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Braiding Majorana corner modes in a second-order topological superconductor
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We propose the concept of a device based on a square-shaped sample of a two-dimensional second-order
topological helical superconductor which hosts two zero-dimensional Majorana quasiparticles at the corners.
The two zero-energy modes rely on particle-hole symmetry (PHS) and their spatial position can be shifted by
rotating an in-plane magnetic field and tuning proximity-induced spin-singlet pairing. We consider an adiabatic
cycle performed on the degenerate ground-state manifold and show that it realizes the braiding of the two modes
whereby they accumulate a nontrivial statistical phase π within one cycle. Alongside the PHS-ensured operator
algebra, the fractional statistics confirms the Majorana nature of the zero-energy excitations. A schematic design
for a possible experimental implementation of such a device is presented, which could be a step towards realizing
non-Abelian braiding.
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Introduction. Standard d-dimensional topological insu-
lators and superconductors have a gapped bulk spectrum
and exhibit conducting surface states in (d − 1) dimensions
[1–8]. The analysis of noninteracting electrons in materi-
als possessing fundamental symmetries—time-reversal (T ),
particle-hole (P), and/or chiral symmetry (C)—led to the ini-
tial classifications of such topological phases [9–11]. Later on,
possible topological phases protected by discrete crystalline
symmetries were studied [12–24] and, lastly, another class
of exotic noninteracting topological phases was discovered,
namely the second-order topological insulators (SOTIs) and
superconductors (SOTSs) [25–31].

Unlike standard gapped topological materials (that may
be termed “first order”), such systems have insulating (d −
1)-dimensional surfaces, but host topologically protected
boundary modes in (d − 2) dimensions. In particular, for
d = 3 this means the material exhibits one-dimensional (1D)
states propagating along its hinges [26,27,31–37] as detected
in Bi(111) [38]. Accordingly, SOTIs and SOTSs in d = 2 host
localized (d = 0) corner modes and have been discussed in
both static [18,25,31–35,37,39] and Floquet-driven systems
[40–42]. Second-order topological phases have been exper-
imentally realized in artificial systems, such as mechanical
metamaterials [43], microwave [44] and topolectrical circuits
[45], and further implementations in materials have been pro-
posed [27,34,46,47].

*pahomit@phys.ethz.ch
†Deceased.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

One of the motivations to seek for topological materi-
als is their potential implementation in devices that would
exploit the topology-ensured protection from decoherence.
Of particular interest is topological quantum computation,
considered the cornerstone of quantum technology, in which
logical operations are done by means of braiding (double
exchange) non-Abelian quasiparticle excitations [48–52]. Ma-
jorana (zero-energy) excitations are known to be the only
non-Abelian quasiparticles that can appear in the absence of
electron-electron interactions [53,54] and were initially pre-
dicted to appear at the edges of a 1D spinless superconductor
[48]. Almost a decade later, it was demonstrated that this
exotic topological phase could be achieved in a semiconductor
nanowire with strong spin-orbit coupling placed in an external
magnetic field, if superconductivity is induced by a proximity
effect [55,56]. Following these theoretical proposals, such de-
vices were experimentally realized by several groups [57–62]
and are currently among the most promising building blocks
for topological quantum computing devices. However, despite
the existing proposals of braiding Majorana end modes using
nanowires [63,64], identifying the topological qubit remains
extremely challenging due to the engineering complexity of
manipulating the topological phase in the wire junctions with-
out losing the superconducting state. This motivates the search
for other approaches to realize a Majorana qubit in potentially
feasible condensed matter systems [65–69].

In this Rapid Communication we propose a device based
on a two-dimensional (2D) SOTS which hosts two Majorana
modes localized at two corners of a square-shaped crystalline
sample [see Fig. 1(a)]. We call them Majorana corner states
(MCSs) in the following. Within our model, the corner lo-
calization of the MCSs in the device can be tuned using an
in-plane magnetic field and proximity-induced spin-singlet
superconductivity. In this setup, the braiding of the Majorana
quasiparticles can be realized in a straightforward fashion
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FIG. 1. (a) Energy of the lowest 20 eigenstates in a finite square-
shaped sample of our second-order topological superconductor for
parameters b = (−0.3, 0) and s = (0, 0.3); the two zero-energy
modes, denoted by A and B, are separated from the bulk states
by an energy gap � and the probability densities |ψα (x, y)|2 are
schematically shown in the inset (α ∈ {A, B}). (b) Worldlines of
A and B during the proposed cyclic adiabatic process of period T ,
computed as arg maxϕ |ψα (ϕ)|2 for each t ∈ [0, T ], with ϕ the polar
angle.

[schematically illustrated in Fig. 1(b)], and we show that
the associated fractional statistics of the proposed topological
Majorana qubit is observed.

SOTS model. In k space, our proposed model can be formu-
lated with a minimal four-band Bogoliubov–de Gennes (BdG)
Hamiltonian

H (k) =
(

ĥk �̂k

�̂∗
k −ĥ∗

k

)
, (1)

written in the Nambu basis �̂k :=
(ck↑ ck↓ c†

−k↑ −c†
−k↓)

T
, with c(†)

k s being the annihilation
(creation) operator for an electron with a 2D momentum
k and spin s ∈ {↑,↓}. With the three Pauli matrices
σ = (σ1, σ2, σ3) and the identity σ0 in spin space, we
write ĥk = t0(1 − cos kx − cos ky)σ0 + b · σ, while the gap
matrix components are �k,↑↑ = �∗

k,↓↓ = t0(sin kx − i sin ky)
and �k,↓↑ = −�k,↑↓ = sx cos kx + sy cos ky. The vectors
b ≡ (bx, by ) and s ≡ (sx, sy) parametrize the in-plane
magnetic field and the spin-singlet pairing amplitudes,
respectively, with magnitudes smaller than t0, taken as the
unit in the following.

For b = s = 0, the HamiltonianH describes electrons with
nearest-neighbor hopping on a square lattice, subject to p-
wave pairing. It possesses all three noncrystalline symmetries
(T , P, and C) and falls into the symmetry class DIII [9–11],
supporting helical Majorana edge states [Fig. 2(a)]. Includ-
ing crystalline symmetries, the total point symmetry group is
G(b=0,s=0) = D4h × {1,T ,P,C}, where 1 represents the iden-
tity. This can be rewritten as G(0,0) = G̃(0,0) × {1,P}, where
the magnetic group reads G̃(0,0) = D4h ⊕ TD4h (or 4/mmm1′)
[for more details, see the Supplemental Material (SM) [70]].

A finite in-plane magnetic field b conserves P for any
direction, but breaks T . The reduced magnetic group is
G̃(b,0) = C2h ⊕ T (D2h − C2h) [71] if b is parallel to x̂, ŷ,
or x̂ ± ŷ, and Ci ⊕ T (C2h − Ci ) otherwise (i.e., m′m′m and
2′/m′, respectively). The magnetic field hybridizes the helical
boundary modes unless they are protected by symmetry: As
illustrated in Fig. 2(b), for b ‖ x̂ only the x edges remain
metallic protected by CMy ∈ G(x̂,0), a product of C and the

FIG. 2. (a) Schematic diagram for the helical state with two
counterpropagating edge modes of opposite spins. At the x (y)
boundary, they are protected by the mirror antisymmetry CMy

(CMx), a product of chiral symmetry and the mirror reflection
My (Mx). (b) The magnetic field b = (−0.3, 0) breaks the mirror
antisymmetry CMx and gaps the y edges. (c) If, additionally, the
parameter s = (0, sy ) ‖ ŷ is nonvanishing, the pairing term �k,↓↑ =
sy cos ky breaks the CMy antisymmetry and two zero-energy modes
appear, localized at two adjacent corners.

mirror reflectionMy which maps (x, y, z) 
→ (x,−y, z). Anal-
ogously, for b ‖ ŷ the gapless states at the y edges are protected
by CMx (see SM [70]). Both edges are gapped for generic
orientations b ∦ x̂, ŷ, but, if b ‖ (x̂ ± ŷ), the mirror-symmetric
corners bisected by b will host zero-energy modes [28,72].

The spin-singlet pairing controlled by s (|s| �= 0) reduces
the symmetry further and in the generic case G̃(b,s) = C1 ⊕
T (Cs − C1) (or m′). Thus, the (minimal) total group of the
BdG Hamiltonian is G(b,s) = {1,TMz} × {1,P}, including
two particularly important elements, P and the effective chiral
symmetry C̃ = CMz = PTMz, which transform the Hamil-
tonian in the following way,

H (k) = −UP H (−k)∗U †
P, UP = σ3τ1, (2a)

H (k) = −UC̃ H (+k)U †
C̃, UC̃ = σ2τ1, (2b)

where the Pauli matrix τ1 acts on the particle-hole space.
Majorana corner states. On a finite square-shaped lat-

tice, the P-symmetric Hamiltonian hosts two degenerate
zero-energy excitations |ψα〉, with α ∈ {A, B}, whose fea-
tures in the second-order topological phase are displayed in
Fig. 1(a) for b = (−0.3, 0) and s = (0, 0.3). In this regime,
although the magnetic field b ‖ x̂ would allow for CMy-
protected boundary modes at the x edges, the spin-singlet
pairing controlled by s ‖ ŷ gaps the x edges by breaking this
symmetry [Fig. 2(c)] and enforces the zero-energy modes
to localize at two adjacent corners of the device [as shown
in the inset of Fig. 1(a)]. More precisely, the pairing term
�k,↓↑ reduces G̃(x̂,0) = C2h ⊕ T (D2h − C2h) to G̃(x̂,ŷ) = Cs ⊕
T (C2v − Cs) (i.e., m′m′m to m′m2′).

The operators corresponding to the MCSs can be
written as

γα =
∑

r

4∑
i=1

[ψα,r]
∗
i [�̂r]i, α ∈ {A, B}, (3)

where [�̂r]i is the ith component of the Fourier-transformed
Nambu basis for the site at position r and [ψα,r]i the ith
component of the corresponding sector |ψα,r〉 of the MCS
|ψα〉. Because |ψα〉 are self-conjugate under P (P |ψα,r〉 ≡
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FIG. 3. The evolution of the Hamiltonian parameters b ≡
(bx, by ) and s ≡ (sx, sy ) during the cyclic adiabatic process of pe-
riod T . The alternating dark-light background colors correspond to
second-order topological phases with invariants (φxy, φyx ) = (π, 0)
or (0, π ), respectively. The inset displays the energy eigenvalues of
the finite lattice in the range E ∈ [−0.4, 0.4], during the last quarter
of the cyclic process (the period of the eigenvalues is T/4).

UP |ψα,r〉∗ = |ψα,r〉), these operators satisfy the following re-
lations (for details, see SM [70]),

γα = γ †
α , {γα, γβ} = 2δαβ. (4)

The energies of the midgap states go to zero exponen-
tially with the system size (see SM [70]), are robust against
P-preserving disorder (tested numerically) and are well sep-
arated from the bulk states by an energy gap [emphasized in
Fig. 1(a)]. The localization of the boundary modes is strongly
dependent on the Hamiltonian parameters b and s, whereby
their energy remains zero for all the considered configura-
tions, in which the device is in a SOTS phase. This degenerate
ground-state manifold is crucial to realize the braiding of the
topological MCSs.

Computing topological invariants. We can assess the topo-
logical features of our device using the Wilson loop operator
(WLO), presented in more detail in the SM [70]. The WLO
can be adiabatically connected to the Hamiltonian at the
boundary [73–76] and can thus characterize the surface topol-
ogy of materials, such as Z2 topological (crystalline or not)
insulators in 2D and 3D [3,76–82] or Z Chern insulators
[80,82–84].

Moreover, the nested WLO introduced in Ref. [25] has
been used to address the physics at “the boundary of the
boundary” [27,40,85]. In our 2D model, using the nested
WLOs we obtain two Z2 corner topological invariants
φxy, φyx ∈ {0, π}, which are quantized by the effective chiral
symmetry introduced in Eq. (2b) (confirmed by numerical
simulations). The device is in a SOTS phase whenever ei-
ther of {φxy, φyx} is equal to π ; for example, in the case
b = (−0.3, 0) and s = (0, 0.3), shown in Fig. 1(a), we have
(φxy, φyx ) = (π, 0).

Braiding process. We perform the adiabatic braiding of
the MCSs by rotating the magnetic field (b) and adjusting
the spin-singlet pairing (s). Let T be the time period of the
cyclic process and t ∈ [0, T ] the parameter which controls
the process, such that we have periodic boundary conditions
H (t=0) = H (t=T ). The evolution of the parameters b(t ) and
s(t ) over a full period is shown in Fig. 3, where the alter-

FIG. 4. Square lattices with 21 × 21 sites, displaying the spatial
probability density PA(t ; x, y) (blue color) and PB(t ; x, y) (red color)
of the two zero modes A and B during the adiabatic cycle, at time
ta = 0 in (a), tb = T/8 in (b), tc = 2T/8 in (c), etc. The probability
of localization is maximum at the corners of the lattice (labeled
with 1, 2, 3, and 4), which can be seen from the intensity of the
colors. This feature is emphasized in the insets, where we used
the parametrization (x, y) = r(cos ϕ, sin ϕ) and plotted the angular
probability distributions Pα (t ; ϕ) for α ∈ {A, B}. The background
colors are alternating when t ∈ [0, T ] and have the same meaning as
in Fig. 3: The second-order topological invariants (φxy, φyx ) are equal
to (0, π ) in the light regions and to (π, 0) in the darker regions.

nations of the second-order topological states characterized
by (φxy, φyx ) = (π, 0) and (0, π ) are also highlighted. Along
this path in parameter space, the bulk and the edges re-
main gapped, while the energy of the degenerate MCSs is
unaffected—they remain well separated from the bulk states
by an energy gap (feature displayed in the inset of Fig. 3).
The MCSs thus do not mix with the bulk states during the
cyclic process, which we illustrate in Fig. 4 by computing the
spatial probability density of |ψα (t )〉 in the proposed device
for several t (α ∈ {A, B}).

Statistical phase. A fermionic many-body wave function
picks a factor (−1) upon exchanging two fermions and it
reverts to the initial wave function if the exchange of any other
two is performed. In contradistinction, in a system with 2M
Majorana quasiparticles (M > 1) two subsequent exchanges
(say, γ1 ↔ γ2 and γ2 ↔ γ3) generally give a different state
(non-Abelian braid group) [49–52]. In particular, if the system
contains a single pair of Majoranas (M = 1), such a double
exchange (braiding) reveals the fractional statistics of the
two quasiparticles: Each acquires a nontrivial statistical phase
� = π .

The device we propose here realizes the braiding of two
midgap states ψα [with corresponding operators γα , α ∈
{A, B}, see Eq. (3)] and we show below their statistics is in-
deed that of Majorana quasiparticles (fractional, M = 1). We
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note, however, that in the proposed setup the single exchange
A ↔ B is not feasible with the parameter cycle considered in
Fig. 3. Although at t = T/2 the centers of the wave functions
ψA, ψB are swapped (see Fig. 4), the Hamiltonian after a
half-period is different from the initial one. Consequently, a
statistical phase between ψA (ψB) at t = 0 and ψB (ψA) at
t = T/2 would not be well defined nor robust.

To express the braiding phase accumulated by each MCS
within one full cycle (i.e., after a double exchange), we use
the Berry phase defined as

�α =
∮ T

0
[At ]αα dt, α ∈ {A, B}, (5)

where the Berry connection matrix has elements [A t ]αβ =
i 〈ψα (t )| ∂t |ψβ (t )〉 (more details are given in the SM [70]).
The quantity in Eq. (5) is gauge invariant because (i) the
Hamiltonian parameter configurations at t ∈ {0, T } are iden-
tical and (ii) the matrixAt is diagonal ∀t ∈ [0, T ], as the two
MCSs are kept far apart from each other and do not mix during
the course of the adiabatic cycle. The practically null spatial
overlap of the two states A and B was checked numerically
and is illustrated in Figs. 1(b) and 4.

With Eq. (5), we obtain nontrivial statistical phases �A =
�B = π , which means

γA → −γA,

γB → −γB,
(6)

and, together with the operator algebra (4), proves the Majo-
rana nature of the quasiparticles. As confirmed numerically,
the quantization of the phases is guaranteed by P, Eq. (2a).

However, the relative phase described here would be an
inaccessible experimental quantity within the proposed pro-
tocol, since the two MCSs necessarily have different fermion
parities. Nonetheless, we believe it might be possible to extend
our scheme as to construct a system hosting M > 1 Majorana
pairs (for example, by distributing M devices as a chain or
a two-dimensional array). In such a setup, we would expect
that the fractional statistics (6) of our MCSs (M = 1) would
generalize to a non-Abelian braid group.

Schematic device design. Finally, we briefly describe a
possible structure for the proposed device that would consist
of three square-shaped thin-film superconductors stacked as
in Fig. 5(a). The superconducting state in our model (�̂k) can
be realized if we induce spin-singlet pairing in the p-wave
film through the proximity effect, by placing it between an
extended s-wave superconductor and a dx2−y2 -wave supercon-
ductor, with even-parity gap functions ψs/d = ηs/d (cos kx ±
cos ky). In terms of the s parameter, the gap magnitudes can
be written as ηs/d = (sx ± sy)/2. The relative phases between
the superconductors can be fixed by Josephson contacts, as
explained in the following.

First, the order parameter ηp corresponding to the p wave
couples only in second order to the spin-singlet ones, which
locks the p-s and p-d relative phases to either π/2 or −π/2 (in
order to minimize the Josephson energy, in lowest order be-
ing typically EJ ∝ + cos 2φp−s/d ). Indeed, first-order coupling
terms as (η∗

s/dηp + c.c.) are assumed to be absent or extremely
weak, due to the mismatch of parity. Note that the p-wave su-
perconducting state, d-vector dk = x̂ sin ky − ŷ sin kx, belongs
to irreducible representation A2u, while the order parameters

FIG. 5. (a) Schematic representation of the proposed device,
consisting of a two-dimensional helical p-wave superconductor in
contact with an extended s-wave and a d-wave superconductor.
(b) Diagrams of the spin-singlet gap structures in the xy plane, with
positive and negative sectors. One of the Josephson contacts between
the s and d superconductors [depicted as well in (a)] links two sectors
of the same sign (++ configuration), while the other links sectors
of different signs (+−). (c) The magnitudes of the spin-singlet gap
functions during the proposed adiabatic cycle of period T , with
+π/2 (−π/2) phases relative to the p-wave superconductor in the t
intervals with dark-red (light-blue) background color. One commutes
between the (++) and (+−) configurations when both |ηs/d | are
small; the red arrows indicate the smaller gap magnitude and thus
the spin-singlet superconductor which flips the phase relative to the
p wave.

ψs and ψd belong to the even-parity representations A1g and
B1g, respectively. Thus, the phase coupling between the odd-
parity and even-parity order parameter would be dominated
by the second-order coupling of the form (η∗2

s/dη
2
p + c.c.). The

appropriate phase factor eiπ/2 is already considered in Eq. (1),
where the configuration “ηs + ηd + iηp” is presented.

Second, the relative phase between the spin-singlet con-
densates can be controlled using alternatively two direct
Josephson contacts [see Fig. 5(a)]. The gap functions ψs and
ψd exhibit in the xy plane positive and negative sectors, as
schematically represented in Fig. 5(b), and the Josephson
contacts are set up such that they link equal- or different-sign
sectors, respectively. Switching the active contact increases by
π not only the relative s-d phase, but consequently also that
singlet-triplet phase, where the Josephson coupling is weaker.
As emphasized in Fig. 5(c), during the proposed adiabatic
cycle such an operation changes the p-s (p-d) phase by π

when |ηs| < |ηd | (|ηs| > |ηd |).
Manipulating the spin-singlet gap magnitudes ηs/d during

the proposed cycle remains a challenging task. At a concep-
tual level, two strategies could be taken under consideration:
using tunable tunneling Josephson contacts between the p-
wave and the spin-singlet superconductors or modifying the
order parameter amplitudes ηs and ηd individually by local
heating or other means. In fact, small changes to the proposed
functions ηs/d (t ), that might come within the experimental
implementation, are not expected to change the topological
features of the cycle. The latter argument applies as well to the
in-plane magnetic field b(t ). Moreover, we assume this to be
weak enough such that in the superconducting thin films the

032068-4



BRAIDING MAJORANA CORNER MODES IN A … PHYSICAL REVIEW RESEARCH 2, 032068(R) (2020)

interference with the Josephson effect as well as the depairing
effects are negligible.
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