further below. An example of low-field SdH oscillations,
taken at different gate voltages, is shown in Fig. 1(c). The
traces exhibit pronounced oscillations starting below 0.5 T,
indicating the high quality of the HgTe layer. Below Ey,
surface electrons and bulk holes coexist [see, e.g., Fig. 2(a)]
and the corresponding densities can be extracted using a two-
carrier Drude model [13]. Extrapolating p?”‘de (Vg)in Fig. 1(e)
to V, = 0 yields the exact V, position of Ey, and coincides
with the p,, hump, mentioned above. The change in slope of
the top surface carrier density n591°% at V, = 0 signals that
EFr crosses the conduction band edge [13,23].

Figure 1(f) illustrates the different charge carrier species
and the basic geometry of our electrostatic model, briefly
discussed below, which is used to relate the different carrier
densities to the applied gate voltage. The result of our calcula-
tions is shown in Fig. 1(g). Using the parameters of Table I the
model reproduces the experimental data quite well as can be
clearly seen by comparison with the experiment in Fig. 1(e).

Figure 2(b) demonstrates that the system displays a well-
developed quantum Hall effect. For negative gate voltages V,,
the quantized plateaus stem from bulk holes. For positive V,,
the slope of py, changes sign and the plateaus stem from Dirac
surface states with contributions from conduction band states
at higher positive V,. At positive or negative bias voltages
the band bending is expected to confine the bulk states at
the surface so that they form a conventional two-dimensional
electron or hole gas. Thus, the notion of bulk electrons or bulk
holes refers to states which are, when biased, largely confined
at the surface as is sketched in Fig. 4(a).

III. EXPERIMENTAL DATA OVERVIEW

To get further insight into the interplay of the different
carrier species in the system we take a closer look at the
formation of Dirac state LLs and their interaction with bulk
carriers’ LLs. To this end, we measured the magnetotransport
coefficients p,, and p,, at a temperature of 50 mK and
magnetic fields up to 12 T. The measured resistivity values
were converted into conductivities by tensor inversion. The
corresponding data set is plotted in Fig. 3(a) as a normal-
ized conductivity o.(V,, B) where each horizontal cut was
normalized to its B-field average. Lines of high conductivity
are colored from yellow to light blue and represent Landau
levels, while deep blue color corresponds to the gaps between
LLs. The investigated V, range spans Fermi level values
from inside the valence band to deep into the conduction
band. In strong magnetic fields, the data show both n- and
p-type Landau fans, almost symmetrical with respect to the
CNP, at which surface and bulk electrons counterbalance bulk
holes. The well-resolved v = 0 state is either a magnetic
field induced insulator state at the CNP or can be viewed
as formation of counterpropagating edge states [27-29]. The
nature of this state is out of the scope of the present
work.

To increase resolution and visibility in the low-field region,
we present in Fig. 3(b) the second derivative 8%, /9V,’ of the
above data for smaller ranges B < 5T and V, = —2t0 2 V.
Here, yellow regions of negative curvature of 920,/ 8ng
correspond to maxima in the conductivity, i.e., the position
of LLs. Green and blue areas in between represent gaps. The
respective data uncover a complex oscillation pattern with
splitting, kinks, and crossings of LLs. These features occur
in different sections of the (V,, B) parameter space, indicating
that several groups of carriers are involved in the formation of

TABLE I. Parameters of the different groups of carriers used in the model.

Carrier group Top surface electrons Bottom surface electrons Bulk electrons Bulk holes
Density notation n'°p nbot n? Ds
Density value at CNP 4.1 x 10" cm™2 2.9 x 10" cm2 0 7 x 10'%cm~2
Charge —e —e —e e

m; 0.03 nmy 0.03 my 0.06 my 0.3 my

g 1 1 2 2

g - - 333 6.7
Az/ho, - - 0.3 0.3
Tlg=it 1 meV 1.5 meV 0.5 meV 0.1 meV

d (Distance from bottom surface) 80 nm - 52 nm 75 nm
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FIG. 3. (a) Color map of the normalized longitudinal conductivity o.,(V,, B) for magnetic fields up to B = 12 T. Conductance maxima are
yellow and green; filling factors for the bluish energy gaps are shown in white. Data are normalized to the average value for a given B value.
We use a logarithmic color scale to enhance the visibility of features throughout the entire investigated parameter space. (b) Excerpt of the data
in (a), shown as the second derivative 30, / 8Vg2. Yellow lines correspond, as above, to Landau levels, and green and blue regions to Landau
gaps. White dashed lines separate the investigated parameter space (V,, B) into distinct sections discussed in the text. (c) Simulated density
of states based on the simple model described in the Appendix. Maxima (minima) of the DoS are shown in yellow (blue) and correspond to
maxima (minima) of o,.(V,, B), i.e., to LL positions (gaps). Ey, Ec, CNP, and Ep , label points on the gate voltage axis, which were matched
to the experimentally obtained values. White lines represent the fan chart originating from the CNP.

LLs. The analysis of the data can be done in several ways.
One option is to exactly calculate LL positions using the
k - p method and trying to fit the whole set of data. However,
such an approach entails significant computational difficulties
because Schrodinger and Poisson equations need to be calcu-
lated self-consistently for every point in the (V,, B) parameter
space. Still, this procedure would not promote true insight
into the underlying physics. Instead, we introduce a minimal
but adequate computational model, which semiquantitatively
agrees with the experimental data. The model is based on our
capacitance model [23] but extended to the case of nonzero
magnetic fields. While its detailed description is presented
in the Appendix, we address here only the crucial points:
Within the model, each group of carriers is characterized by
its own set of LLs, typified by the charge they carry (empty
LLs bear no charge, while occupied ones are negatively or
positively charged), Landau degeneracy (spin degenerate or
not), LL dispersion, and LL broadening. Further, a joint Fermi
level Er and the total charge carrier density (n; — py), which
depends linearly on V,, characterize the entire system. The
total charge is distributed among all LLs, determined by the
position of the Fermi level. Here, we need to take into account
the electrostatics of the system: Changes of the electric fields
in the device due to changes of the carrier densities within
the subsystem via the gate shifts the band edges and thus the
corresponding origins of the LLs. The effect of electrostatics
on the position of LLs for several gate voltages is shown in
Fig. 4, described in more detail in the caption and in Fig. S1

in the Supplemental Material [30]. It is important to note
that the band edges and thus the origin of the LL fan charts
depend on the gate voltage V,. In the limit of zero magnetic
field, the model gives identical results (i.e., bands bending and
partial densities) as the capacitance model [23]. The output
of the calculation is the position of the Fermi level, both
partial v; and total filling factors v, partial densities of states
(DOS) D', and Hall conductivities o, for specified B and V,
values. Figure 3(c) shows an example of such a calculation
which displays the total density of states as a function of V,
and B, thus reconstructing the LLs within the (V, B) map.
Above 4 T on the hole side and above 6-8 T on the electron
side the calculated LLs form simple fan charts which both
emanate from the CNP. This is in excellent agreement with
the experiment in Fig. 3(a).

The combined analysis of experimental data and simu-
lations allows us to classify six distinct regions within the
0xx(Vg, B) map, shown in Fig. 3(b). We will discuss the
regions marked from 1 to 6 below with the help of our
model calculations. Region 1 covers the high-magnetic-field
region where the system is fully quantized, so that all LLs are
resolved. Here, the total density n; — p, determines the filling
factors and the Landau level positions. By extrapolating the
LLs in Fig. 3(a) from high fields down to B = 0 (not shown)
all the lines meet at the CNP. Conversely, region 6 located
at fields below 0.4 T describes fully classical and diffusive
transport. At intermediate magnetic fields, i.e., in large parts
of regions 2-5, only some of the LLs, e.g., on the top surface,
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FIG. 4. When a gate voltage is applied, the charge carriers of the system rearrange. While the exact solution requires a complicated
self-consistent solution of Schrodinger and Poisson equations, most of the features observed in magnetotransport can be explained by a simple
electrostatic model. Within this model, each group of carriers is modeled by a 2D system of electrons or holes of zero thickness. Each layer
generates its own set of Landau levels emerging at different energies, but with common Fermi level position. Charged 2D surfaces cause, like
a charged capacitor plate, 1D electric fields across the structure leading to electrostatic potentials, depending linearly on the charge. These
potentials change with gate voltage, thus shifting the band edges, from which the Landau levels emanate. (a) Schematic band diagrams of
the investigated HgTe 3D TI system at different gate voltages V, (VB: V, =—-1.5V; CNP: V, =0.25V; gap: V, =09V; CB: V, = 1.5V).
Occupied hole states are shown in red, occupied states of surface electrons in dark blue, and bulk states in orange. The Dirac points of top
and bottom surfaces in strained HgTe thin films are located below Ey, as shown in the diagrams. (b) Landau level spectra at different bias
conditions used in the model. The corresponding band bending is shown above in (a). The model calculations include Zeeman splitting for
spin-degenerate bulk states (orange for conduction band; red for valence band states). Landau fans that do not cross the Fermi energy Er (i.e.,

empty levels) are shown as dotted lines.

are resolved so that combinations of quantized and diffusive
transport arise. In region 4, Er is in the gap so that only
topological states on the top and bottom surfaces are present
at the Fermi level, but no bulk states. In regions 2 and 3, bulk
holes dominate the Landau spectrum but coexist with surface
electrons on top and bottom. The coexisting surface electron
and bulk hole Landau fans cause an intricate checkerboard
pattern in region 3. In region 5, the surface states coexist
with bulk electrons that are filled when Er > Ec. Below, we
consider these regions in more detail.

IV. WEAK AND STRONG MAGNETIC FIELD LIMITS

The behavior of the system in the limits of small and
large magnetic fields is easily accessible. At small magnetic
fields, i.e., in region 6 of Fig. 3(b), the LL separation is
smaller than the LL broadening and transport is fully dif-
fusive. In this regime the classical multicomponent Drude

model characterizes transport. The model assigns each group
of carriers, labeled by index i, its own set of density n,; and
mobility u;. The resulting total conductivity is then the sum
of the partial conductivities [13,31]. This model explains the
observed effects, including the nonlinear p,,(B) trace as well
as a distinct positive magnetoresistance when bulk holes and
surface electrons coexist in the valence band [13]. The very
low density of bulk carriers in the gap is reflected by the
darker blue color (i.e., low oy,) with a sharp transition at the
conduction band edge V,(Ec) and a smoother one at V,(Ey)
in Fig. 3(a). The color difference between gap and bulk bands
regions reflects the effect of classical localization of charge
carriers described by oy o 1y /iB? in classically strong
fields (uB > 1, here typically valid for B > 0.1 T). Thus, the
magnetoconductivity oy, is lowest in the gap where the bulk
carrier concentration with low mobility is significantly lower
than the one in conduction band. The contrast of the color at
E¢ in Fig. 3(a) directly confirms that the Fermi level can be
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tuned into the conduction band, in contrast to earlier claims
[20].

The opposite case of strong magnetic fields is characterized
by completely (spin) resolved LLs and well-defined QHE
state. On the electron side, e.g., three fan charts—one for the
top surface, one for the bottom surface, and, for the Fermi
level in the conduction band, one for bulk electrons—coexist.
For constant carrier density (gate voltage), the Fermi level
jumps with increasing magnetic field from a fully occupied LL
of the top surface electrons to the next lower one, belonging,
e.g., to the electrons on the bottom surface. This process
is connected with a transfer of charges from the top to the
bottom surface. The SdH oscillations reflect, in this case,
the total carrier density of bottom plus top surface electrons.
The total charge density ny — p, controls the total filling factor
v and the position of the Landau levels. On the electron side,
this means that the total electron density (bulk plus surface
density) determines the filling factor, while in the valence
band (where surface electrons and bulk holes coexist) it is
the difference of electron and hole densities. The Landau fan
chart, constructed from high-field o,, data in Fig. 3(a), is
symmetric with respect to the CNP and periodic in V, and
1/B. The entire high-field LLs in Fig. 3(a), extrapolated to
zero magnetic field, have their origin at the CNP. The pattern
is very similar to that observed in other electron-hole systems,
e.g., in graphene [4,32], but without graphene’s spin and
valley degeneracy. However, there is a quantitative asymmetry
between electrons (positive filling factors) and holes (negative
filling factors): The conductivity minima for electrons are
deeper than for holes; at the same time, the conductivity
maxima are broader for holes. This asymmetry reflects the
difference of effective masses and cyclotron gaps, which differ
by one order of magnitude [22,33] between the carrier types.
The transition between the low-field regime, at which the LL
fans are determined by the respective electron or hole density,
and the high-field regime, where the fans follow the total
charge carrier density n; — p;, occurs when the LL separation
is sufficiently large compared to the LL broadening.

V. COEXISTENCE OF QUANTIZED AND DIFFUSIVE
CARRIERS IN THE BULK GAP

Here we focus on the bulk gap region, labeled as region 4 in
Fig. 3(b) and magnified in Fig. 5(a). In this region, the Fermi
level is in the bulk gap and only Dirac surface states contribute
to transport. The SdH oscillations appear from 0.3 T on
and show a uniform pattern, strictly periodic in V, and 1/B,
until a magnetic field of B = 1.5-2 T is reached. This regular
behavior reflects that only the motion of one carrier species,
i.e., the electrons on the top surface, is quantized [13,23].
The electrons on the bottom surface have lower density and
mobility and their LL spectrum is not yet resolved. The
bottom electrons thus contribute a featureless background to
the conductivity. The o,,(V,) data in Fig. 5(c) clearly show this
diffusive background: The individual low-field oy, (V,) traces
show pronounced nonquantized Hall plateaus with values,
which increase with increasing B field [see red dashed lines
in Fig. 5(c)]. This behavior can be reproduced by adding the
Hall conductivities of the top and bottom surface electrons:
O.tgt — a;qyuam +O‘fyiff — ptop eZ/h +u n?ot eMB/(l + (/LB)Z).

X

Here, o™ is the quantized Hall conductivity of the top

surface, depending on the corresponding filling factor v and
the carrier density of the back surface, n®, which depends
only weakly on the gate voltage. We estimate the increase
of the plateau values with increasing B in the Supplemental
Material [30], which is in good agreement with experiment.

The SdH oscillations occurring below 1.5 T are described
by a single fan chart, shown as dark blue lines in Fig. 5(a).
The fan chart emerges at V, = 0.05V, corresponding to a
position of the Fermi level in the valence band. This point
can be viewed as a virtual Dirac point, at which the density
of the top surface Dirac seemingly becomes zero. However,
this would only be the case if the filling rate of the top surface
electrons was constant, which is not the case. When E enters
the valence band, the filling rate decreases precipitously and
the fan chart no longer fits the observed o, maxima [see dark
blue dashed lines in Fig. 5(a)]. The actual gate voltage at
which ny® = 0 holds is located much deeper in the valence
band and labeled Epr, (op, shown in Fig. 5(b). Typical partial
densities of the different charge carriers and the corresponding
filling rates, extracted from our experiments, are sketched in
Figs. S1(a) and S1(b) [30].

Below a magnetic field strength of about 1.5 T, the surface
electrons on the bottom side do not contribute to the oscilla-
tory part of o,,. This is an important distinction to other well-
studied two-component systems such as wide GaAs quantum
wells [34-36], where SdH oscillations of different frequencies
appear on a 1/B scale. At larger fields (B > 2T), bottom
surface electrons contribute to quantum transport. This results
in extra structure in the SAH oscillations, which breaks the
regularity of the fan chart of Fig. 5(a). In this regime the
oxy plateaus, shown in Fig. 5(c), become quantized in units
of ¢?/h. The data suggest that the transition from classical to
quantum transport appears at different magnetic fields for top
and bottom surfaces (0.3 and 1.5 T, respectively). This might
be caused by significantly different degrees of LL broadening
for electrons on top and bottom surfaces; however, this is
not obligatory. The simulation shown in Fig. 6(a) shows that
the SdH oscillations stemming from the top surface dominate
even if one assumes the same disorder and mobility for top
and bottom surface electrons. Figure 6(a) shows the total
density of states of top surface and bottom surface states. The
dark blue fan chart, however, is that of the top surface only
but matches the total DOS perfectly. The fan chart of the back
surface has an observably different origin and periodicity (see
Fig. S2(b) in the Supplemental Material [30]). The top surface
dominates the overall density of states because of its 2.5
times higher carrier density and thus higher SdH oscillation
frequency.

VI. VALENCE BAND: SPIN-DEGENERATE HOLES
AND SPIN-RESOLVED ELECTRONS

The most striking feature in transport and thus in the LL
fan chart arises from coexisting surface electrons and bulk
holes in regions 2 and 3 [see Fig. 3(b) and magnification in
Figs. 5(b) and 5(e)], each characterized by its own set of LLs.
Note that in the valence band both top and bottom surface
electrons are present. However, only the top surface electrons
participate in the formation of the observed oscillations. The
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FIG. 5. (a) 3%0y/ Bng for Bup to 3 T and V, > 0 covering the bulk gap and conduction band region. Dark blue lines retrace the Landau

levels. The Landau fan in the gap between V,(Ey) and V,(E¢) has its virtual origin at V, = 0.05V and stems from the top surface electrons.
A distinct change of slope is observed when Ef enters the bulk bands at V,(Ey) and V,(E¢). This is due to the reduced filling rates of surface
electrons in the bulk bands. The distortion of the Landau fan in region 4 at fields between 1 and 2 T is ascribed to the onset of quantization
of the bottom surface electrons. (b) 8%0,,/ 8Vg2 for Er in the valence band, i.e., for V, < V,(Ey) and B up to 2 T. Landau fans stemming from
bulk holes (red) and top surface electrons (black) coexist in this regime. Whenever a bulk hole LL crosses a surface electron LL, the total
filling factor parity changes, resulting in a shift of the SdH phase. (c) Hall conductivity o, (V,) for B=0.4...5T and Er in the bulk gap.
For small B fields the plateau values of the individual traces increase with increasing field (dashed lines) due to superposition of quantized
Hall conductivity from the top surface (constant o,,) and classical Hall conductivity of back surface electrons (o, linear in V,). At higher B
quantized steps appear. (d) The Hall conductivity oy, (V,) measured in the valence band. In the region of the checkerboard pattern alternating
sequences of plateaus with only odd or even filling factors (dashed lines) show up. The changes in filling factor parity stem from coexisting
spin-resolved topological surface states and spin-degenerate bulk holes. (e) Enlarged region of coexisting electron and hole Landau levels of

(b) showing the alternating sequences of even (odd) total filling factors.

bottom electrons have an extremely small filling rate (exper-
imentally indistinguishable from zero) and therefore do not
develop observable Landau fans. The electron Landau levels
start from the Dirac point of the top surface electrons, marked
by Epr, 10p On the gate voltage scale of Fig. 5(b), and fan out
towards positive gate voltages. No signature of Dirac holes
can be resolved at more negative gate voltages due to the
increasing noise level. The (bulk) hole Landau levels, on the
other hand, start at the valence band edge Ey [see Figs. 2(a)
and 5(b)] and fan out towards negative gate voltages. The
simultaneous filling of the two sets of Landau levels results in
the formation of a checkerboardlike pattern where minima and
maxima alternate, clearly seen in the %0,/ E)Vg2 color map of
Fig. 5(b). This checkerboard pattern is very similar to the one
observed in InAs/GaSb based electron-hole systems [7]. The
checkerboard pattern is connected to an anomaly in the oy,
traces taken for magnetic fields between 0.4 and 5 T, shown
in Fig. 5(d): In the curves measured between a magnetic field

of 1 and 2 T every second quantized plateau is missing; i.e.,
the filling factor of the plateaus changes by 2. Further, there
are clear transitions in Fig. 5(d) between regions in which
plateaus with either odd or even multiples of the conductance
quantum e? /h prevail.

The experimental observation suggests the picture pre-
sented below to explain the checkerboardlike pattern in the
fan chart and the unique odd-to-even plateau transitions.
Figure 6(c) displays a cartoon showing the coexisting
electron-hole LLs together with the corresponding filling fac-
tors. Both electrons and holes are characterized by a partial
filling factor v;, counting the number of occupied electron and
hole LLs. The total filling factor v (and the corresponding
value of oy, in units of €2 /h) is the sum of electron and hole
filling factors, v, and —vy, respectively. Since the hole LLs
are doubly (spin) degenerate, v, can only have even values
in contrast to the topological surface electron, for which the
filling factor increases in steps of 1 when Efr is swept across
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FIG. 6. (a) Calculated partial DOS of top and bottom surface states (extracted from the full calculation described in the Appendix) near
the bulk gap and for B < 3 T. Yellow stands for high DOS values (i.e., LLs) while the blue color represents small DOS (i.e., the gaps between
LLs). Ey, Ec, CNP, and Epp,p, label points on the gate voltage axis, which were matched to experimentally obtained values. The observed LLs
exhibit, as in experiment, pronounced kinks at the band edges (Ey, E¢) resulting from the abrupt change of the partial filling rates when bulk
states get filled. (b) The calculated total DOS in the valence band, corresponding to the experiment shown in Fig. 5(c) shows, for low B, an
unusual pattern stemming from the interplay of spin-degenerate hole LLs (red lines) and nondegenerate electron LLs (blue lines). Color code
as in (a). (c) Sketch of the crossing electron (Dirac fermion) (blue) and hole LLs (red). When Ef crosses a Dirac fermion LL, the filling factor
changes by 1; when it crosses a hole LL it changes by 2. The black numbers give the resulting filling factors in between electron and hole LLs.
(d) o4y as a function of V, calculated for the different charge carrier fractions when degenerate and nondegenerate hole and electron LLs, as in
(b), coexist. The total Hall conductivity oy, (black line) shows, as in experiment, the switching between odd and even plateau values, depending
on the parity of the electron filling factor. (e) The simulations shown here only consider the electrostatics of the LLs resulting in degenerate
LLs at crossing points. However, quantum mechanics requires that such crossings be avoided. This situation is sketched here to show that in
our model LL crossings lead (incorrectly) to maxima in the DOS while in experiment such crossings are characterized by a reduced density of

states at the crossing point (black circle).

an electron LL. Whether the total filling factor is even or odd
therefore depends on the parity of v,. Figure 6(c) illustrates
this scenario: Between the third and fourth hole LL, —v, =
—6, while between the first and the second electron LL,
v, = 1. Added together, the total filling factor is v = —5. To
understand the experimental result, yet another ingredient is
needed. The rate at which electron and hole LLs are filled is
greatly different. The values of the partial filling rates dn,/dV,
and dp,/dV, depend both on B and V,, while their sum, the
total filling rate, is a constant given by C/e. Within a simple
picture, the average value of the partial filling rates (averaging
over the small oscillatory part) follows the zero magnetic field
filling rates. The filling rate at B =0 is much smaller for
surface electrons than for holes due to their lower density
of states. This is directly shown by the experimental data in
Fig. 1(e) and the corresponding model in Fig. 1(g) (see also
Figs. S2(a) and S2(b) [30]) when EF is located in the valence

band. This also causes a different filling of electron and hole
LLs. While for a gate voltage change of, say, AV,, a spin-
degenerate hole LL with carrier density 2eB/h gets fully filled,
an electron LL is still largely empty, or, viewing it the other
way round: A change of the electron filling factor v, by 1 is
accompanied by changing v, by several even integers (due to
the hole LL’s spin degeneracy). Within the picture developed
above, we can readily explain the experimental observation:
A sequence of quantum Hall steps with only odd quantized
step occurs, e.g., when the Fermi level stays between the first
and second electron LL while it crosses several hole LLs as
V, is varied. When Ef crosses an electron LL the parity of the
filling factors changes and an even sequence of quantum Hall
steps emerges. The switching between even and odd plateau
sequences is direct proof that the surface states are topological
in nature: With conventional spin-degenerate electron states,
only Hall conductances with even multiples of e?/h would
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appear in experiment. The checkerboard pattern in oy, is a
consequence of the joint filling factor. Minima in oy, occur
at integer total filling factors, corresponding to the dark blue
regions in Figs. 5(b) and 5(e). These minima develop inside
the quadrilaterals formed by the electron and hole LLs; see,
e.g., Fig. 6(c). Figures 6(b) and 6(d) show model calculations
which confirm the arguments presented above and reproduce
the peculiar pattern in o, and oy,. Figure 6(d) displays
calculated oy, traces for the different charge carrier species
in the system. The total Hall conductivity at constant B =
0.8 T displays, as in experiment, transitions from odd to even
sequences of quantum Hall steps. Further, the calculated fan
chart in Fig. 6(b) reproduces qualitatively the checkerboard
pattern observed in experiment. We highlight in this fan chart
the electron and hole Landau levels. Each of the quadrilaterals
contains an integer total filling factor. There is, however, one
obvious difference between experiment and calculation: At
the crossing points of the LLs in Fig. 6(b) the total density
of states is highest, reflected by the bright yellow color. In the
experiment shown in Fig. 5(b), in contrast, the value of the
conductivity at the crossing points of electron and hole LLs
is between maximum and minimum values. The reason is that
we ignore anticrossings in our model. The anticrossing of LLs
reduces the density of states at the crossing points and thus the
conductivity. The cartoon in Fig. 6(e) shows the idealized LL
crossing assumed in our simplistic model compared to a more
realistic one.

At higher magnetic fields, beyond the first electron LL,
the checkerboard pattern disappears and the regular fan chart
of the total charge carrier density, which emanates from the
charge neutrality point, develops. Above about 3 T the spin
degeneracy of the bulk holes starts to get resolved. This
is shown in more detail by Fig. S3(a) in the Supplemental
Material [30].

VII. CONDUCTION BAND

In the conduction band, labeled as region 5 in the Fig. 3(b),
the system has common features both with the gap and the
VB. Again, bulk and surface carriers coexist in the con-
ductance band. However, the differences in effective masses
and filling rates between bulk and surface carriers are much
smaller than on the valence band side. In addition, the con-
tribution of bulk carriers to the conductivity is smaller than
that of the surface states, which is in contrast to the VB. And,
very importantly, the charge sign is the same, resulting in the
same direction (i.e., towards positive gate voltages) of the LL
fan charts. Nonetheless, due to the coexistence of quantized
top surface, bottom surface, and bulk electrons an intricate
structure of SdH oscillations develops and several Landau
fan charts develop. First, the fan chart associated with LLs
of the conduction band (bulk) electrons in Fig. 3(b), which
emerges at Ec, fans out to the right, and crosses the LLs
of the top surface electrons, which is clearly visible. The
corresponding fan is also shown and magnified in Fig. S4(d)
in the Supplemental Material [30].

Further, one can identify the Landau chart which originates
from the CNP and reflects the total filling factor v, i.e., the sum
of all electrons in the system. These Landau levels dominate

at high magnetic field and are the reason why high-field SdH
oscillations reflect the total carrier density. The corresponding
LL fan is highlighted in Fig. S4(b) in the Supplemental
Material [30]. The third chart, which dominates at lower B
and echoes the density of the top surface electrons, is shown
in Fig. S4(c) [30]. The fan chart originates from the virtual
point of zero density of the top surface. One would expect
a fourth chart associated with the bottom surface electrons;
the intermixing of LLs in this regime prevents its clear ob-
servation in Fig. 3(b). Apart from the complex oscillation
pattern, the anomalies due to the interplay of odd and even
filling factors are also expected in this region: When bulk
electrons (doubly degenerate) and Dirac surface electrons
(nondegenerate) coexist, we expect, as in the valence band,
even-odd transitions of the quantized Hall plateaus. Indeed,
we see even-odd switching in Fig. S3(b) [30], but due to the
large filling factors the signature is less pronounced as in the
case of coexisting electrons and holes.

VIII. SUMMARY

In this work, we studied Shubnikov—de Haas oscillations
and the quantum Hall effect under the peculiar conditions of
a two-dimensional gas of Dirac fermions “wrapped” around
the 80-nm-thick bulk of a strained HgTe film. The interplay
of four different carrier types, i.e., bulk electrons and holes,
as well as top and bottom surface Dirac electrons leads to an
intricate pattern of the Landau level fan charts. We identified
six different regions in the charts, which differ in terms of
condition (low or quantizing magnetic field) and types of
charge carrier which coexist at the Fermi level. The latter is
tuned by means of the applied gate voltage. A simple model
based on the superposition of conductivities and densities of
states connected to the different subsystems enables us to
describe all chart regions as qualitatively correct. In partic-
ular, a two-component Drude model fits the system in weak
magnetic fields. The opposite limit of strong magnetic fields
is characterized by the QHE state and resolved LLs, where the
total charge density defines the position of longitudinal con-
ductivity minima and plateaus in Hall conductivity. In inter-
mediate magnetic fields, the system becomes highly sensitive
to the exact position of the Fermi level. In the valence band,
we discovered periodic transitions from even to odd filling
factors, which we associate with interacting spin-degenerate
holes and nondegenerate surface electron LLs. We found
similar, but less marked behavior in the conduction band. In
the bulk energy gap, the nature of SdH oscillations is mainly
determined by LLs stemming from electrons on the upper
surface sitting on a monotonous background conductivity of
semiclassical electrons on the bottom surface. The onset of
bulk Landau levels observed at E. in Fig. 3(b) directly shows
that the Fermi level, in contrast to previous claims, can be
easily tuned into the conduction band [12]. Though we use
high-mobility strained HgTe as a model system, we note that
our conclusions and analyses are valid for a wide class of
topological insulators, e.g., Bi-based ones, even if those show,
due to their significantly higher disorder, usually much less
resolved quantum transport features.
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APPENDIX: COMPUTER SIMULATION OF LANDAU
LEVEL FILLING

In order to explain the LL fan charts and the Hall step
pattern, obtained from o, and o,, data, we developed a
model which qualitatively describes the system consisting
of several groups of carriers in both weak and quantizing
magnetic fields and at zero temperature. Within the model,
each group of carriers gives an independent contribution to
the total charge of the system, its conductivity oy, and oy,
and density of states D, and is characterized by a set of
constant (charge, effective mass etc., see Table I) and variable
(density, Fermi energy, the band edge, etc.) parameters. The
different groups of carriers are linked via the common Fermi
level and electrostatic coupling. In a magnetic field each
group generates a set of Landau levels which are filled up to
the Fermi level (at T = 0), whose position in turn depends
on the charge carrier density. The input of the calculation
are gate voltage V, and magnetic field B, while the output
are both partial and total filling factors, the densities of
states (DOS) D', and Hall conductivities o} for particular
B and V, values. The detailed description of the model
follows.

Depending on the gate voltage, up to four groups of charge
carriers are present in the system, namely, top and bottom
Dirac surface electrons, bulk electrons (conduction band),
and bulk holes (valence band), marked by the indices top,
bot, b (bulk) and % (holes) below. Each of these groups is
characterized by a parabolic two-dimensional dispersion law
with an effective mass of m; (values used in the calculation
are listed in Table I). This approach neglects the quasilinear
Dirac dispersion of the surface states but is justified as we
seek qualitative understanding rather than full quantitative
agreement. Next, each group is characterized by its lowest
energy E! (Dirac point for top and bottom electrons, con-
duction band edge for bulk electrons) and valence band edge
E, (for holes). The electron (hole) density in each group
reads n! = [} D'(E)dE[p, = [ D"(E)dE]. While at zero
magnetic field the constant DOS is given by D' = g;':; with
g, the spin degeneracy and / the reduced Planck constant,
at nonzero B Landau levels emerge, described by a sum of
Gaussians with linewidth I':

00 2
gLL _Egh)
- e rzo,
F'ﬁzﬁ]

Here g;; = eB/h is the spin-resolved LL degeneracy and
E, the energy of the nth LL. For surface carriers, LLs are
spin resolved and E, = E] + hw.(n + %), with w, = eB/m;

DI (E) =

the cyclotron frequency. For bulk carriers each LL is initially
doubly degenerate, but the degeneracy is lifted due to Zeeman
splitting, A, = gfupB, where gt is the Landé g factor of bulk
carriers (see Table I). Thus, for bulk electrons, E,fc = Ecb +
hwb(n+ 1)+ 2 and for holes, EX = E, — ol (n + 1) +
22 holds.

The electrostatics of the system is introduced in the same
way as done in our previous work [23], but extended to the
case of quantizing magnetic fields. The key point is that
each group of carriers is exposed to the electric field of the
others and the changes of a group’s carrier density create an
electrostatic energy shift for the others. Each group is treated
as an infinitely large, charged capacitor plate of zero thickness
with charge density £ = —en’ (ep, for holes), located at
certain distances from the gate [see Fig. 1(f)]. Every charged
plate induces a symmetric electric field F= X'/2¢egy on both
sides of the plate, which, in turn, creates an electrostatic
energy shift for the other groups of carriers. On the other hand,
the electric field below the bottom surface is zero. Therefore,
the charge on the bottom surface creates an electric field of
en?"t /€ngTe€0 inside the HgTe layer, where ¢ is the electric
vacuum permittivity and epgre = 80, the effective (see below
and “Limitations of the model” section) dielectric constant of
HgTe. Then, the electrostatic energy shift for a layer located
in a distance d from the bottom is ¢*n’'d /eyyre€o. In our
model, a change of the electrostatic energy shifts the position
of E! and E,. The energy shift for bulk carriers is solely
determined by the charge on the bottom surface (because in
the model there are no other carriers in between), while the top
surface electrons are affected by both bottom surface electrons
and bulk carriers with weights proportional to the respective
distance. Note that the electrostatic approach used here is fully
equivalent to the capacitance model used in our previous work
[23], and in the limit of small magnetic fields both models give
the same values for the partial densities.

Due to the common Fermi level, the electrostatic energy
shift couples densities of different groups of carriers and
results in screening of the electric field induced by the top
gate. For the simplest case when Ef is in the gap (i.e., only
surface electrons exist) an increase of n?® by An?® is accom-
panied by a simultaneous shift of Er by AEp = An®'/DP
and E.® by —e? An®'d /eqgreco; finally one obtains Any® =
An'(1 + e*d [eygreg0D'P), assuming D = D'P for sim-
plicity. The dielectric constant of the HgTe layer was chosen
in a way to agree with the partial filling rate of top and bottom
surface electrons, found in experiment. To the same end, the
(average) spatial location of bulk electrons and holes was
taken as a fitting parameter (see Table I). In order to agree
not only with filling rates, but also with the experimentally
extracted carrier densities, an additional constant energy shift
was introduced for each group except the one on the bottom
surface (which is chosen as a reference).

The calculation procedure was as follows: First, for a
specified V, value the total charge in the system is calculated
by the linear relation Q = —ae (V, — VgCNP), where o =
C/e =2.42 x 10" cm?/V s is the total filling rate. Next, for
a given value of the magnetic field the densities of states of
the different carrier species D'(E) are calculated analytically
taking the electrostatic energy shifts into account. Finally,
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the equation Q = ep,(Ep,E,) —e) ;n.(Er, E!) is solved
numerically giving the values of Er, n!, and p, as an output.
With these values the partial densities of states and o, were
calculated and plotted in Fig. 6.

At zero magnetic field, there is a linear relation between the
partial densities [see Fig. 1(g)] leading to constant filling rates
in certain gate voltage regions. However, screening works
differently in the limit of strong magnetic fields when the sep-
aration between neighboring LLs, stemming from arbitrary
carrier types, becomes large enough. In this case, the gate in-
duced change of the total charge AQ is not shared between the
different “capacitor plates” (carrier species) according to the
zero-field partial filling rates, but all the charges are filled into
the layer which has a (well-separated) LL located at the Fermi
level. Consider, e.g., Er in the gap between two LLs, one
belonging to the top, the other to the bottom surface electrons.
In the case when Ep is tuned (via B or V) into the LL of the
top surface a full screening scenario is realized: All additional
carriers go to the top surface (AQ = gAn'P) and no electric
field penetrates the HgTe film since it is screened by the top
surface electrons. In the opposite case, when Ep is tuned into
the bottom LL, screening is absent: All new carriers are added
to the bottom surface (AQ = gAn"") and the electric field
penetrates the HgTe film without attenuation. In our electro-
static model, the top surface is subjected to an electrostatic
energy shift of —eAQd/epgte€0. However, if the distance
from Ep to the next LL is larger than this energy shift, all
newly added electrons will still go to the bottom surface only.
In the limit of strong magnetic fields, the partial filling rates
for every group of carriers may only take two values: 0 when
the LL of the corresponding carrier species is not at Er and
1 if the associated LL is at Er. Our model does not describe
the detailed transition between the small and strong magnetic
field limit. However, the strong field limit in our system can
be clearly seen in the QHE data shown in Figs. 3(a) and 3(b).

Limitations of the model

As stated before, the model was developed in order to
achieve qualitative agreement with the experimental data, but,
surprisingly even semiquantitative concordance is achieved
in some regions. In particular, the DOS oscillations in the
bulk energy gap fit the experimentally obtained conductivity
oscillations well. Excellent agreement is also achieved in the
limit of strong magnetic fields. The main benefit of the model
is that it explains conclusively—with utmost simplicity—
the observed magnetotransport peculiarities. However, the
model has a set of built-in limitations, which are described
below:

(1) The real band dispersion at zero magnetic field is
replaced for all kinds of carriers by a parabolic one. This re-
duction is justified, because the QHE is of fundamental nature
and only slightly depends on the details of the band structure.
The observed magnetotransport features are explained by the
interplay of the LLs of different charge carriers, taking the
system’s electrostatics and LL broadening due to disorder into
account. Using the real band structure will simply lead to a
renormalization of the broadening parameters but does not
lead to any new physics. We note that the use of a parabolic
dispersion significantly simplifies the model.

(2) The effect of the out-of-plane electric field on the
electronic band dispersion, expected in thin HgTe films [19],
is neglected. One of the main consequences of the band distor-
tion is a reduced partial filling rate for the bottom side surface
electrons (and an increased one for top surface electrons,
accordingly). In order to fit the experimentally obtained filling
rates, we have therefore to use an effective dielectric constant
of the HgTe layer of epere = 80, which is larger than the real
one of about 20.

(3) No quantum mechanical interaction between LLs is
taken into account. When two LLs (stemming from bulk holes
and surface electrons, e.g.) cross, a maximum in the DOS
forms in our calculations. In a more realistic scenario, the
interaction between carriers should lead to an anticrossing of
LLs and reduced values of the DOS and the longitudinal con-
ductivity at the crossing. Consequently, we cannot reproduce
all details of the checkerboard pattern shown, e.g., in Fig. 5(b).

(4) In the limit of strong magnetic fields, the experimen-
tally measured width of the conductivity peaks is smaller
than the width of the gap region on the gate voltage scale.
In contrast, our DOS calculations show minima and maxima
regions of similar width. This is a well-known discrepancy,
which is due to the fact that (i) the conductivity in the quantum
Hall regime is proportional to the square of the Landau level
DOS [2], and that (ii) effects which stem from transport in
edge states (parallel to the applied field) are not taken into
account.

(5) The valley degeneracy of bulk holes is neglected. Band
structure calculations predict a fourfold degeneracy for (100)-
oriented HgTe films and QWs and a twofold one for (013)-
oriented ones, used here. There has been difficulty observing
the valley degeneracy in experiment. Some authors believe
that the valley degeneracy is lifted because of the Rashba
effect [37].

(6) Effects of the Berry phase which give rise to a phase
shift of the quantum oscillations, and which we observed in
our material system before [13,23], are neglected here.
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